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1 Introduction and main results
Schrödinger lattice systems are a class of very important discrete models, ranging from
biology and condensed matter physics to solid state physics [8, 10, 11]. In fact, most re-
sults are about the periodic Schrödinger lattice systems, such as [2, 4, 12–14, 18, 19, 24].
However, there are only few results about the nonperiodic Schrödinger lattice systems
[5, 9, 15, 16, 22, 23]. In particular, in [3, 6, 7] the authors recently obtained the existence
and multiplicity of homoclinic solutions for a class of Schrödinger lattice systems with
perturbed terms.

In this paper, we investigate the nonperiodic Schrödinger lattice system

⎧
⎨

⎩

–(�u)n + vnun = μχn|un|μ–2un, n ∈ Z,

lim|n|→∞ un = 0,
(1.1)

where μ ∈ (1, 2),

(�u)n := un+1 + un–1 – 2un, (1.2)

{un}, {vn}, and {χn} are real-valued sequences, and the discrete potential V = {vn}n∈Z and
{χn} are nonperiodic. A solution u = {un}n∈Z is said to be nontrivial if un �≡ 0. Problem
(1.1) appears when we look for standing wave (or breather) solutions of the Schrödinger
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lattice system

iψ̇n = –(�ψ)n + ṽnψn – μχn|ψn|μ–2ψn, n ∈ Z, (1.3)

where {ψn} is a real-valued sequence. Standing waves (or breathers) are the solutions for
(1.3) of the form ψn = une–iωt , where ω ∈ R is the temporal frequency, and un satisfies
lim|n|→∞ un = 0. By the standing wave ansatz ψn = une–iωt we get that (1.3) reduces to (1.1)
with vn ≡ ṽn – ω. Therefore we only need to study the existence of solutions of (1.1).

Let

‖u‖lq :=

( +∞∑

n=–∞
|un|q

)1/q

, ‖u‖l∞ := sup
n∈Z

|un|, u = {un}n∈Z,

be the norms of the real sequence spaces lq := lq(Z) (q ∈ [1,∞)). The following embedding
between such spaces is well known:

lq ⊂ lp, ‖u‖lp ≤ ‖u‖lq , 1 ≤ q ≤ p ≤ ∞.

We study solutions of (1.1) in l2 since any u = {un}n∈Z ∈ l2 satisfies lim|n|→∞ un = 0.
Note that the domain of (1.1) is Z, and thus, to overcome the loss of compactness caused

by the unboundedness of the domain Z, we need the following condition:
(V1) lim|n|→+∞ vn = +∞.
Then (V1) implies that (see [21]) the spectrum σ (–
 + V ) is discrete and consists of

simple eigenvalues accumulating to +∞, that is, we can assume that

λ1 < λ2 < · · · < λk < · · · → +∞

are all eigenvalues of –
 + V , where ((–
 + V )u)n := –(
u)n + vnun for u = {un} ∈ l2.

Theorem 1.1 System (1.1) has infinitely many nontrivial solutions if (V1), and the follow-
ing conditions hold:

(W1) 0 /∈ σ (–� + V ).
(SG1) χ := {χn > 0}n∈Z ∈ l

2
2–μ , μ ∈ (1, 2).

Clearly, condition (W1) implies that we have the following two cases:
(W′

1) 0 ∈ (λk0 ,λk0+1) for some k0 ≥ 1 (the indefinite case);
(W′′

1) 0 < λ1 (the positive definite case).

Remark 1.1 To the best of our knowledge, there is no result published concerning the
multiplicity of nontrivial solutions for (1.1) with sublinear nonlinearities at both zero and
infinity. For the nonperiodic system (1.1), the main differences between our and known
results [5, 9, 15, 16, 22, 23] are as follows:

(1) The nonlinearities gn(s) in [5, 15, 16, 22, 23] are superlinear as |s| → 0 (lim|s|→0
gn(s)

s =
0, ∀n ∈ Z), and the nonlinearities gn(s) in [9] are superlinear or asymptotically lin-
ear (lim|s|→0

gn(s)
s = ln ∈ (0, +∞), ∀n ∈ Z) as |s| → 0. However, our nonlinearities gn(s) =

μχn|un|μ–2un are sublinear as |s| → 0 (lim|s|→0
gn(s)

s = +∞, ∀n ∈ Z).
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(2) The nonlinearities gn(s) in [5, 9, 15, 22, 23] are superlinear as |s| → ∞ (lim|s|→∞ gn(s)
s =

+∞, ∀n ∈ Z), and the nonlinearities gn(s) in [16] are asymptotically linear as |s| → ∞
(lim|s|→∞ gn(s)

s = cn ∈ (0, +∞), ∀n ∈ Z). However, our nonlinearities gn(s) = μχn|un|μ–2un

are sublinear as |s| → ∞ (lim|s|→∞ gn(s)
s = 0, ∀n ∈ Z).

(3) Our method is based on the variant fountain theorem in [25], which is different from
the methods used in the papers mentioned.

In Sect. 2, we give some lemmas and the proofs of our main result. In Appendix, we give
the proofs of the conditions in the critical point theorem used in this paper.

2 Proof of the main result
The corresponding action functional � of (1.1) is defined as follows:

�(u) =
1
2

(Lu, u)l2 –
+∞∑

n=–∞
χn|un|μ, u ∈ E,

where (·, ·)l2 is the inner product in l2, L := –
 + V , E := D(|L|1/2) is the form domain of L
(the domain of |L|1/2). Since the operator –
 is bounded in l2, we easily see that

E =
{

u ∈ l2 : |V |1/2u ∈ l2}

with the inner product and norm

(u, v) :=
(|L|1/2u, |L|1/2v

)

l2 = (–
u, v)l2 +
(|V |1/2u, |V |1/2v

)

l2 , ‖u‖ := (u, u)1/2;

E is a Hilbert space, where |V |1/2u is defined by (|V |1/2u)n := |vn|1/2un (n ∈ Z). By (W1). We
have the orthogonal decomposition

E = E– ⊕ E+

with respect to both inner products (·, ·) and (·, ·)l2 , where E± := E ∩ (l2)±, and (l2)± is the
positive (negative) eigenspace of L.

Then the functional � can be rewritten as

�(u) =
1
2
∥
∥u+∥

∥2 –
1
2
∥
∥u–∥

∥2 –
+∞∑

n=–∞
χn|un|μ, u ∈ E,

where u = u+ +u– ∈ E = E+ ⊕E–. Let I(u) :=
∑+∞

n=–∞ χn|un|μ. Under our assumptions, I,� ∈
C1(E,R) with derivatives

〈
�′(u), v

〉
=

(
u+, v+)

–
(
u–, v–)

–
〈
I ′(u), v

〉
,

〈
I ′(u), v

〉
=

+∞∑

n=–∞
μχn|un|μ–2unvn, u, v ∈ E,

where u = u+ + u–, v = v+ + v– ∈ E = E+ ⊕ E–. The standard argument shows that nonzero
critical points of � are nontrivial solutions of (1.1). We will use the following critical point
theorem.
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Lemma 2.1 ([25]) Let E be a Banach space with norm ‖ · ‖ and suppose E =
⊕∞

j=1 Xj with
dim Xj < ∞, j ∈ N. Set Yk =

⊕k
j=1 Xj and Zk =

⊕∞
j=k Xj. Assume that the functional �λ =

A(u) – λB(u) (�λ ∈ C1, �λ : E → R, λ ∈ [1, 2]) satisfies
(F1) �λ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2], and �λ(–u) = �λ(u)

for all (λ, u) ∈ [1, 2] × E;
(F2) B(u) ≥ 0, ∀u ∈ E; and B(u) → ∞ as ‖u‖ → ∞ on any finite-dimensional subspace

of E.
(F3) There exist ρk > rk > 0 such that

αk(λ) := inf
u∈Zk ,‖u‖=ρk

�λ(u) ≥ 0 > βk(λ) := max
u∈Yk ,‖u‖=rk

�λ(u), ∀λ ∈ [1, 2],

and

ξk(λ) := inf
u∈Zk ,‖u‖≤ρk

�λ(u) → 0 as k → ∞ uniformly for λ ∈ [1, 2].

Then there exist λj → 1 and uλj ∈ Yj such that

�′
λj
|Yj

(
uλj

)
= 0, �λj

(
uλj

) → ηk ∈ [
ξk(2),βk(1)

]
as j → ∞.

Particularly, if {uλj} has a convergent subsequence for every k, then �1 has infinitely many
nontrivial critical points {uk} ⊂ E \ {0} satisfying �1(uk) → 0– as k → ∞.

From (V1), (W1), and [21] we have that the eigenvalues of L are as follows:

λ1 < λ2 < · · · < λk0 < 0 < λk0+1 < · · · → +∞.

Let {ej}k0
j=1 and {ej}∞j=k0+1 be the orthonormal bases of E– and E+, respectively (E– = {0} if

0 < λ1). Then {ej}j∈N is an orthonormal basis of E. Let Xj := span{ej} for j ∈N. Then Zk and
Yk can be defined as in Lemma 2.1. Let

A(u) :=
1
2
∥
∥u+∥

∥2, B(u) :=
1
2
∥
∥u–∥

∥2 +
+∞∑

n=–∞
χn|un|μ,

and

�λ(u) = A(u) – λB(u) =
1
2
∥
∥u+∥

∥2 – λ

(
1
2
∥
∥u–∥

∥2 +
+∞∑

n=–∞
χn|un|μ

)

for all u = u+ + u–, v = v+ + v– ∈ E = E+ ⊕ E– and λ ∈ [1, 2]. Obviously, �λ ∈ C1(E,R) for all
λ ∈ [1, 2].

Proof of Theorem 1.1 Under our assumptions, the definition of �λ implies that �λ maps
bounded sets to bounded sets uniformly for λ ∈ [1, 2]. Evidently, �λ(–u) = �λ(u) for all
(λ, u) ∈ [1, 2] × E, and thus (F1) of Lemma 2.1 holds. Besides, Ax 3.1 and Ax 3.2 in the Ap-
pendix show that (F2) and (F3) of Lemma 2.1 hold for all k ≥ k1. Therefore by Lemma 2.1,
for each k ≥ k1, there exist λj → 1 and uλj ∈ Yj such that

�′
λj
|Yj

(
uλj

)
= 0, �λj

(
uλj

) → ηk ∈ [
ξk(2),βk(1)

]
as j → ∞. (2.1)
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Let

uj := uλj , ∀j ∈N.

By (2.1), (SG1), and the definition of �λj ,

–�λj

(
uj) =

1
2
〈
�′

λj
|Yj

(
uj), uj〉 – �λj

(
uj)

= λj

+∞∑

n=–∞

(

1 –
μ

2

)

χn
∣
∣uj

n
∣
∣μ

≥ λj

(

1 –
μ

2

)

θ

+∞∑

n=–∞

∣
∣uj

n
∣
∣μ, ∀j ∈N.

(2.2)

Relations (2.1), (2.2), and μ < 2 imply that ‖uj‖lμ = (
∑+∞

n=–∞ |uj
n|μ)1/μ < ∞. It follows from

the equivalence of any two norms on finite-dimensional space E– and the Hölder inequal-
ity that

∥
∥
(
uj)–∥

∥2
l2 =

((
uj)–, uj

)

l2 ≤ ∥
∥uj∥∥

lμ · ∥∥(
uj)–∥

∥
lμ′ ≤ C1

∥
∥
(
uj)–∥

∥
l2

for some C1 > 0, where μ′ satisfies 1/μ + 1/μ′ = 1. Consequently, we have ‖(uj)–‖l2 ≤ C1,
∀j ∈N. In view of the equivalence of norms ‖ · ‖l2 and ‖ · ‖ on E– again, there exists C2 > 0
such that

∥
∥
(
uj)–∥

∥ ≤ C2, ∀j ∈N. (2.3)

Obviously, the definition of �λj implies

∥
∥
(
uj)+∥

∥2 = 2�λj

(
uj) + λj

∥
∥
(
uj)–∥

∥2 + 2λj

+∞∑

n=–∞
χn

∣
∣uj

n
∣
∣μ.

It follows from ‖uj‖2 = ‖(uj)+‖2 + ‖(uj)–‖2 that

∥
∥uj∥∥2 = 2�λj

(
uj) + (λj + 1)

∥
∥
(
uj)–∥

∥2 + 2λj

+∞∑

n=–∞
χn

∣
∣uj

n
∣
∣μ,

which, together with (2.1), (2.3), (SG1), and the fact E is compactly embedded into l2 (see
[21]), implies that

∥
∥uj∥∥2 ≤ C3 + 4‖χ‖

l
2

2–μ

∥
∥uj∥∥μ

l2

≤ C3 + C4
∥
∥uj∥∥μ

for some C3, C4 > 0. This implies that {uj} is bounded in E since μ < 2.
Thus, without loss of generality, we can assume that

uj ⇀ u as j → ∞ (2.4)
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for some u ∈ E. By the Riesz representation theorem, �′
λj
|Yj : Yj → Y ∗

j and I ′ : E → E∗ can
be viewed as �′

λj
|Yj : Yj → Yj and I ′ : E → E, respectively, where Y ∗

j and E∗ are the dual
spaces of Yj and E, respectively. Note that (2.1) implies that

0 = �′
λj

(
uj)|Yj = uj – λjPjI ′(uj), ∀j ∈N,

where Pj : E → Yj is the orthogonal projection for all j ∈N, that is,

uj = λjPjI ′(uj), ∀j ∈ N. (2.5)

By the standard argument (see [1, 17]) we know that I ′ : E → E∗ is compact. Therefore
I ′ : E → E is also compact. It follows from (2.4) that the right-hand side of (2.5) converges
strongly in E, and hence uj → u in E.

Therefore {uλj} has a convergent subsequence in E for every k ≥ k1, and then Lemma 2.1
implies that � has infinitely many nontrivial solutions. �

3 Conclusion
We obtain infinitely many nontrivial solutions for a class of non-periodic Schrödinger
lattice systems with nonlinearities sublinear at both zero and infinity.

Appendix
Ax 3.1 B(u) ≥ 0, ∀u ∈ E, B(u) → ∞ as ‖u‖ → ∞ on any finite-dimensional subspace of E.

Proof Obviously, B(u) ≥ 0 for all u ∈ E by (SG1) and the definition of B(u).
We claim that for any finite-dimensional subspace H ⊂ E, there exists a constant ε > 0

such that

�
({

n ∈ Z : χn|un|μ ≥ ε‖u‖μ
}) ≥ 1, ∀u ∈ H\{0}, (A.1)

where �({n ∈ Z : χn|un|μ ≥ ε‖u‖μ}) denotes the number of integers n such that χn|un|μ ≥
ε‖u‖μ. If not, then for any j ∈N, there exists uj ∈ H\{0} such that

�
({

n ∈ Z : χn
∣
∣uj

n
∣
∣μ ≥ ∥

∥uj∥∥μ/j
})

= 0.

Let vj := uj

‖uj‖ ∈ H . Then ‖vj‖ = 1, and

�
({

n ∈ Z : χn
∣
∣vj

n
∣
∣μ ≥ 1/j

})
= 0, ∀j ∈N. (A.2)

Since {vj} is bounded, passing to a subsequence if necessary, we may assume that vj → v
in E for some v ∈ H (H is finite dimensional). Evidently, ‖v‖ = 1. Since any two norms on
H are equivalent, we have

∥
∥vj – v

∥
∥

l2 =

( +∞∑

n=–∞

∣
∣vj

n – vn
∣
∣2

) 1
2

→ 0 as j → ∞.
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It follows by the Hölder inequality and χ ∈ l
2

2–μ (see (SG1)) that

+∞∑

n=–∞
χn

∣
∣vj

n – vn
∣
∣μ ≤ ‖χ‖

l
2

2–μ

∥
∥vj – v

∥
∥μ

l2 → 0 as j → ∞. (A.3)

In fact, since ‖v‖ = 1, there is a constant δ0 > 0 such that

�
({

n ∈ Z : χn|vn|μ ≥ δ0
}) ≥ 1. (A.4)

If not, then

�
({

n ∈ Z : χn|vn|μ ≥ 1/j
})

= 0, ∀j ∈N.

It implies that

0 ≤
+∞∑

n=–∞
χn|vn|μ+2 =

∑

n∈{n∈Z:χn|vn|μ<1/j}
χn|vn|μ+2 ≤ ‖v‖2

l2

j
→ 0 as j → ∞,

which, together with (SG1), implies that v = 0. It is a contradiction to ‖v‖ = 1. Thus (A.4)
holds. For any j ∈N, let

�j :=
{

n ∈ Z : χn
∣
∣vj

n
∣
∣μ < 1/j

}
and �c

j := Z\�j =
{

n ∈ Z : χn
∣
∣vj

n
∣
∣μ ≥ 1/j

}
.

Set �0 := {n ∈ Z : χn|vn|μ ≥ δ0}. Then for j large enough, by (A.2), (A.4), and the definitions
of �0 and �c

j we have

�(�j ∩ �0) ≥ �(�0) – �
(
�c

j
) ≥ 1 – 0 = 1.

It follows from (SG1) and the definitions of �j and �0 that for j large enough,

+∞∑

n=–∞
χn

∣
∣vj

n – vn
∣
∣μ ≥

∑

n∈�j∩�0

χn
∣
∣vj

n – vn
∣
∣μ

≥
∑

n∈�j∩�0

(
1

2μ
χn|vn|μ – χn

∣
∣vj

n
∣
∣μ

)

≥ �(�j ∩ �0)
(

δ0

2μ
– 1/j

)

≥ δ0

2μ+1 > 0.

This is a contradiction to (A.3). Therefore (A.1) holds.
For ε given in (A.1), let

�u :=
{

n ∈ Z : χn|un|μ ≥ ε‖u‖μ
}

, ∀u ∈ H\{0}.

It follows from (SG1), (A.1), and the definition of �u that

B(u) =
+∞∑

n=–∞
χn|un|μ ≥

∑

n∈�u

χn|un|μ ≥ ε‖u‖μ · �(�u) ≥ ε‖u‖μ, ∀u ∈ H\{0}.



Chen and Sun Boundary Value Problems          (2021) 2021:6 Page 8 of 11

This implies that B(u) → ∞ as ‖u‖ → ∞ on any finite-dimensional subspace H ⊂ E. The
proof is finished. �

Ax 3.2 There exist a positive integer k1 and two sequences 0 < rk < ρk → 0 as k → ∞ such
that

αk(λ) := inf
u∈Zk ,‖u‖=ρk

�λ(u) > 0, ∀k ≥ k1, (A.5)

ξk(λ) := inf
u∈Zk ,‖u‖≤ρk

�λ(u) → 0 as k → ∞ uniformly for λ ∈ [1, 2], (A.6)

and

βk(λ) := max
u∈Yk ,‖u‖=rk

�λ(u) < 0, ∀k ∈N, (A.7)

where Yk =
⊕k

m=1 Xm = span{e1, . . . , ek} and Zk =
⊕∞

m=k Xm = span{ek , . . .} for k ∈N.

Proof (a) First, we show that (A.5) holds.
Note first that Zk ⊂ E+ for all k ≥ k1 := k0 + 1, where k0 is the integer defined in the

paragraph just before the proof of Theorem 1.1. Thus by the definition of �λ and and the
Hölder inequality we have

�λ(u) ≥ 1
2
‖u‖2 – 2

+∞∑

n=–∞
χn|un|μ

≥ 1
2
‖u‖2 – 2‖χ‖

l
2

2–μ
‖u‖μ

l2 , ∀(λ, u) ∈ [1, 2] × Zk ,

(A.8)

for any k ≥ k1. Let

l(k) := sup
u∈Zk\{0}

‖u‖l2

‖u‖ , ∀k ∈N. (A.9)

From [20] and the fact that E is compactly embedded into l2 (see [21]) we get

l(k) → 0 as k → ∞. (A.10)

By (A.8) and (A.9) we have

�λ(u) ≥ 1
2
‖u‖2 – 2‖χ‖

l
2

2–μ
lμ(k)‖u‖μ, ∀(λ, u) ∈ [1, 2] × Zk , (A.11)

for any k ≥ k1. Let

ρk :=
(
8‖χ‖

l
2

2–μ
lμ(k)

) 1
2–μ , ∀k ∈N. (A.12)

By (A.10) and the fact that 1 < μ < 2 we have

ρk → 0 as k → ∞. (A.13)



Chen and Sun Boundary Value Problems          (2021) 2021:6 Page 9 of 11

Therefore by (A.11) and (A.12) we have

αk(λ) := inf
u∈Zk ,‖u‖=ρk

�λ(u) ≥ ρ2
k /4 > 0, ∀k ≥ k1.

(b) Second, we show that (A.6) holds.
By (A.11) we have

�λ(u) ≥ –2‖χ‖
l

2
2–μ

lμ(k)‖u‖μ ≥ –2‖χ‖
l

2
2–μ

lμ(k)ρμ

k , ∀λ ∈ [1, 2],

for all k ≥ k1 and u ∈ Zk with ‖u‖ ≤ ρk . Therefore we get

–2‖χ‖
l

2
2–μ

lμ(k)ρμ

k ≤ inf
u∈Zk ,‖u‖≤ρk

�λ(u) ≤ 0, ∀λ ∈ [1, 2],∀k ≥ k1.

It follows from (A.10) and (A.13) that

ξk(λ) := inf
u∈Zk ,‖u‖≤ρk

�λ(u) → 0 as k → ∞ uniformly for λ ∈ [1, 2].

(c) Finally, we show that (A.7) holds.
Note that Yk is finite dimensional, and thus (A.1) implies that for any k ∈N, there exists

a constant εk > 0 such that

�
({

n ∈ Z : χn|un|μ ≥ εk‖u‖μ
}) ≥ 1, ∀u ∈ Yk\{0}. (A.14)

For any k ∈N and u ∈ Yk with ‖u‖ ≤ ε
1

2–μ

k , by the definition of �λ and (A.14) we have

�λ(u) ≤ 1
2
∥
∥u+∥

∥2 –
+∞∑

n=–∞
χn|un|μ

≤ 1
2
‖u‖2 –

∑

n∈{n∈Z:χn|un|μ≥εk‖u‖μ}
εk‖u‖μ

≤ 1
2
‖u‖2 – εk‖u‖μ · �({n ∈ Z : χn|un|μ ≥ εk‖u‖μ

})

≤ 1
2
‖u‖2 – εk‖u‖μ ≤ –

1
2
‖u‖2, ∀λ ∈ [1, 2]. (A.15)

Now for any k ∈N, if we choose

0 < rk < min
{
ρk , ε

1
2–μ

k
}

,

then (A.15) implies that

βk(λ) := max
u∈Yk ,‖u‖=rk

�λ(u) ≤ –r2
k /2 < 0, ∀k ∈N.

Therefore the proof is finished by (a), (b), and (c). �
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