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Abstract
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1 Introduction
In this paper, we are interested in the L∞ decay estimate of the solution for the initial-
boundary-value problem of the nonlinear parabolic equation in the divergence form

⎧
⎪⎪⎨

⎪⎪⎩

ut = div(a(x, t, u,∇u)) in � × (0, +∞),
u(x, t) = 0 on ∂� × (0, +∞),
u(x, 0) = u0(x) in �,

(1.1)

and the degenerate evolution m-Laplacian equation
⎧
⎪⎪⎨

⎪⎪⎩

ut = |u|k div(|∇u|m–2∇u) + b(u) · ∇u in � × (0, +∞),
u(x, t) = 0 on ∂� × (0, +∞),
u(x, 0) = u0(x) in �,

(1.2)

where k > 0, � is a open set of RN (not necessary bounded) with smooth boundary ∂�,
and a(x, t, u, ξ ) is a Carathéodory function in � ×R

+ ×R
1 ×R

N , where R
+ = [0, +∞).

The model problem for (1.1) is the so-called doubly nonlinear equation
⎧
⎪⎪⎨

⎪⎪⎩

ut = div(|u|r|∇u|m–2∇u) in � × (0, +∞),
u(x, t) = 0 on ∂� × (0, +∞),
u(x, 0) = u0(x) in �,

(1.3)

with r > 0 and 1 < m < N .
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The interest in parabolic equations (1.1) and (1.2) comes from their mathematical struc-
ture. Many results concerning the global existence, blowup, and asymptotic behavior of
solutions have been established; see [1–3, 8, 9, 13, 19, 20, 22, 23].

It is well-known that the solution u(t) of the initial value problem

⎧
⎨

⎩

ut = �u in R
N × (0, +∞),

u(x, 0) = u0(x) in R
N

(1.4)

satisfies the L∞ decay estimate

∥
∥u(t)

∥
∥

L∞(RN ) ≤ C‖u0‖Lq(RN )t–N/2q, t > 0, (1.5)

with u0 ∈ Lq(RN ), q ≥ 1. Estimate (1.5) remains true for the solution of heat equation in a
general open set � of RN with zero Dirichlet boundary condition

⎧
⎪⎪⎨

⎪⎪⎩

ut = �u in � × (0, +∞),

u(x, t) = 0 on ∂� × (0, +∞),

u(x, 0) = u0(x) in �.

(1.6)

Estimate (1.5), or more general estimates

∥
∥u(t)

∥
∥

L∞(�) ≤ C‖u0‖α
Lq(�)t

–λ, t > 0, (1.7)

where α and λ are suitable positive constants, is known in the literature as L∞ decay esti-
mates or ultracontractive estimates; see [6, 7, 11, 13, 17, 19].

These estimates have been proved not only for the heat equation but also for various dif-
ferential problems, linear or nonlinear, degenerate or singular, for example, the evolution
m-Laplacian equation, the porous media equation, the fast equation, and the doubly non-
linear equation; see [1–3, 8, 9, 11, 15, 17–19] and the references therein. The importance
of estimate (1.7) describes the behavior of solution as t → 0 and t → +∞.

The proofs of these estimates vary from problem to problem. In many cases, suitable
families of logarithmic Sobolev inequalities are derived. These inequalities are similar to
the well-known Gross logarithmic Sobolev inequalities [11].

Porzio [17] investigated the solution of the Leray–Lions-type problem

⎧
⎪⎪⎨

⎪⎪⎩

ut = div(a(x, t, u,∇u)) in � × (0, +∞),

u(x, t) = 0 on ∂� × (0, +∞),

u(x, 0) = u0(x) in �,

(1.8)

where a(x, t, s, ξ ) is a Carathéodory function satisfying the following structure condition:

a(x, t, s, ξ )ξ ≥ θ |ξ |m, ∀(x, t, s, ξ ) ∈ � ×R
+ ×R

1 ×R
N , (1.9)

with θ > 0. By the integral inequalities method Porzio derived the L∞ decay estimate of
the form (1.7) with C = C(N , q, m, θ ), α = mq

N(m–2)+mq , and λ = N
N(m–2)+mq . We see that the

equation in problem (1.8) is in the divergence form.
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Recently, Ghoul et al. [10] studied the Cauchy problem of the parabolic equation
{

ut = –(–�)mu + u|u|p–1, (x, t) ∈R
N × (0, +∞),

u(x, 0) = u0(x), x ∈R
N ,

(1.10)

and derived an estimate for ‖u(t)‖L∞(RN ) with u0 ∈ L∞(RN ) by a formal approach based
on spectral analysis. Similar consideration can been found in [12, 21].

In this paper, we derive the L∞ decay estimate like (1.7) for the solutions of problems
(1.1) and (1.2). Our method is different from that in [17], and we will use a modified Moser
technique as in [4, 5, 15] to get an L∞ decay estimate. Since the equation in (1.2) is not in
the divergence form, it seems difficult to derive estimate (1.7) by the integral inequalities
method in [17].

This paper is organized as follows. In Sect. 2, we state the main results and present
some needed lemmas. In Sect. 3, we use these lemmas to derive L∞ decay estimates for
the solutions of (1.1). The L∞ decay estimates for the solutions of (1.2) are established in
Sect. 4.

2 Preliminaries and main results
We first make the following assumptions.

(H1) a(x, t, u, ξ ) is a Carathéodory function and satisfies the structure condition

a(x, t, u, ξ )ξ ≥ α0|u|r|ξ |m, ∀(x, t, u, ξ ) ∈ � ×R
+ ×R

1 ×R
N , (2.1)

for some α0 > 0 and r ≥ 0, where 1 +β < m < N and 0 < β = (m – 1)(r + m – 1)–1 ≤ 1.
(H2) the initial data u0 ∈ Lq(�), q ≥ 1.
As in [20], we introduce a new independent variable u = |v|β–1v. Then from (2.1) it fol-

lows that the principal part of the equation in (1.1) satisfies

a(x, t, u,∇u)∇v ≥ α0β
m–1|∇v|m. (2.2)

Instead of (1.1), we consider the initial-boundary-value problem
{

(|v|β–1v)t = div(a(x, t, |v|β–1v,∇(|v|β–1v))) in � × (0, +∞),
v(x, t) = 0, on ∂� × (0, +∞), v(x, 0) = v0(x), in �,

(2.3)

with v0(x) = |u0(x)|–1+1/βu0(x).
Let ‖ · ‖p and ‖ · ‖1,p denote the norms in the Banach spaces Lp(�) and W 1,p(�), respec-

tively, 1 ≤ p ≤ ∞. We often drop the letter � in these notations. In the following, we will
consider (2.3) instead of (1.1), with v replaced by u in (2.3) for convenience.

Definition 1 A measurable function u(x, t) on �× (0,∞) is said to be a global weak solu-
tion of problem (2.3) if u(x, t) ∈ Lβ

loc(R+ × �), a(x, t, |u|β–1u,∇(|u|β–1u)) ∈ L1
loc(R+; L1(�)),

and the equality
∫ t

0

∫

�

{
–|u|β–1uϕt – a

(
x, τ , |u|β–1u,∇(|u|β–1u

))∇ϕ
}

dx dτ

=
∫

�

∣
∣u0(x)

∣
∣β–1u0(x)ϕ(x, 0) –

∣
∣u(x, t)

∣
∣β–1u(x, t)ϕ(x, t) dx

(2.4)

is valid for any ϕ ∈ C1(R+, C1
0(�)) and t > 0.
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Our first main result reads as follows.

Theorem 1 Assume (H1)–(H2). If u(t) is a global weak solution of (2.3), then it satisfies

u(t) ∈ L∞(
R

+; Lq(�)
) ∩ Lm–1

loc
(
(0,∞); W m–1

0 (�)
)

(2.5)

and the L∞ decay estimate

∥
∥u(t)

∥
∥

q ≤ ‖u0‖q, t > 0, (2.6)
∥
∥u(t)

∥
∥∞ ≤ C0‖u0‖μ

q t–λ, t > 0, (2.7)

with μ = mq
MN+mq , λ = N

MN+mq , M = m – 1 – β > 0, and C0 = C0(N , m, q).

Remark 1 The existence of a global weak solution for (2.3) can be established similarly as
in [4, 15, 20].

For the degenerate evolution m-Laplacian problem (1.2), Passo and Luckhaus [16] con-
sidered the global existence and blowup of solution for m = 2, k = 1 by the lower and upper
solution method. For m = 2, k > 1, blowup and asymptotic behavior of solution have been
established by Wiegner [22] and Winkler [23]. Here we derive an L∞ decay estimate for
the solution of (1.2) with k > 0, 1 < m < N .

For problem (1.2), we assume:
(H3) Let B(u) = (B1(u), B2(u), . . . , BN (u)), B′(u) = (B′

1(u), B′
2(u), . . . , B′

N (u)), where B′(u) =
b(u) = (b1(u), b2(u), . . . , bN (u)), bi(u) ∈ C1(R1), i = 1, 2, . . . , N . There exist k1,γ ≥ 0,
such that

∣
∣B(u)

∣
∣ ≤ k1|u|1+γ ,

∣
∣B′(u)

∣
∣ ≤ k1|u|γ , ∀u ∈ R

1; (2.8)

(H4) u0 ∈ Lq(�), q ≥ 1.

Definition 2 ([16, 22, 23]) A measurable function u(t) = u(x, t) on � × (0, +∞) is said
to be a global weak solution of problem (1.2) if u(t) ∈ X = L∞(R+, Lq(�)), |u|(k–1)/mu ∈
Lm

loc((0, +∞); W 1,m
0 (�)), |u|(k–1)/(m–1)u ∈ Lm–1

loc ((0,∞); W 1,m–1
0 (�)),

∫ t

0

∫

�

{
–uφt + |∇u|m–2∇u · ∇(|u|kφ)

+ B(u) · ∇φ
}

dx dτ

=
∫

�

u(x, t)φ(x, t) dx –
∫

�

u0(x)φ(x, 0) dx
(2.9)

for all ϕ ∈ C1(R+, C1
0(�)) and t > 0.

Our second main result is the following:

Theorem 2 Suppose that (H3)–(H4) hold and k ≥ 0. If u(t) is a global weak solution of
(1.2), then u(t) satisfies the following L∞ estimates:

∥
∥u(t)

∥
∥

q ≤ ‖u0‖q, t > 0, (2.10)
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∥
∥u(t)

∥
∥∞ ≤ C0‖u0‖α

q t–λ, t > 0, (2.11)

with α = qm
MN+mq , λ = N

MN+mq , M = k + m – 2 > 0, and C0 = C0(N , m, q).

To derive above results, we will use the following lemmas.

Lemma 1 Let y(t) be a nonnegative differentiable function on (0,∞) satisfying

y′(t) + Atμy1+θ (t) ≤ 0, t ≥ 0,

with A, θ > 0, μ ≥ 0. Then we have

y(t) ≤ (
Aθ/(1 + μ)

)–1/θ t–(1+μ)/θ , t > 0.

Lemma 2 (Gagliardo–Nirenberg-type inequality) Let � be a domain (not necessary
bounded) in R

N with smooth boundary ∂�. Let β ≥ 0, N > m ≥ 1, q ≥ 1 + β , and 1 ≤
r ≤ q ≤ (1 + β)Nm/(N – m). Then for |u|βu ∈ W 1,m

0 (�), we have

‖u‖q ≤ C1/(β+1)
0 ‖u‖1–θ

r
∥
∥∇(|u|βu

)∥
∥θ/(β+1)

m

with θ = (1 + β)(r–1 – q–1)/(N–1 – m–1 + (1 + β)r–1), where the constant C0 depends only on
m, N .

The proof of Lemma 2 can be obtained from the well-known Gagliardo–Nirenberg–
Sobolev inequality and the interpolation inequality, and we omit it here.

3 Proof of Theorem 1
In this section, we assume that all assumptions in Theorem 1 are satisfied. As in [4, 5, 15],
we derive a priori estimates of the smooth approximate solutions u(t), and our argument
will be justified through such an approximate procedure.

Proof of Theorem 1 First, we take fn(s) (n = 1, 2, . . .) such that fn(s) → f (s) = |s|q–2s uni-
formly in R

1 as n → ∞.
For 1 < q < 2, we choose f +

n (s) = ans2 + bns if 0 ≤ ns ≤ 1 and f +
n (s) = sq–1 if ns ≥ 1, where

an = (q – 2)n3–q, bn = (3 – q)n2–q. Further, let fn(s) be the odd extension of f +
n (s) in R

1.
If q ≥ 2, then we take fn(s) = |s|q–2s. For q = 1, we let

fn(s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, s ≥ 1/n,

ns(2 – ns), 0 ≤ s ≤ 1/n,

–ns(2 + ns), –1/n ≤ s ≤ 0,

–1, s < –1/n.

(3.1)

Then we easily verify that fn(s) ∈ C1(R1), fn(s) → f (s) = |s|q–2s uniformly in R
1 as n → ∞.

Let ϕ+
n (s) = sβ–1 if ns ≥ 1, ϕ+

n (s) = Ans + Bn if 0 ≤ ns ≤ 1, where An = (β – 1)n2–β , Bn = (2 –
β)n1–β . Further, let ϕn(s) be the even extension of ϕ+

n (s) in R
1. Obviously, ϕn(s) ∈ C1(R1),

and ϕn(s) → ϕ(s) = |s|β–1 uniformly in R
1 as n → ∞.
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Let u0,n ∈ C2
0(�) and u0,n → u0 in Lq(�) as n → ∞. We take the approximate problem

of (2.3) of the form

⎧
⎪⎪⎨

⎪⎪⎩

ϕi(u)ut = div(a(x, t, |u|β–1u,∇(|u|β–1u))) in � × (0,∞),

u(x, t) = 0 on ∂� × (0,∞),

u(x, 0) = u0,i(x) in �,

(3.2)

for i = 1, 2, . . . .
Then problem (3.2) has a unique smooth solution ui(x, t); see [14]. We further always

write u instead of ui and up for |u|p–1u when p > 0.
Multiplying the equation in (3.2) by fk(u)ϕ–1

i (u), we obtain

∫

�

fk(u)ut dx

= –
∫

�

a
(
x, t, |u|β–1u,∇(|u|β–1u

))∇u
(
f ′
k (u)ϕi(u) – ϕ′

i(u)fk(u)
)
ϕ–2

i (u) dx,
(3.3)

where

f ′
k (u)ϕi(u) – ϕ′

i(u)fk(u) ≥ 0.

By (H1) we have

a
(
x, t, |u|β–1u,∇(|u|β–1u

))∇u

= β–1a
(
x, t, |u|β–1u,∇(|u|β–1u

))∇(|u|β–1u
)|u|1–β

≥ α0β
–1|u|βr∣∣∇(|u|β–1u

)∣
∣m|u|1–β ≥ 0.

(3.4)

Hence from (3.3) and (3.4) it follows that

∫

�

fk(u)ut dx ≤ 0. (3.5)

Letting k → ∞ in (3.5) gives

∥
∥u(t)

∥
∥

q ≤ ‖u0‖q, t ≥ 0. (3.6)

We now derive an L∞ decay estimate for the solution ui(t) of (3.2). Multiplying the equa-
tion in (3.2) by ϕ–1

i (u)|u|p–2u, p ≥ 2, we have

1
p

d
dt

‖u‖p
p +

∫

�

a
(
x, t, |u|β–1u,∇(|u|β–1u

))∇uEi[u] dx = 0, (3.7)

where

Ei[u] =
(
(p – 1)|u|p–2ϕi(u) – ϕ–1

i (u)|u|p–2u
)
ϕ–2

i (u) ≥ p – β

4
|u|p–β–1. (3.8)
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Noting that β = (m – 1)/(r + m – 1), from (3.4) we get that

a
(
x, t, |u|β–1u,∇(|u|β–1u

))∇u ≥ β–1α0|u|βr∣∣∇(|u|β–1u
)∣
∣m|u|1–β

= α0β
m–1|∇u|m.

(3.9)

Hence from (3.7)–(3.9) it follows that

1
p

d
dt

‖u‖p
p + C1p

(
m

p + M

)m ∫

�

∣
∣∇u

p+M
m

∣
∣m dx ≤ 0, (3.10)

where M = m – 1 – β > 0. Then (3.10) implies that

d
dt

∥
∥u(t)

∥
∥p

p + C1p2–m∥
∥∇u

p+M
m

∥
∥m

m ≤ 0, ∀t > 0. (3.11)

Let C, Cj be general constants independent of p, i, n changeable from line to line. We
now employ Moser’s technique as in [4, 5, 15]. Set R > 1 + M/q, p1 = q, pn = Rpn–1 – M,
θn = RN(1 – pn–1p–1

n )(m + N(R – 1))–1, βn = (pn + M)θ–1
n , n = 2, 3, . . . .

From Lemma 2 we see that

∥
∥u(t)

∥
∥

pn
≤ C

m
pn+M ‖u‖1–θn

pn–1

∥
∥∇u

pn+M
m

∥
∥mθn/(pn+M)

m . (3.12)

Inserting this into (3.11) (p = pn) yields

d
dt

∥
∥u(t)

∥
∥

pn
+ C1C

–m
θn p2–m

n ‖u‖M–βn
pn–1 ‖u‖1+βn

pn ≤ 0, ∀t > 0. (3.13)

We claim that there exist bounded sequences {ξn} and {λn} such that

∥
∥u(t)

∥
∥

pn
≤ ξnt–λn , ∀t > 0, (3.14)

where λn = (1+λn–1(βn –M))/βn. It is not difficult to show that λn → λ = N
MN+mq as n → ∞.

In fact, let ξ1 = ‖u0‖q and λ1 = 0. If (3.14) is true for n – 1, the from (3.13) it follows that

d
dt

∥
∥u(t)

∥
∥

pn
+ C1C

–m
θn p1–m

n ξM–βn
n tλn–1(βn–M)‖u‖1+βn

pn ≤ 0, ∀t > 0. (3.15)

An application of Lemma 1 to (3.15) yields

∥
∥u(t)

∥
∥

pn
≤ (

C1C
–m
θn p1–m

n ξ
M–βn
n–1 βn/

(
1 + λn–1(βn – M)

))–1/βn t–(1+λn–1(βn–μ))/βn

=
(
C1C

–m
θn

)–1/βn
λ1/βn

n p(m–1)/βn
n ξ

(βn–M)/βn
n–1 t–λn .

(3.16)

Since

lim
n→∞

pn

βn
=

M + 2
N(M + 1)

,

we see that there exists a constant λ0 > 0, independent of n, such that

∥
∥u(t)

∥
∥

pn
≤ (λ0pn)λ0/pnξ

1–M/βn
n–1 t–λn , t > 0. (3.17)
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Hence we define ξn inductively by

ξn = (λ0pn)λ0/pnξ
1–M/βn
n–1 (3.18)

for n = 2, 3, . . . with ξ1 = ‖u0‖q. Here, setting ωn = mpn + MN , p1 = q, and pn = Rpn–1 – M,
by direct calculation we get

βn – M
βn

=
ωn

pn
· pn–1

ωn–1
(3.19)

and

n∏

k=2

βk – M
βk

=
ωn

pn
· p1

ω1
=

MN + pnm
pn

· q
mq + MN

. (3.20)

It is easy to show that

lim
n→∞

n∏

k=2

βk – M
βk

= μ =
mq

mq + MN
. (3.21)

On the other hand, the definition of ξn gives

log ξn =
λ0

pn
(logλ0 + log pn) +

(

1 –
M
βn

)

log ξn–1

=
λ0

pn
(logλ0 + log pn) +

(

1 –
M
βn

)(
λ0

pn
(logλ0 + log pn–1)

+
(

1 –
M

βn–1

)

log ξn–2

)

≤ λ0

n∑

k=2

logλ0 + log pk

pk
+

n∏

k=2

(

1 –
M
βk

)

log ξ1.

(3.22)

Hence

log ξn ≤ C0 +
MN + pnm

pn
· q

mq + MN
log ξ1 (3.23)

with some C0 > 0 independent of n. Then

log ξn ≤ C0 + μ log ξ1 (3.24)

and

ξn ≤ eC0ξ
μ
1 = C1‖u0‖μ

q t > 0. (3.25)

Then, letting n → ∞ in (3.14), we obtain (2.7) and finish the proof of Theorem 1. �
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4 Proof of Theorem 2
In this section, we derive L∞ decay estimates of solutions for the degenerate evolution
m-Laplacian problem (1.2).

Similarly as in the proof of Theorem 1, we take u0,n ∈ C2
0(�) such that u0,n → u0 in Lq(�).

Further, we choose φn(s) ∈ C1(R1), φn(s) → φ(s) uniformly in R
1.

In fact, for n = 1, 2, . . . , we define φn(s) = |s|k + n–k if k > 1 and

φn(s) =

⎧
⎨

⎩

|s|k + n–k for |s| ≥ n–1,

s2n2–k(3 – k + (k – 2)n|s|) + n–k for |s| ≤ n–1
(4.1)

if 0 < k ≤ 1.
We now consider the following approximate problem for (1.2):

⎧
⎪⎪⎨

⎪⎪⎩

ut = φi(u) div((|∇u|2 + i–1)m/2∇u) + b(u)∇u in � × (0,∞),

u(x, t) = 0 on ∂� × (0,∞),

u(x, 0) = u0,i in �,

(4.2)

for i = 1, 2, . . . .
Problem (4.2) is a standard quasilinear parabolic equation and admits a unique smooth

solution ui(x, t) for each i; see [4, 5, 14, 15]. For convenience, we denote ui by u and |u|p–1u
by up if p > 0.

Multiplying the equation in (4.2) by |u|q–2u (if q > 1), we obtain

1
q

d
dt

∫

�

|u|q dx +
∫

�

|∇u|m(
φ′

i(u)|u|q–2u + (q – 1)φi(u)|u|q–2)dx ≤ 0. (4.3)

Note that

φ′
i(u)|u|q–2u + (q – 1)φi(u)|u|q–2 dx ≥ 0. (4.4)

Then

1
q

d
dt

∫

�

|u|q dx ≤ 0. (4.5)

This implies that

∥
∥u(t)

∥
∥

q ≤ ‖u0‖q, ∀t ≥ 0. (4.6)

If q = 1, then we multiply the equation in (4.2) by fn(u), where fn(u) is defined by (3.1).
Similarly, we can get estimate (4.6).

To derive an L∞ decay estimate of solutions for (4.2), we multiply the equation in (4.2)
by |u|p–2u(p ≥ q) and obtain

1
p

d
dt

∫

�

|u|p dx +
∫

�

|∇u|m(
φ′

i(u)|u|p–2u + (p – 1)φi(u)|u|p–2)dx ≤ 0. (4.7)
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Note that

φ′
i(u)|u|p–2u + (p – 1)φi(u)|u|p–2 dx ≥ k + p – 1

4
|u|k+p–2. (4.8)

Hence from (4.7) and (4.8) it follows that

d
dt

∥
∥u(t)

∥
∥p

p + C1p2–m∥
∥∇u

p+M
m

∥
∥m

m ≤ 0, ∀t > 0, (4.9)

where M = k + m – 2 > 0.
Set R > 1 + M/q, p1 = q, pn = Rpn–1 – M, θn = RN(1 – pn–1p–1

n )(m + N(R – 1))–1, βn =
(pn + M)θ–1

n , n = 2, 3, . . . . From Lemma 2 we see that

∥
∥u(t)

∥
∥

pn
≤ Cm/(pn+M)‖u‖1–θn

pn–1

∥
∥∇u

pn+M
m

∥
∥mθn/(pn+M)

m . (4.10)

Inserting this into (4.9) (p = pn) yields

d
dt

∥
∥u(t)

∥
∥

pn
+ C2C

–m
θn p2–m

n ‖u‖M–βn
pn–1 ‖u‖1+βn

pn ≤ 0 t > 0. (4.11)

As in the proof of Theorem 1, we can show that there exist bounded sequences {ξn} and
{λn} such that

∥
∥u(t)

∥
∥

pn
≤ ξnt–λn t > 0, (4.12)

in which λn → λ and ξn ≤ C0‖u0‖μ
q with

λ =
N

mq + MN
, μ =

qm
qm + MN

, M = k + m – 2 > 0. (4.13)

Letting n → ∞ in (4.12), we have

∥
∥u(t)

∥
∥∞ ≤ C0‖u0‖μ

q t–λ, ∀t ≥ 0. (4.14)

This finishes the proof of Theorem 2.
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