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Abstract
This paper deals with the asymptotic behavior of solutions to the initial-boundary
value problem of the following fractional p-Kirchhoff equation:

ut +M([u]ps,p)(–�)spu + f (x,u) = g(x) in � × (0,∞),

where � ⊂ R
N is a bounded domain with Lipschitz boundary, N > ps, 0 < s < 1 < p,

M : [0,∞) → [0,∞) is a nondecreasing continuous function, [u]s,p is the Gagliardo
seminorm of u, f :� ×R → R and g ∈ L2(�). With general assumptions on f and g,
we prove the existence of global attractors in proper spaces. Then, we show that the
fractal dimensional of global attractors is infinite provided some conditions are
satisfied.
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1 Introduction and main results
Let s ∈ (0, 1) and let � be a bounded domain in R

N (N > 2s) with smooth boundary ∂�.
We consider the asymptotic behavior of solutions to the following fractional p-Kirchhoff
problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut + M([u]p
s,p)(–�)s

pu + f (x, u) = g(x) in � ×R
+,

u = 0 on (RN \ �) ×R
+,

u(x, 0) = u0(x) in �,

(1.1)

where u0 ∈ L2(�), g ∈ L2(�), [u]p
s,p =

∫∫

Q
|u(x,t)–u(y,t)|p

|x–y|N+ps dx dy with Q = R
2N \ (C� × C�)

and C� = R
N \ �, M : R+

0 → R
+
0 is a continuous function, and (–�)s

p is the fractional
p-Laplacian, which (up to normalization factors) may be defined by

(–�)s
pϕ(x) = 2 lim

R→0+

∫

RN \BR(x)

|ϕ(x) – ϕ(y)|p–2(ϕ(x) – ϕ(y))
|x – y|N+ps dy
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for all ϕ ∈ C∞
0 (RN ), where 1 < p < N

s and s ∈ (0, 1). Henceforward BR(x) denotes the ball of
R

N centered at x ∈R
N and radius R > 0. We assume that f : �×R →R is a Carathéodory

function satisfying:
(f1) there exists a positive constant λ such that

(
f (x, ξ1) – f (x, ξ2)

)
(ξ1 – ξ2) ≥ –λ|ξ1 – ξ2|2 (1.2)

for any (x, t) ∈ � ×R
+ and ξ1, ξ2 ∈R;

(f2) there exist positive constants c, c1, c2 such that

c1|ξ |q – c ≤ f (x, ξ )ξ ≤ c2|ξ |q + c for any (x, t) ∈ � ×R
+ and ξ ∈R, (1.3)

where q satisfies 2 ≤ q < ∞.
A typical example of f is given by f (x, ξ ) = a(x)|ξ |q–2ξ – b(x)|ξ |r–2ξ for all x ∈ � and ξ ∈R,
with 2 < r < q < ∞. Here a, b are two bounded continuous functions in �.

Throughout this paper, we always assume that s ∈ (0, 1), N > 2s, u0(x) ∈ L2(�) ∩ W0 is a
nonzero function. For the coefficient function M, we assume that

(M1) M : [0,∞) → (0,∞) is a nondecreasing and continuous function and there exists
m0 > 0 such that M(τ ) ≥ m0 for all τ ≥ 0.

In particular, if p = 2, then (–�)s
p reduces to the fractional Laplace operator (–�)s, see

[5] and the references cited there. For the basic properties of fractional p-Laplacian, we
refer the readers to [13, 16, 17]. Problem (1.1) is a class of nonlocal fractional diffusion
problems. It is relevant in anomalous diffusion theory. More precisely, if p = 2 and M ≡ 1,
as stated in [7], the function u(x, t) is thought of as a density of population at the point x and
time t, the term (–�)su(x, t) represents the diffusion of density, f (x, u) is the source term,
g is the perturbation term, and the coefficient M : [0,∞) → (0,∞) denotes the possible
changes of total population in whole space. This implies that the behavior of individuals
is subject to total population, such as the diffusion process of bacteria, see [21, 27]. It is
worth mentioning that the interest in fractional problems goes beyond the mathematical
curiosity. Actually, the study of problems like (1.1) has many significant applications, as
explained by Caffarelli in [2, 3], Laskin in [15], and Vázquez in [31]. Very recently, Fiscella
and Valdinoci [9] first proposed a stationary Kirchhoff variational equation which models
the nonlocal aspect of the tension of the string. Indeed, the stationary problem (1.1) is
a fractional version of a model, the so-called stationary Kirchhoff equation, introduced
by Kirchhoff in [14]. The body of literature on elliptic type problems involving nonlocal
operators is quite large, here we just collect a few works, see [1, 8, 9, 19–22, 26, 28, 33, 36]
and the references cited there.

To the best of our knowledge, there are a few papers that deal with the asymptotic be-
havior of solutions for problems like (1.1). Pucci, Xiang, and Zhang [27] discussed the
initial-boundary value problem of the following equation:

ut + M
(
[u]p

s,p
)
(–�)s

pu = f (x, t) in � × (0,∞), (1.4)

where M : [0,∞) → (0,∞) is a continuous and nondecreasing function. Using the sub-
differential approach, the authors obtained the well-posedness of solutions for (1.4). More-
over, the large-time behavior and extinction property of solutions were given. In [25], Pan,
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Zhang, and Cao studied the initial-boundary value problem of the following fractional p-
Kirchhoff equation:

ut + [u](λ–1)p
s,p (–�)s

pu = |u|q–2u in � × (0,∞),

where 1 ≤ λ < N/(N – sp) and p < q < Np/(N – sp) with 1 < p < N/s. The existence of a
global solution was obtained by employing the Galerkin method and the potential well
theory. Xiang, Rădulescu, and Zhang [21] studied the initial-boundary value problem of
the following fractional Kirchhoff equation:

ut + M
(
[u]2

s,2
)
(–�)su = |u|p–2u in � × (0,∞),

where M : [0,∞) → (0,∞) is continuous, and there exist m0 > 0 and θ > 1 such that
M(σ ) ≥ m0σ

θ–1 for all σ ≥ 0, and M also satisfies the following:
(M) There exists θ ∈ [1, p∗

s /p) such that tM(t) ≤ θM (t) for all t ≥ 0, where M (t) =
∫ t

0 M(τ ) dτ .
Under suitable assumptions, the authors obtained the local existence of nonnegative so-
lutions by applying the Galerkin method and proved that the local nonnegative solutions
blow up in finite time. In [34], Xiang and Yang studied the initial-boundary value of the
following equation:

ut + M
(
[u]p

s,p
)
(–�)s

pu = λ|u|q–2u – μ|u|r–2u.

The authors gave some sufficient conditions such that the solutions of the above equation
vanish in finite time. Moreover, the non-extinction of solutions was also investigated.

Very recently, Wang and Huang [32] considered a weakly damped fractional nonlinear
Schrödinger equation on the real line R

ut – i(–�)us + i|u|2u + γ u = f (x), u(x, 0) = u0(x), (1.5)

where s ∈ (1/2, 1), γ > 0, and f ∈ L2(R). The authors proved that (1.5) possesses a finite
dimensionality of global attractor. In [12], Hurtado studied the following initial-boundary
value problem of fractional Laplacian equation with variable exponents:

ut + (–�)s
p(·)u = f (x, u), (1.6)

where (–�)s
p(·) is the fractional p(·)-Laplacian defined as

(–�)s
pu(x) = 2 lim

R→0+

∫

RN \BR(x)

|u(x) – u(y)|p(x,y)–2(u(x) – u(y))
|x – y|N+p(x,y)s dy,

and p ∈ C(� × �). The author established the well-posedness of solutions by using the
techniques of monotone operators. Moreover, the author obtained the existence of global
attractors under suitable assumptions.

When s = 1 and M ≡ 1, the equation in (1.1) reduces to the following equation:

ut – �pu + f (x, u) = g(x) in �, (1.7)
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where �pu = div(|∇u|p–2∇u) is the p-Laplacian. In [37], Yang et al. obtained the existence
of global attractors for (1.7). Indeed, the existence of global attractors is an important
asymptotic property of solutions for parabolic equations which have been studied exten-
sively by many researchers, see for example [6, 10, 23, 24, 38].

In this paper, inspired by the above-mentioned papers, we discuss the existence of global
attractors and fractal dimension of solutions for problem (1.1) involving the fractional
p-Laplacian and nonlocal diffusion coefficient. Motivated by [23, 37], we first study the
existence and uniqueness of solutions by using the Galerkin method. Then we give the
existence of global attractors in proper spaces and obtain the fractal dimension of the
global attractors. Since problem (1.1) contains a nonlocal coefficient M, in order to get
the uniqueness of solutions, we impose a monotonicity assumption on M. However, to
the best of our knowledge, there are no results on the existence of global attractors for
problem (1.1) in the literature.

To introduce our main results, we first give the definition of (weak) solutions, see [25,
27].

Definition 1.1 For any fixed T > 0, a function u ∈ Lp(0, T ; W0) ∩ C(0, T ; L2(�)) ∩ Lq(� ×
(0, T)) is said to be a (weak) solution of problem (1.1) if ut ∈ L2(0, T ; L2(�)) and, for a.e.
t ∈ (0, T),

∫

�

utϕ dx + M
(
[u]p

s,p
)〈u,ϕ〉W0 +

∫

�

f (x, u)ϕ dx =
∫

�

g(x)ϕ dx (1.8)

for all ϕ ∈ W0, where

〈u,ϕ〉W0 =
∫∫

Q

|u(x, t) – u(y, t)|p–2[u(x, t) – u(y, t)][ϕ(x) – ϕ(y)]
|x – y|N+sp dx dy,

and W0 is the fractional Sobolev space which will be introduced in Sect. 2.

Theorem 1.1 Assume that 2 ≤ p < N/s, M satisfies (M1), f fulfils (f1)–(f2) with 2 ≤ q <
Np/(N – sp), and g ∈ L2(�). Then the semigroup associated with problem (1.1) admits
a global attractor Aq in Lq(�),i.e., Aq is compact, invariant in Lq(�) and attracts every
bounded subset of L2(�) in the norm topology of Lq(�).

Remark 1.1 The monotonicity assumption on M is just for getting the uniqueness of so-
lutions.

Finally, we consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut + M([u]p
s,p)(–�)s

pu + |u|q–2u = |u|r–2u in � ×R
+,

u = 0 on (RN \ �) ×R
+,

u(x, 0) = u0(x) in �.

(1.9)

Theorem 1.2 Assume that 0 < s < 1, 2 < r < p < N/s, r < q < Np/(N – sp), and M satisfies
(M1). Then the semigroup associated with problem (1.9) admits a symmetric global attrac-
tor in Lq(�) and its fractal dimension is infinite.
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The rest of the paper is organized as follows. In Sect. 2, we give some preliminary lem-
mas. The existence of global attractors is proved in Sect. 3. The existence of infinite di-
mensional attractors is obtained in Sect. 4.

2 Preliminaries
In this section, we first recall some necessary definitions and properties of the fractional
Sobolev spaces, see [5, 8, 9, 13, 35] for further details. From now on, we shortly denote by
‖ · ‖ν the norm of Lν(�) (ν ≥ 1). Let 0 < s < 1 < p < ∞ be real numbers and the fractional
critical exponent p∗

s be defined as

p∗
s =

⎧
⎨

⎩

Np
N–sp , sp < N ,

∞, otherwise.

In the following, we set Q = R
2N \ (C� × C�), where C� = R

N \ �. W is a linear space of
Lebesgue measurable functions fromR

N toR such that the restriction to � of any function
u in W belongs to Lp(�) and

∫∫

Q

|u(x) – u(y)|p
|x – y|N+sp dx dy < ∞.

The space W is equipped with the norm

‖u‖W = ‖u‖Lp(�) +
(∫∫

Q

|u(x) – u(y)|p
|x – y|N+sp dx dy

) 1
p

.

It is easy to get that ‖ · ‖W is a norm on W . We shall work in the closed linear subspace

W0 =
{

u ∈ W : u(x) = 0 a.e. in R
N \ �

}
.

By the result in [35], one can deduce that

[u]s,p =
(∫∫

Q

|u(x) – u(y)|p
|x – y|N+sp dx dy

) 1
p

is an equivalent norm of W0.

Definition 2.1 (see [23, 24]) Let {S(t)}t≥0 be a semigroup on Banach space X. A subset
A ⊂ X is called a global attractor for the semigroup if A is compact in X and satisfies the
following properties:

(1) A is invariant, i.e., S(t)A = A for all t ≥ 0;
(2) A attracts all bounded subset of X, that is, for any bounded subset B ⊂ X,

dist
(
S(t)B,A

) → 0 as t → ∞,

where dist(A, B) is the Hausdorff semidistance of two sets A and B given by

dist(A, B) = sup
x∈A

inf
y∈B

‖x – y‖X .
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Definition 2.2 (see [23, 24]) Let {S(t)}t≥0 be a semigroup on Banach space X. A subset
B0 ⊂ X is called an absorbing set for the semigroup {S(t)}t≥0 if B0 satisfies that, for any
bounded subset B ⊂ X, there exists a positive constant T = T(B) such that

S(t)B ⊂ B0 for any t ≥ T .

Definition 2.3 (see [4]) Let X be a metric space. Assume that M is a compact subset in X.
The fractal dimension dimf M of M is defined by

dimf M = lim sup
ε→0

ln n(M, ε)
ln(1/ε)

,

where n(M, ε) denotes the minimal number of closed balls of the radius ε which cover the
set M.

3 Global attractors in Lq(�)
In this section, we provide the existence results for problem (1.1), and then we show the
existence of a global attractor in Lq(�).

Theorem 3.1 Assume that 2 ≤ p < N/s, M satisfies (M1), g satisfies (g1), and f fulfils (f1)–
(f2) with 2 ≤ q < Np/(N – sp). Then problem (1.1) admits a unique solution

u ∈ C
(
[0, T]; L2(�)

) ∩ Lp(0, T ; W0) ∩ Lq(0, T ; Lq(�)
)
.

Moreover, the mapping u0 → u(t) is continuous in L2(�).

Proof The existence of solutions for problem (1.1) can be obtained by using the Galerkin
method, see for example [21, 25]. For completeness, we give a sketch of the proof.

Choose a sequence of functions {ej}∞j=1 ⊂ C∞
0 (�) which is an orthonormal basis in L2(�).

We shall find the approximate solutions as follows:

un(x, t) =
n∑

j=1

(
ηn(t)

)

jej(x) for all n ∈ N,

where the unknown functions (ηn(t))j are determined by the following ODEs:

⎧
⎨

⎩

η′
n(t) = –In(t,ηn(t)), t ∈R

+,

ηn(0) = U0n.
(3.1)

Here U0n = (
∫

�
u0n(x)e1(x) dx, . . . ,

∫

�
u0n(x)en(x) dx), u0n → u0 in W0,

(
In(t,ηn)

)

j = M
(
[un]p

s,p
)〈un, ej〉W0 +

∫

�

f
(
x, un(x, t)

)
ej(x) dx

–
∫

�

g(x)ej(x) dx, j = 1, 2, . . . , n.
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The definition of 〈un, ej〉W0 is given by

〈un, ej〉W0 =
∫∫

Q

|un(x, t) – un(y, t)|p–2[un(x, t) – un(y, t)][ej(x) – ej(y)]
|x – y|N+sp dx dy.

By the continuity of M and the definition of In, we know that In is continuous on R
+
0 ×R

n.
Then the Peano theorem (see [11]) yields that there exists a local solution of problem (3.1)
on (0, Tn) (0 < Tn < ∞). The following a priori estimate implies that the local solution can
be extended to (0,∞).

Multiplying (3.1) by ηn(t), we obtain

1
2

d
dt

∫

�

∣
∣un(x, t)

∣
∣2 dx + M

(
[un]p

s,p
)
∫∫

Q

|un(x, t) – un(y, t)|p
|x – y|N+sp dx dy

+
∫

�

f (x, un)un dx =
∫

�

g(x)un dx. (3.2)

Let u0 ∈ W0 ∩ Lq(�). Then, multiplying (3.1) by η′
n(t), we get

∫

�

∣
∣
∣
∣
∂un(x, t)

∂t

∣
∣
∣
∣

2

dx +
d
dt

[

M
(
[un]p

s,p
)

+
∫

�

F(x, un) dx
]

=
∫

�

g(x)
∂un(x, t)

∂t
dx. (3.3)

It follows from (M1), (1.3), (3.2), and the Hölder inequality that

1
2

d
dt

∫

�

∣
∣un(x, t)

∣
∣2 dx + C1

∫

�

∣
∣un(x, t)

∣
∣q dx ≤ C|�| +

∥
∥g(x)

∥
∥

2

∥
∥un(x, t)

∥
∥

2.

Further, by q ≥ 2 and the Young inequality, we obtain

1
2

d
dt

∫

�

∣
∣un(x, t)

∣
∣2 dx +

C1

2

∫

�

∣
∣un(x, t)

∣
∣2 dx ≤

[

(C + C1)|�| +
2

C1

∥
∥g(x)

∥
∥2

2

]

,

which implies that

∫

�

∣
∣un(x, t)

∣
∣2 dx

≤
∫

�

∣
∣u0n(x, 0)

∣
∣2dxe–C1t +

2(C + C1)|�|
c1

(
1 – e–C1t) +

4
C1

∫ t

0
‖g‖2

2eC1(τ–t) dτ

≤ C, (3.4)

where C > 0 denotes various constants independent of n and t. This together with (3.2)
deduces that the local solution un can be extended to (0,∞).

Then, using a similar discussion as that in [21], we can obtain that the limit of {un} is a
solution of problem (1.1).

Next we prove that problem (1.1) only has one solution. Assume that u and v are two
solutions of problem (1.1). Taking ϕ = u – v as a test function in Definition 1.1, we have

1
2

d
dt

∫

�

|u – v|2 dx + M
(
[u]p

s,p
)〈u, u – v〉W0 – M

(
[v]p

s,p
)〈u, u – v〉W0

+
∫

�

(
f (x, u) – f (x, v)

)
(u – v) dx = 0.
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Note that

〈u, u – v〉W0 = [u]p
s,p – 〈u, v〉W0 .

By the Young inequality, we have

〈u, v〉W0 =
∫∫

Q

|u(x) – u(y)|p–2(u(x) – u(y))(v(x) – v(y))
|x – y|N+sp dx dy

≤
(

1 –
1
p

)

[u]p
s,p +

1
p

[v]p
s,p.

Thus,

〈u, u – v〉W0 ≥ 1
p
(
[u]p

s,p – [v]p
s,p

)
.

Similarly,

〈v, u – v〉W0 ≤ 1
p
(
[u]p

s,p – [v]p
s,p

)
.

Using the above inequalities and assumption (1.2), we arrive at the inequality

1
2

d
dt

∫

�

|u – v|2 dx +
1
p
[
M

(
[u]p

s,p
)

– M
(
[v]p

s,p
)](

[u]p
s,p – [v]p

s,p
) ≤ λ

∫

�

|u – v|2 dx.

Since M is a nondecreasing function, we deduce that

d
dt

∫

�

|u – v|2 dx ≤ 2λ

∫

�

|u – v|2 dx,

which implies that u – v = 0 a.e. in �× (0,∞). Hence the solution is unique. With a similar
discussion as the uniqueness of solution, we can obtain the continuity of the mapping
u0 → u(t) in L2(�). �

Now we define a functional E : W0 →R by

E(u) =
1
p
M

(
[u]p

s,p
)

+
∫

�

F(x, u) dx –
∫

�

g(x)u dx

for all u ∈ W0, where F(x, u) =
∫ u

0 f (x, ξ ) dξ . Then we have the following.

Lemma 3.1 Assume that u0 ∈ W0 ∩ Lq(�). Let u be a solution of problem (1.1), then

E
(
u(x, t)

)
= E(u0) –

∫ t

0

∫

�

∣
∣uτ (x, τ )

∣
∣2dxdτ , t > 0. (3.5)

Proof Let us recall that the solution of problem (1.1) can be obtained as the limit of the
following sequence of Galerkin’s approximation (see [25]):

un(x, t) =
n∑

j=1

(
gn(t)

)

jej(x), n = 1, 2, . . . ,
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where gn(t) ∈ C1[0, T] and {ej} ⊂ C∞
0 (�) is an orthonormal basis in L2(�). Let u be a suffi-

ciently smooth solution of problem (1.1)(or the approximate solution un). Choosing ϕ = ut

in Definition 1.1 and using the fact that

〈u, ut〉W0 =
1
p

d
dt

M
(
[u]p

s,p
)
,

we have
∫

�

|ut|2 dx +
d
dt

E
(
u(x, t)

)
= 0,

which implies that the function E(u(x, t)) is nonincreasing with respect to t. Moreover,
integrating the above equality with respect to t from 0 to t, we arrive at the equality

∫ t

0

∫

�

|uτ |2 dx dτ + E
(
u(x, t)

)
– E(u0) = 0.

This ends the proof. �

By Theorem 3.1, the solution of problem (1.1) generates a semigroup {S(t)}t≥0 in L2(�).
Next, we show that the semigroup possesses a global attractor in Lq(�).

Theorem 3.2 Under the assumptions of Theorem 3.1, the semigroup {S(t)}t≥0 associated
with problem (1.1) possesses an absorbing set in L2(�) and W0 ∩ Lq(�), respectively.

Proof Taking ϕ = u in Definition 1.1, we obtain

1
2

d
dt

∫

�

|u|2 dx + M
(
[u]p

s,p
)
[u]p

s,p +
∫

�

f (x, u)u dx =
∫

�

gudx.

Note that assumption (1.3) implies that

∫

�

f (x, u)u dx ≥ c1

∫

�

|u|q dx – c|�|.

This together with the Young inequality and assumption (M1) yields that

1
2

d
dt

∫

�

|u|2 dx + m0[u]p
s,p + c1

∫

�

|u|q dx ≤ Cε

∫

�

|g|2 dx + ε

∫

�

|u|2 dx + c|�|. (3.6)

Using the Young inequality, one can deduce that

∫

�

|u|2 dx ≤
∫

�

2
q
|u|q dx +

∫

�

q – 2
q

dx

=
2
q

∫

�

|u|q dx +
q – 2

q
|�|.

Thus,

q
2

c1

∫

�

|u|2 dx ≤ c1

∫

�

|u|q dx +
q – 1

2
c1|�|.
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Inserting this inequality into (3.6), we get

1
2

d
dt

∫

�

|u|2 dx + m0[u]p
s,p +

q
2

c1

∫

�

|u|2 dx

≤ ε–1
∫

�

|g|2 dx + ε

∫

�

|u|2 dx +
(

c +
q – 1

2
c1

)

|�|.

Choose ε = qc1
4 . Then

1
2

d
dt

∫

�

|u|2 dx +
qc1

4

∫

�

|u|2 dx

≤ 4
qc1

∫

�

|g|2 dx +
(

c +
q – 1

2
c1

)

|�|. (3.7)

Then, using a similar discussion as (3.4), we get that there exists t0 > 0 such that

∥
∥u(x, t)

∥
∥

2 ≤ C for any t ≥ t0.

Thus, the semigroup has an absorbing set in L2(�). Integrating (3.6) with respect to t over
[t, t + 1], t ≥ t0, we obtain

∫ t+1

t

(
m0

[
u(x, τ )

]p
s,p + c1

∥
∥u(x, τ )

∥
∥q

q

)
dτ

≤ Cε‖g‖2
2 +

∥
∥u(x, t)

∥
∥2

2 + C|�| ≤ C for t ≥ t0,

which implies that

∫ t+1

t

([
u(x, τ )

]p
s,p +

∥
∥u(x, τ )

∥
∥q

q

)
dτ ≤ C for t ≥ t0. (3.8)

On the other hand, using Lemma 3.1 and the Young inequality, we deduce

1
2

∫

�

|ut|2 dx +
d
dt

M
(
[u]p

s,p
)

+
d
dt

∫

�

F(x, u) dx ≤ 1
2
‖g‖2

2. (3.9)

By assumption (1.3), we have

c1|u|q – c ≤ F(x, u) ≤ c2|u|q + c. (3.10)

Integrating (3.9) over [τ , t + 1], t0 ≤ t < τ < t + 1, one can deduce

M
([

u(x, t)
]p

s,p

)
+

∫

�

F
(
x, u(x, t)

)
dx

≤ C‖g‖2
2 +

(

M
([

u(x, τ )
]p

s,p

)
+

∫

�

F
(
x, u(x, τ )

)
dx

)

.
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Integrating the above inequality with respect to τ between t and t + 1, we obtain

M
([

u(x, t + 1)
]p

s,p

)
+

∫

�

F
(
x, u(x, t + 1)

)
dx

≤ C‖g‖2
2 +

∫ t+1

t

(

M
([

u(x, τ )
]p

s,p

)
+

∫

�

F
(
x, u(x, τ )

)
dx

)

dτ .

Gathering (3.8) and (3.10), we get

[
u(x, t)

]p
s,p +

∥
∥u(x, t)

∥
∥q

q ≤ C for all t ≥ t0 + 1.

The proof is complete. �

By the compact imbedding results in [35] and [5, Theorem 6.7], we are now in a position
to obtain the global attractor in Lq(�).

Proof of Theorem 1.1 The proof is inspired by [30]. Let B0 be an absorbing set in Lq(�).
We define the ω-limit set of B0 as

ω(B0) :=
⋂

τ≥0

⋃

t≥τ

S(t)B0
Lq(�)

.

Here ALq(�) denotes the closure of A in the topology of Lq(�). Note that ϕ ∈ ω(B0) if and
only if there exist sequences {ϕn} ⊂ B0 and tn → ∞ such that

S(tn)ϕn → ϕ as n → ∞.

Set A = ω(B0). Next we verify that A is a global attractor of the semigroup S(t) in Lq(�).
(1) A is compact. Clearly, by the compact imbedding results in [35] and [5, Theo-

rem 6.7], one can obtain that A is compact in Lq(�) being q ∈ (2, Np/(N – sp)).
(2) A is invariant. If v ∈ S(t)A , then v = S(t)ϕ, ϕ ∈ A . Thus, there exist ϕn and tn such

that

S(t)S(tn)ϕn = S(t + tn)ϕn → S(t)ϕ = v,

which implies that v ∈ A . If v ∈ A , then there exist ϕn ∈ B0 and tn → ∞ such that
S(tn)ϕn → v. Observe that, for tn ≥ t, the sequence S(tn – t)ϕn is compact in Lq(�). Thus,
there exist a subsequence tnk → ∞ and ϕ ∈ Lq(�) such that S(tnk – t)ϕnk → ϕ. It follows
that ϕ ∈ A . By the continuity of S(t), we deduce

S(tnk )ϕnk = S(t)S(tnk – t)ϕnk → S(t)ϕ = v.

It yields that v ∈ S(t)A . Consequently, we obtain that S(t)A = A .
(3) A attracts any bounded sets in Lq(�). Arguing by contradiction, we assume that for

some bounded set B1 of L2(�), dist(S(t)B1,A ) does not limit to 0 as t → ∞. Hence there
exist δ > 0 and a sequence tn → ∞ such that, for all n,

dist
(
S(tn)B1,A

) ≥ δ > 0.



Qi et al. Boundary Value Problems         (2021) 2021:10 Page 12 of 15

For each n ≥ 1, there exists ϕn ∈ B1 such that

dist
(
S(tn)ϕn,A

) ≥ δ

2
> 0. (3.11)

Recall that B0 is an absorbing set. Then S(tn)ϕn ⊂ B0 for tn ≥ t0 := t0(B). Since S(tn)ϕn is
compact, there exist ϕ ∈ Lq(�) and a subsequence of tn denoted by tnk such that

ϕ = lim
nk→∞ S(tnk )ϕnk = lim

nk→∞ S(tnk – t0)S(t0)ϕnk .

It follows from S(t0)ϕn ∈ B0 that ϕ ∈ Aq, which contradicts (3.11). �

4 Infinite dimensional global attractors
In this section, we study the fractal dimension of the global attractor. First, we prove that
the Z2 index of the global attractor is infinite. Then, by the Mané projection theorem [18],
we obtain the infinite dimensionality of the global attractor.

Let X be a Banach space. Denote by
∑

= {A ⊂ V : A is closed, A = –A} the class of closed
symmetric subsets of X. For any A ∈ ∑

, the Z2 index of A is defined as follows:

γ (A) =

⎧
⎪⎪⎨

⎪⎪⎩

inf{m : ∃h ∈ C0(A;Rm \ {0}), h(–u) = –h(u)};
∞ if {· · · } = ∅, in particular if 0 ∈ A;

0 A = ∅.

Now we list some properties of Z2 which will be used later, for more details see [29].

Lemma 4.1 The Z2 index defined on � satisfies the following properties:
(1) γ (A) = 0 ⇔ A = φ.
(2) If A ⊂ B ⊂ �, then γ (A) ≤ γ (B).
(3) For any A, B ⊂ �, γ (A ∪ B) ≤ γ (A) + γ (B).
(4) If A ∈ � is a compact set, then ∃δ > 0 such that γ (Uδ(A)) = γ (A), where Uδ(A) is a

symmetric δ-neighborhood of A.
(5) γ (A) ≤ γ (h(A)), ∀A ∈ �, and h : V → V is an odd and continuous function.

To prove Theorem 1.2, we need the following lemma.

Lemma 4.2 Let {S(t)}t≥0 be an odd semigroup on a complete metric space X, which pos-
sesses a symmetric global attractor A . Then, for any m ∈ N, there exists a neighborhood
U(0) of 0 such that the Z2 index of the set A \ U(0) satisfies γ (A \ U(0)) ≥ m.

Proof We first show that, for any integer m > 0, there exists a symmetric set Bm such that

γ (Bm) ≥ m and ω(Bm) =
⋂

τ≥0

⋃

t≥τ

S(t)Bm ⊂ A \ {0}. (4.1)

For any k ∈ N
+, let Vk be a k-dimensional subspace of W0 ∩Lq(�). Set Ak = {u ∈ Vk : [u]s,p =

1}, then Ak is compact in W0 ∩ Lq(�) and Lr(�). Since all norms are equivalent on a finite
dimensional Banach space, there exists C > 0 such that

‖u‖r ≥ C[u]s,p = C for all u ∈ Am.
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Set εAm = {εu : u ∈ Am}, 0 < ε < 1. Then γ (εAm) = γ (Am) = m. For ν = εu ∈ εAm, we have

E(ν) =
1
p
M

(
εp[u]p

s,p
)

+ εq 1
q

∫

�

|u|q dx – εr
∫

�

|u|r dx

≤ 1
p
εp max

τ∈[0,1]
M(τ ) + Cεq – Cεr .

Since 2 ≤ r < p and r < q, for ε small enough such that E(ν) < 0 for all ν ∈ εAm. Now fix
ε > 0 such that E(ν) < 0. Since E(0) = 0 and the function t → E(u(t)) is nonincreasing, we
have ω(εAm) ⊂ A \ {0}. Thus, (4.1) holds true by taking Bm = εAm.

Since Bm ⊂ A \ {0} and Bm is closed and compact, there exist open neighborhoods of 0
and ω(B), denoted respectively by U(0) and N (Bm), such that

U(0) ∩ N (Bm) = ∅.

Since S(t)Bm ⊂ N (Bm) for t large enough, we have S(t)Bm ⊂ N (A ) for t large enough.
Therefore, there exists T such that, for t > T ,

S(t)Bm ⊂ N (Bm) ⊂ N (A ) \ U(0) ⊂ N
(
A \ U(0)

)
.

Note that A \ U(0) is compact. Choosing a proper neighborhood N (A \ U(0)), by (4) in
Lemma 4.1, we have

γ
(
A \ U(0)

)
= γ

(
N

(
ω(A) \ U(0)

)) ≥ γ
(
S(t)Bm

) ≥ γ (Bm) ≥ m, t large enough.

The proof is complete. �

Proof of Theorem 1.2 By our assumptions, one can obtain that the semigroup of problem
(1.9) is odd. Indeed, for any u0 ∈ L2(�), clearly, –u0 ∈ L2(�). Let u be the unique solution
of problem (1.9) with initial data u0. Since f is odd, –u is the unique solution of problem
(1.9) corresponding to initial data –u0. Thus, S(t)(–u0) = –u = –S(t)u0, i.e., S(t) is odd.

Let B be a symmetric absorbing set. Then the symmetry of the global attractor follows
from the fact that

A = ω(B) =
⋂

s≥0

⋃

t≥s
S(t)B.

Finally, we may take a linear (and thus odd) projection in the Mané projection theo-
rem (see [18]). If there exists m ∈ N such that the fractal dimension of A is less than m,
then every symmetric closed subset of the attractor (not containing zero) has a Z2 index
less than 2m + 1, which contradicts Lemma 4.2. Thus the fractal dimension of the global
attractor is infinite. �
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