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1 Introduction

In many real world problems, the fractional order models are found to be more suitable
than integer order ones. More specifically, we can find the applications of fractional order
derivatives and integrals in electrodynamics of complex medium, aerodynamics, polymer
rheology, physics, chemistry, and so forth. For basic study and applications, we recom-
mend the books and papers provided in [1-10]. Due to these applications, fractional order
derivatives and integrals are gaining much importance and consideration from researchers
nowadays. We refer to some recent work [11-18].

Problems with integral boundary conditions naturally arise in applied fields of science
like thermal conduction problems, semiconductor problems, chemical engineering, blood
flow problems, underground water flow problems, hydrodynamic problems, population
dynamics, and so forth. For detailed study of integral boundary value problems, we rec-
ommend the papers [19-22].

Similarly, the dynamical systems with impulsive phenomena have been an object of great
interest in many subjects such as physics, biology, economics, and engineering. The dif-
ferential equations with impulsive conditions are used to model certain processes with
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discontinuous jumps and abrupt changes. Such processes cannot be modeled with classi-
cal differential equations (see [23-26]).

On the other hand, stability analysis has got greater interest in the last few years for
FODEs. Because during numerical and optimal analysis such tools are greatly needed, see
for instance [27]. Recently, for FODEs, the Ulam stability results have been considered very
well. This concept of stability was introduced for the first time by Ulam and Hyers [28, 29]
during 1941. It is nowadays known as Hyers—Ulam stability. This approach has stimulated
a number of people to investigate stability of various mathematical problems. So, a large
number of papers on Hyers—Ulam stability have been reported in the literature (see [30—
34]). Motivated by the applications of impulsive and integral boundary value problems,
in this paper we study the following nonlinear problem of implicit FODEs with impulsive

and integral boundary conditions:

SD;u(t) = g(t, v(t), v(mt),§ Df v(t)),

1<¢<2,t€[0,1],0<m< 1, t#t,k=1,2,...,R,
pu(0) +qu'(0) = [y m(w(@)dz,  pu(1)+qu'() = [y h(v(2) dz,
AU(t]k) = ]:k(U(tk)), AU/(tk) Z.}:ﬂ((v(tﬂ()), k=1,2,...,%,

1)

where §Df represents the Caputo derivative, g : [0, 1] x R® — R and F, Fi, iy, iy : R — R
are continuous functions, p > 0, g > 0 are real numbers. Moreover, Au(ty) = v(t)) — v(Z;);
u(t;), () are the right- and left-hand limits, respectively, at ¢ fork =1,2,...,R.

Our considered problem (1) involves proportional delay term which includes a famous
class of differential equations called pantograph. The pantograph differential equations
form an important class of differential equations which has a wide range of applications in
various applied fields of science, engineering and in economics. In economics the sudden
rise and fall in stock exchange or in its status at time ¢ as a function of that time with
some delay which is inevitable in decision making problems is a practical significance of
impulsive delay differential equations. Further, second order boundary value problems
can be used to describe a large number of physical, mechanical, biological, and chemical

phenomena. For some physical significance, we refer to some valuable work in [35-38].

2 Preliminaries
The space # = C([0,1],R) = {v(¢) : v € C([0,1])} is a Banach space with respect to the
norm defined by

[lvlly = max {|v(®)] : £ € [0,1]}. )
te[0,1]

Definition 2.1 ([1]) The noninteger order integral of a function g € L!([a, b], R*) of order
¢ € R* is defined by

t(+_ »\s-1
Z78(0) = / %g&)dz, €)

where I' is the gamma function.
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Definition 2.2 ([1]) For a function g given on the interval [a, b], the Caputo fractional
order derivative of v is defined by

D0 = 1 )/ -2 g0 dz, @
where £ = [¢] + 1.

Lemma 2.3 ([39]) For ¢ >0, the given result holds:

0
(CDgg(t g(t) - Z g’ (0) 7, wherel =[g]+1.

We construct the following three inequalities for studying Hyers—Ulam stability of prob-
lem (1). Let x € C([0,1],R,) be a nondecreasing function, & > 0, ¢ € #/, such that for
tel, k=1,2,...,R, the following sets of inequalities are satisfied:

SDsy(t) - gt, ¥ (6), ¥ (mt), SDf () <€, t#t,
AY(t) - Fu(¥ () <€, (5)
AY'(t) - Fi(¥ () <€,

SDsw(t) — gt v (), v (mt), SDs ¥ (8) < x(t), t#t,
Ay (ty) — Fr(P () <& (6)
AY'(ty) - Fi(¥ () <&,

§Dsyr(t) - gt, ¥ (8), ¥ (mt), SDE Y (0) < ex(t), t#t,
AP (ty) — Fi(¥(t)) < €&, (7)
AY'(t) — Fr(W(ty)) < €&,

where ¢ and m are the same as defined in problem (1).

Definition 2.4 ([40]) If for € > 0 there exists a constant C, > 0 such that, for any solution
Y € W of inequality (5), there is a unique solution v € # of system (1) that satisfies

W) —v(t)| < Cee, tel,
then problem (1) is Hyers—Ulam stable.
Definition 2.5 If for € > 0 and a set of positive real numbers R* there exists x € C(R*,R")

with x(0) = 0 such that, for any solution { € # of inequality (6), there exist € >0 and a
unique solution v € # of problem (1) that satisfies

W) - v(®)| <xle), tel,

then problem (1) is generalized Hyers—Ulam stable.
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Definition 2.6 ([40]) If for € > 0 there exists a real number C, > 0 such that, for any solu-
tion ¢ € # of inequality (7), there is a unique solution v € #  of problem (1) that satisfies

W (@) —v(D)] < Ce (& +x(0)), tel,
then problem (1) is Hyers—Ulam—Rassias stable with respect to (&, x).

Definition 2.7 ([40]) If there exists a constant C, > 0 such that, for any solution ¢ € #
of inequality (6), there is a unique solution v € # of problem (1) that satisfies

[y (t) - v(t)| < Cy(& +2(t), tel,
then problem (1) is generalized Hyers—Ulam—Rassias stable with respect to (&, x).

Remark1 The function ¢ € # isasolution of inequality (5) if there exist a functiony € #
and a sequence yi, k =1,2,...,R, which depends on ¢ such that
M) @O <e nl<etel
(ii) §DF ¥ (2) = g(t, ¥ (8), ¥ (mt), § D ¥ (8) + y(0),
(i) Ay () = Fu(¥ () + Yies
(iv) AV (8) = Fie( (8) + yic

Remark?2 The function ¢ € # isasolution of inequality (6) if there exist a functiony € #
and a sequence yi, k = 1,2,...,R, which depends on ¢ such that
0 @I <x@), bl <&, t€l,
(i)) §DF ¥ () = g(t, ¥ (1), ¥ (m2), §DF  (8) + ¥(2),
(i) A (t) = Fu(¥ (&) + Ik
(iv) AY/(t) = Fie( (t) + yic

Remark 3 The function ¢ € # is asolution of inequality (6) if there exist a functiony € #
and a sequence yi, k =1,2,...,R, which depends on ¢ such that
(@) ly@)] <ex(t), Iyl <€k, tel,
(i) §DF v (t) = g(t, ¥ (2), v (mt), §D; ¥ (2)) + (1),
(iii) A (f) = Fic(¥ (&) + yes
(iv) AV (8) = Fie( (t) + Y

We give the proof of the following lemma, which provides a base for obtaining a solution

to problem (1).

Lemma2.8 Let¢ € (1,2],a:[0,1] = R be a continuous function, then the function v € ¥
is the solution to the following problem:

SDfv(t)=a, 1<g<2tel01t#t,k=1,2,...,%,
pu(0) +qu'(0) = [y @) dz,  pu(1) +qu'(1) = [, h(v(2)) dz, (8)
Av(ty) = Fi(u(t)), AV () = Fr(v(®)), k=1,2,...,R,
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if and only if v satisfies the following integral equation:

5 ht-2Ta@dz+G, telon];
%ﬁ ft;(t_z)gila(z) dz + %;) Zk- v (t, -2 ta(z)dz

v(t) = k t T _ ©
i D= 1) [ (¢ - D a2 dz + X5 (- ) F (w(t))
YL F ) +G, te(tnllk=12..,%,
where
1 n ¢
= p—Fq(g) 5 (1-25"a(z)dz + 2T () 2:1: tj_l(tj 25 a(z) dz

q2

pr(g ) Z(l_t)/, &, -9 a@dz+ Sr T |, (1 2 2a(z) dz
q2 Z 9
AT(c—1) (¢, —2)* Z)dZ+qZ - t))F, (v()
(s -1) < /tj ) -
n 1 .
+q_,§fj(v 22}' t)) +—f hl(u(z))dz+l%/0 ha (v(2)) dz

1! t ) b a1
+;/0 hi(v(2))d el (1 25l (z)dz——jX: e ~2)5la(z) dz

t n t; ., qt s
_ 7F(g Y ngl(l - t,)/t;_l(t, —-2)*a(z)dz - m 5 (1 2)52a(z)dz
— qit Xn:/tf (¢ _Z)g_za(z)dz—pt id 1ot )]E (U(t ))
pl(s-1) =1 Y41 ! ijl 77 7

n noo P P
—pthl}'j(v(tj))—q;t;fj(u(tj))—;/o hl(u(z))du—fo Iy (v(2)) dz.

p

Proof Assume that, for t € [0,#], v is a solution of (8). Then, by Lemma 2.3, there exist
ai,a; € R such that

v(t) = oIf a(t) —ay —ast = %g) /Ot(t -2 a(z)dz - a; — axt, (10)
which also yields
1 ¢
V() = m/o (t —2)*a(z) dz — as. (11)

Let, for t € (£, t,], us have dy,d, € R with

u(t) = %g) t(t—z)g"la(z) dz—dy —dy(t - t1), (12)

V(t) = ﬁ t:(t -2 2a(z)dz - d,.

Page 5 of 27
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This leads us to

1 u
u(ty) = T ; (th —2)a(z) dz — ay — aqsty, v(t}) = —di,

1 m
V() = -1 /(; (t1 — 2)2a(z) dz — as, V() = ~do.

Corresponding to impulsive conditions, we have
Av(t) = U(t{') - v(tl_) = ]:l(v(tl)) and AUV'(4)= v’(tf) - U’(tl_) =F (U(tl)),

one has

1 fa
-d; = —— t -2 ta(z)dz — ar — azty + Fr(v(tr)),
1 (<) " (ta ) (2) 1 211 1(U( 1))

1 13 _
Ay _)s2 _
dy Fe_1) /(; (t1 —2)° “a(z)dz—ay + fl(v(tl)).
Thus (12) implies
t

v(t) = % (t-2)°a(z)dz + m (t1 —2) ‘a(z) dz

m/ (-2 al2)dz + F, (v(t)) + (t - t) F1(v(t))

—ay—ast, te(t,tb]

Similarly, for ¢ € (#, 1], one has

0= 5 (t etz ”’“—th,lt -2 () dz
1 k t k )
+ e D ;(t— tj)/tjl(tj —2)2u(z)dz + ]le:(t— t)F, (v(t))

k
Y F(vt) —ar—ast, te(t,1lk=12..,8, (13)
Jj=1

which by differentiation gives the result

) 1 t B 1 ko B
V'(t) = m/tk (t-2)° 2Ol(Z)dZ+ m;/;jl(tj -2)° 2a(Z)dz
k
Z (v(t)) —as, te(t1lk=1,2,...,8 (14)

J=1

Using the given boundary conditions in (10), (11), we obtain

1
_pay —qay = / I (v(2)) de (15)
0

Page 6 of 27
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and
u(1)=%§) (-9 (@ dz+ —— Z m(t -2 a(z)dz
* o 1)2(1 t)/ (t, —2)5%a( z)dz+}21:(1 t)F, (v(t,))
+Z]-'_,(U(t]))—a1—a2t,
j=1
iy 1 1 D) 1 " Ly o
V= oy | 0 a(z>dz+r(§_1);fm(t,—z)g o(2)dz

+ Z]}j (v() - a2
J=1

Thus, in view of pu(1) + qu’(1) = fol hy(v(2)) dz and the result (15), we get the following
values for —a; and —ay:

1
:plfig)/(l 2)5 Lo Z)dz+pr met _ 25 la(z) dz

—-a,

q - ) ,
’ pl(c-1) 2(1 -t)) /tj_l(tj -2)*a(z)dz

+ ZF(g 1) /(1 z)§2 (2)dz + ZF( I)Z (t —Z)g_za(z)dz

=1Y-1

+qZ(1 t)]-' U(t +qZ]—' U(t) Z]—' U(t

J=1 J=1

1 1 1
¥ 12/ hl(u(z))dz+l%/ hg(v(z))dz+]%/0 I (v(2)) dz,

—ay =— F(l 1, (1 2 a(z) dz — e )Z . 1(1? -2 a(2) dz

1 7 _2 q 1 "
“Te-D ;(1 - t_/)/;jl(t_, -2)*a(z)dz - e (1-2)a(z)dz

(- @ dz-p > (- 1) F (v(t)

1781

1

n n 1
_pZ}-}(v(t}))—g ]:"](U(t,))—}a/(; hl(v(z))dz+l%/0 hy(v(2)) dz
Jj=1

=1

Putting these values for —a; and —a, in (10) and (13), we get (9).
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3 Main results
Corollary 3.1 As a result of Lemma 2.8, problem (1) has the following solution:

Lf(;t—zg‘l(ID dz+g* te[O tl;
1 £ _ 1
o(0) = fzk(t 2 O, dz+ w5 t, > lftz (t, —2)s'®,dz 16
; -1 Z/ (- t)ft (t —2)* 7, dz+2} (= 1) F,(v()

+zj:1fj(u ) +G5 te (b, 1k=1,2.,}8,

«__ 4 ! 4 i ¥ /['7 1
-9 [ a-e,d t,—2) 0, d
T gt [, -9 e r@)? S

g (t —z) 7 (1- z)f 2,

p ’)/ / " T(c-1)

+q722n:/t’ (t,—2)%® dz+q2n:(1—t )F, (v(t,))
pzr(g_l) = - J v = 777 J

) s DY F ) L [ (o)
= J J p2 = J J p2 0
1

1 1
+I%/0 hz(U(Z))dZ+}9‘/0 h1(v(z)) Z_L (l—z)g‘ldedz

I'(s)
F(g) Z

n

t t iy
t, -2 d,dz - e D > oa- t,)/ t, -2) 2D, dz

-1 J=1 -1

qt -2 -2
_ (1 2) "D, dz— (t -2) "D, dz
pr(g 1) Ik 21: ty-1

—ptZ(l - t./)}:J (U(t./)) —ptZ]—'_, (U(t/)) - q;t Z]}J (U(t./))
J=1 J=1 j=1
t ! t !
—;/0 hl(v(z))dz+1;/0 hz(v(z))dz

For the purpose of simplicity, we take @, (¢) = g(t, v(¢), v(mt), $D; v(t)). To transform
problem (1) to a fixed point problem, here we define the operator 2 : # — # by

Zu(t) = 1 (t 257t (z)dz+— Z / (b —2) 1D, (2) dz

F( ) 0<t[ <tV k-1

F(g Z(t 0 [ -2 v@dz+ Y (£ 1) Fi(v(t))

0<t <t fe-1 O<ty <t

+ Y Filv(e) + (1 251D, (2)dz

O<ty <t

F()

(¢, —2)° 1d,(2)dz

pF

-1 Y1
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t)-1

N t
q ] .
"D ;(1 B tf)/ (8, —2) P, (2) dz

2

q ! _\e-2
+p—2F(g—1) /tk 1-2)°7d,(2)dz

qz Ny )
+ (t, —2)5 " D,(2)dz
Pr(s-1) 121:/@1 !

N N
¥ qZ(l —t))F,(v() + qu, (v(t))
J=1

J=1

R

g [ q 1
Z U(t 172/0 hl(u(z))dz+p2/0 hz(v(z))dz

e
%

1! ¢ 1
_ - _ »s-1
+ /0 i (v(z)) dz r@ ), 1-2)°1d,(2)dz

N

N

Z " -0, d

ty-1

1) / "t - 220, (2) de

1
_I#t—l)/\ (]. —Z)g_ZCDU(Z)dZ

R ¢

(¢, - 2)572d,(2)dz

j=1"Y4-1

qt
plr(c-1)

R R
—ptYy (1=t F,(v(t) -pt Y Fy(v(t)
J=1

J=1

N

1 1
B ACD) —2/ hl(v(z))dz+£/0 Iy (v(z)) dz

)

The given assumptions are necessary for obtaining our main results.
(H1) Letg:[0,1] x R x R x R — [0,00) be a jointly continuous function;
(H3) Forevery v,v € C([0,1],R) and Ly > 0, 0 < N, < 1, let the following inequality

|g(t» v(?), v(mt), va(t)) - g(t» u(t), v(mt), (Dﬂ(t)) |

<Lg(|v(®) = 0(®)] + |v(mt) — D(m2)|) + Ng| @, (£) — D5(8)]

hold;
(H3) There exist Cy, Cy > 0 such that the following relations hold true:

|fk(U(tm)) ( tm))| = Cliv(tm) -
|-7:k(U(tm)) (D tm))| = CZNU(tm) -
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(Hys) There exist constants Cs, C4 > 0 such that, for all v € R, the following inequalities
hold true:

|1 (v(®) - h1 (D(0)] < Cs|u(e) - D(2)
|1y (v(8)) = B2 (D(0)| < Calu(e) - (2)

’

(Hs) There exist constants Cs, Cg > 0 such that, for all v € R,

|1 (v(®))] < Cs,
|2 (v(8))| < Ces;

(Hg) There exist functions 61,0,,05 € C([0,1],R*) with

lg(t,v(®), U(mt),ngj u(t))
<0:(t) + 92(t)(|v| + |v(mt)|) + 93(t)|ngjv(t)| fort€[0,1],ve ¥,
such that 05 = max,es |05(£) < 1;

(H;) If g, Fi, Fi are continuous functions and there exist constants B, B*, M, M* > 0
such that, for all v € #/, the following inequalities are satisfied:

| Fi(0)(®)] <Bllvllpc + B,
| Few)(®)| < Mllvllpc +M*.

Theorem 3.2 If assumptions (Hy)—(Hg) are satisfied, then problem (1) has at least one

solution.

Proof To prove this result, here we apply Schaefer’s fixed point theorem.
Step 1: We will show that 2 is continuous. We take a sequence v, € # with v, —

v e W . We consider
’fvn(t) - fu(tﬂ

1 ¢ .
< Tg)/ (£ =25 Do(e) - Do ()| dz

S [ - 9 | Gunle) - 0] e

O<ty<t ¥ -1

L
I'(s)

+ ﬁ Z |t—tk|ft]ki(tk—z)§2|<I>U',,(z)_q>v(z)’dz

O<ty <t

+ Z It = til | Fic (va(t)) = Fie(v () |

O<ty <t

+ Z |-7:]1<(Un(t]k)) - fk(u(tk)”

O<ty <t

a (! o
+1T(§)./qk (1-2) |¢u,n(z)—¢v(z)|(z)dz
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R ¢
+ pFL(g) (¢ —z)g—1|c1>v,n(z) - ¢v(z)| dz
pF(g 1) Z(l t )/ (t, —2)° 2|CI>Un(z) ®,(2) |dz
2
+ﬁf (1—Z)§*2|<1)U,n(z)—q>u(z)|dz

N ot
* (t; =2 | Punl2) - Pu(2)| dz
pr(c-1) = i

8 N
+ qZ(l - t1)|]:-1 (U”(t./)) _]}] (U(t./))| + qZ|]:] (U”(t.l)) -F (U(t.l))i
J=1 J=1
7\ 7 _
+ E Z|~7:] (U"(t./)) -5 (U(t./))| (17)
j=1

1 1
+ %/ |h1(vn(s))—hl(v(z))|dz+l%/o |13 (Un(s)) - a2 (v(2)) | dz

+—/ |h1 Un hl u(z)}dz

t ]
el jZ (t, 25 @4,(2) ~ Dy (2)| dz

1 t;-1
R t)
- -2) v,n - Y d.
I'c-1) ;(1 t])/t;_l(tj ) |4> a(z)—@ (Z)i -
1
+ pr(zt_ 1) (1 —Z)§*2|<DUJ,(Z) — q)u(z)|dz

(t - 2)572| @y u(2) — Do (2)| dz
PF(S' 1) 21: t1

+ptZ<1—t>|f (valt) = F, (v(2))]

J=1

R

N
+ptZ|]-' Un(t )) (U(t]))| + q;t Zp}} (U"(t./)) _]}] (U(t./))|

J=1

+ —/ |h1 un(s) U(z))idz

+ —/ |2 (va(s)) = ha(v(2))| dz
pJo
where ®,, (), ®,(¢) € # satisfy the following functional equations:

Dy, (£) = g(t, Uu(t), u(mt), Dy, (1)),
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D, (2) = g(t, v(8), v(mt), D, (2)).
By the application of assumption (H3), we have

| @0, (8) = Do (D)] = [g(t, Un(t), vn(mt), @y, () — g(£, v(2), (i), Dy (2))]
< Lg(|v,,(t) - v(t)| + |v,,(mt) - U(mt)|) +Ng|<I>Un(t) - CDU(t)|.

Then

[Py, — Pullrc < lvn = vllpc.

—1- N
Now we see as n — 00, v, —> U, which implies that ®,,, — ®,,. Let there exist b > 0 such
that, for each ¢, |®,,(¢)] <b and |, ()| <b. Then
(t - Z)§71|q)v,n(z) - CI)U(Z)| = (t - Z)gil({éu,n(zﬂ + |<Du(z)|)
<2b(t-2)7,
(tj —Z)§_1|CDU,,,(Z) - CDU(Z)‘ = (tj _Z)g_l(‘q)v,n(zﬂ + |CDU(Z)D
= 2b(tj - Z)g_ly
(tj _z)§_2|q>u,n(z) - d)u(z)‘ S (t] _Z)§_2(}q>v,n(z)‘ + ‘qDU(z)’)
S 2b(t] - Z)§—2’
(1-2 Dy u(2) - Pu@)| < (1-2) (| ®uul2)| + |Pu(2)])
<2b(1-2)°"",
(1-2)% Dy u(z) - Pu(@)| < (1-2) (| Puul2)| + |Pu(2)|)
<2b(1-2)"2
For each ¢ € [0,¢], the functions z — 2b(¢ — 2)*}, z — 2b(¢, — 2)7}, z — 2b(¢, — 2)5 72,
z— 2b(1 - z)°71, z — 2b(1 - z)¢? are integrable. Hence, applying Lebesgue dominated
convergent theorem, we have | 2y, () — Z¢(t)] — 0 as t — oco. This implies || 2y, —
Z Y| — 0as t — oo. Therefore, & is continuous.
Step 2: In this step we need to show that 2 is bounded. Consequently, for each v €

& ={v e :|vlpc <r*}, we have to show that | Zv|» < n, where 7 is a positive real
number. Then, for ¢ € (i, 1], we have

|Zv(@)| < e /(t 2@, (2)] dz+— Z . (t —2)° | @y (2)| dz

0<t <tV k-1

5y |t—tk|/ (- 22| Du@)|dz+ 3 It | Fu(v()|

0<t <t O<ty <t

+
I'(c

+ Y i)+ )f( =20, (9] (@) dz

O<ty <t

_ )1
pF ] t/lt 27 @, (2)| dz
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2(1 t )/ t, -2 2| P, (2)| dz

pF(g 1)

2

+ ﬁ\/ (]. —z)§’2|<I>U(z)’dz

2r(g Z/t 1t =257 @, (2)| dz

J=

R

s | F (i) as)

‘1_
p=1

N
+QZ(1—?I)|J}J(U("‘1))|+‘I2 U(t)
J=1

J=1

a (! a (! 1
+p2/0 |h1(v(z))|dz+p2/0 \hz(u(z))|dz+p/(; |1 (v(2))| dz

(1 2)s~ 1|d> (2) |dz+

R
—2)57 Y, (2)| d
wal >;ft,_l(t’ 257|0, ()| dz

t N t
+ m ;(1 _tj)/tj_l(tj —Z)§72i¢v(z)|dz

1
e [ a2 eula

t Ny B
_ 552 v d _
* e 1)21 =970z 00| 0)

qt < t (!
F, = |F — | |n d
+19t]2=1:| ](U(t_,))|+p ;\ _,(U(t,))|+p/0 |1 (v(2))| dz
1
+1§/0 I13(v(2))| de.
Apply assumption (Hs) to get

@, (0)] = |g(t;v(®), v(st), Pu(t))]

< 00(0) + Oa(e) (Ju] + [U(sD)]) + 65| @ (1)]-
Taking maximum of both sides, we have

|, (D)] <6 +2051 + 65

which further implies

* k 2ok
| +2001"

0

where 6] = max;e; |01(£)], 65 = max;er |62(£)], and 65 = max,e; |05(£)] < 1.
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Hence from (18) we get

12 < g(“‘* D@p+q) 2872+ pg(28+ 1)+ (8 + 1)>

+
pl(s+1) P*r(s)
1 1
+ —(2+ g)C5 + —(1 + Z>C6 +R(1 +p+q)(Br* +B*)
p p p p
2
+N(1 +q+ 1, q—)(Mr + M) =
p P
This shows that £ is bounded.
Step 3: 2 maps bounded sets into equicontinuous sets of #. Let 11, 7o € (fx, tx+1] such

that 7; < 7. And let & be a bounded set of # as in Step 2, let v € &. Then

’ffv(rz) - gv(f1)|

= %g) | 1|(f:»—z)§‘1 — (11 - 257 | @, (2)| dz
+F—/Q|(Tz—z)§_l||¢v(z)|dz

1

Wz[ - 2°7|0, (2)] dz

1 e S
T(c—1) Z |(T2_tk)_(71—tk)|/t (te —2)° 72| D, (2)| dz
O<ty<t—11 k-1

Y |@-t) - (1 - )| F(v()|

O<ty<tp-11

D D A CCR) F() /(1 2571 @, (2)| dz

O<ty<tp—11

(a—11) ARy
T ;/tj_l!(t,—z)mH@U(z)\dz

N

( 1) iy -

TZ; 1),225 _tj)/t_,-1|(t’_z)§ *[|®u(2)| dz
q(ta—11) o2
Tpre-1) ), -9 o, 0]

VIS [ -l

R R
+p(m-1) Y (1-£)|F, (v@))| +p(ra—1) Y| F, (v()]

J=1 j=1

ZpT (v(t))]

(rg — 1)
e dz.
: /0 o (v(2) | a2
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Taking into account the assumptions, we obtain

| Zv(r) - Zv(n)|

¢ty - 1) s {(ra—11)
I'(g+1) I'(s)

+ (12— 1)|(12 — &) — (11 — &) |(M[v | pc + M*) + (12 — T1) (Bl|v |l pc + BY)

fm—-1) N(n-7u) V(n-1) qi(n-1) Rgi(rn-11)
+ + +
['(c+1) I'(s) I'(s) pr(s) pr(s

+Rp(ta — 1) (1 = t,) (M|[vllpc + M*) + Rp(t2 — 71)(Bllvllpc + B)

N -7
L) e + 0

< F(;-;- D [2(1'2 -7)° + (1'2§ _ Tlg)] + |(Tz —tx) — (11 - t]k)|

Cs(ry—11) Colra—11)
) + +
p p

2(n-1) +2n-1) + (° - 1))

(20)

=

¢
I'(c+1)

+ M(Kfz—tk)—(ﬁ—tk” + 2R + 1 + ﬁ)
I'(s) p D
e =)+ 00 ([t - 00 - - 00] + 5+ 2

Cs(ry—11) Colra—11)
+ + .
p p

+ (10 — rl)(Br* + B*)(Np +1)

We see as 77 tends to 1y, the right-hand side of (20) tends to 0. Thus by “Arzela—Ascoli
theorem” 2 is completely continuous.

Step 4: Here the set defined by &, ={v e # :v=0Zvfor0 <o <1} is bounded. Let
v € &.. Then by definition v = ¢ Z’v. From Step 2, we get

12l <o [g ((N FDCp+a) | 2N+ pa(N+ 1)+ 8 + 1))
pl(c+1) pZF(g)

1 1
+ —(2+€>C5+ —(1+ z>C6+?<(1 +p+q)(Br*+B*)
p p p p

AT
+R(1+g+ =+ |(Mr* + M*) | =on <m,
p p

which shows that &, is bounded. Therefore, by Schaefer’s fixed point theorem, Z has at
least one fixed point and hence problem (1) has at least one solution. d

Theorem 3.3 If assumptions (Hy)—(Hy) and the inequality

K=

2L, ((N +1)2p+9) N 28p% + pg(2R + 1) + ?(R + 1))
(1-Ng)\ pI(sc+1) P’ (s)

+RC1(p+q+1)+RC2<p2(p+q+1)+q(p+q)> (21)

P>
2
a2 ) va ()
p p

are satisfied, then the problem has a unique solution in the interval [0, 1].
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Proof Assume that (H;)—(H3) and inequality (21) are satisfied. Then, for v,0 € #/, we

consider

| Z () - ffﬁ(t)|

1
_F(g) t]k(t 27 @y (2) - Pi(2)| dz

— Z ‘ (B —2)° 7| @u(2) — Pi(2)| dz

O<t <tV k-1

Z|t tk|/ (te —2)° 72| Do (2 (2)| dz

0<t <t

+ Z It =t | Fic(v(t)) = Fie(0(t)) |

O<ty <t

+ 30 | Fe(ve) - Fu(0()] +

O<ty <t

F( i), (1 z)s” 1|<I>U(z) [oF (z)|z)dz

pr(g) Z (t _Z)g_llq’u(z) - CD{;(Z)| dz

j=171-1

q b ~

* pl"(g — 1) Z(l _tf)/l‘7 (t.l _Z)g 2|q)v(z)_ CD{;(Z)|dZ
7 Y

ey I R

ZF(g 1)2[1 1 (t; —2)° 72| @y (2) - Pi(2)| dz

R

‘”12(1 _t1)|‘7}](v(t1)) _}:](D(tl)” +qZ|‘F](U(tJ)) _]:](l—)(tl))|

J=1 j=1

Z|J—" (v(t)) - F, (0(2))] +—/ 1 (v(2) = 11 (0(2))| dz

+1¥'/(; |h2(v(z))—h2(f)(z))|dz+}9/0 {hl(v(z))—hl(ﬁ(z)ﬂdz

1
‘ %g) (1-25 @) - Po(2)| de

Z/ (t, -2 @u(2) - Pis(2)| dz

tj-1

+ﬁ12(1—t_,)/'1(t_ -z)*” 2|<I>U(z)—<13'g(z)|dz

;-

qt
171“ (E; 1) tk

(1 2)°72| Dy (2) - P5(2)| dz

R

+[#tl)z j (t _Z)g72|q>v(z)—q)g(z)|dz

(22)
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N N
+ptZ(1 - t)|F, (v(t)) - F, (0))] +ptZ|-7:J(U(tJ)) - F,(0@))]

Jj=1 Jj=1

gt <, - - t !
+;;|f1(v(tj))—fj(l_)(tj))|+I;/O |h1(U(Z))—h1(l_)(Z))|dZ

1
. ; fo I13(v(2) - ha(5(2) | d

where

D, (t) = g(t, v(1), v(me), @, (1)),

Dy (t) = g(t, 0(1), D(me), D5 (2)).
By the application of assumption (H,), we have

| (8) - D (t)| = |g(t, v(®), v(me), D, (1)) — g(£ D(2), D(mt), Dy(2))|

< Ly(|v(®) = 0(8)| + |v(mt) - D(mt)|) + Ng| @, (&) — D5 (8)|.

Then

2L, _
I190= ®sloc < T30 = Dl

Thus from (22) we get the following result in its simplified form:

2 2
IIQ”U—Q‘”DIIPCE[ 2L, <(N+1)(2p+q) +2Np +pqg(2R +1) +q (N+1)>

(1-Ng)\ pl(c+1) p*r(s)

PPo+q+ 1)+q(p+q)>
pZ

2p + + _
+C3( pzq) +C4<p zq)]”U—UHPc,
p p

+RCi(p+qg+ 1)+NC2<

where
2L R+ 1)(2 28p? 2R +1 2N+ 1
K= ¢ <( + V@) 29 +pgl b AU )>+NC1(10+61+1)
(1-Ng)\ pl'(c+1) p*r(s)
2 1 2
+NC2<‘D p+q+ 3+q(p+q)>+cs< p;rq>+c4<p+2q)<1.
p p p

Therefore, by the Banach contraction principle, operator 2 has a unique fixed point. [

4 Stability analysis of problem (1)
Here we derive results about “Hyers—Ulam and Hyers—Ulam—Rassias” stability for prob-
lem (1).

Theorem 4.1 Ifassumptions (H1)—(H,) and inequality (21) are satisfied, then problem (1)
is Hyers—Ulam stable.
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Proof Let € # be any solution of inequality (5) and v be a unique solution of (1). Then,
using Remark 1, for t € [0,1], £ #t (k = 1,2,...,R), we have

SDsyr(t) = glt, v (2), ¥y (mt), SDswr (2)) +9(2), 1<¢<2,0<m<]1,

py(0)+ qwm = fy (¥ (2) dz,

py (1) +qy'(1 fo hy (¥ (2)) dz, (23)
AY(te) = Fi(¥ (te) + v

AY' () = F(W ) + v k=1,2,...,8.

By Corollary 3.1, the solution of (23) is given by

w5 Jot =2 by dz+ 15 (-2 W@ dz+ G, te0,u];
@f%(t—z)g 1o, dz + @ftk(t_z)g Ly(z) dz
t g Xyl G - Dy dz
V(t) = +%Zﬂj{l tjjl(t —Zt)g 'y(z) dz o0
g T(c-1) Z/ 1(t tjj (t _Z)g_z(bwdz
T(s- I)Z/ (E—t )ftt, (t, —2)?y(2) dz
+ Z, (=t F () + Xt = 1))y, + X5y F (0 (@)
+Z,:1y]+g, te (1l k=1,2,...,%,
where
G = pFL(g) t]k(l 2 Dy dz + 2T Q) t]k(l 25 y(2) dz
R ¢
1 q ! 1
pr(g)Z . 1("‘ ST dydzr L JX; | 6= d
N
q bt -2 2Dy, (3 _Z); 2y(Z)
+;;(1—t}) t]_lﬁd + = Z(l—t)/ dz
(1-2)° 2% 1-2°(2) z)? - (z)
+;?ftk e - _/ dz
2r(; 1)2 . (t -2 Z‘Dwdﬂﬁzf (t, —2)*y(2) dz
=1v4-1 t_1
N _ R 8
vy (1-1)F,(v(t) +qZ(1 —t)y, +a Y F (@) +ad y,
J=1 J=1 J=1 7=1
N 1
Z_X:l: w(t) 223’1 / W(Z))dz+—/ h2(1//(z))dz
1 [t 1
+I;/0 i (¥(2) Z—% (1—2)§‘1¢wdz—% 5 -2y de
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’ (t, -2 ' Py dz— —— F( ) Z . (t, -2 'y(z) dz

tj-1 t;-1

F(g) Z

Jj=1

t;-1

t;-1

N t)
e e
J=1

[ gede — T [ g
pF(g—l)f(l 9Py dz pl(c-1) /mk L
R t
-2 qt ! -2
pr(g 1)2 . 1(t -2)° q)wdz_pil"(g—l); :,,1(t'/_z)§ y(z)dz
N
—ptZ(l—t)f V() ptZ(l—t)y, pth ~pt)
J=1 J=1
qt <~ = gt~ t [} ¢ [
LN F - L = h dz+— | h d
p = ,/(w(t_,)) P) ;y_, p/(; 1(1/I(Z)) Z+p/(; 2(1//(2)) zZ

Then, for ¢ € (#, 1], we have

¥ (6) - v(®)|
e tk(t 257 @y (2) - o (2)| dz
Z/ (b —2)° 7@y (2) - Do(2)| dz
0<t <tV
c-2
(g— D > le- tk|/ (e = 2)° 72| @y (2) — @y (2)| dz
O<ty <t
Y =l [F(v @) - Fi(v(n)|
O<ty <t
+ Z | P (¥ (1)) = Fre(v(®)|
O<ty <t

a [ e .
+PF(§)/%(1 27y (2) - Dy (2)|(2) dz

Y
q 7 B
S sl

N ¢
q ) )
" pl(c-1) Z(l _tj)/t‘, (tj -2)° 2|(Dw(z) _ cDu(Z)|dZ
q .
+m . (1 2)5 72| Dy (2) - Do (2)| dz
7> & B
+ pZF(g 1) ;[,_1(tj -2)° 2|q)1/;(z) - q)u(Z)|dZ
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R

N
rq Y (1=t)|F, (@) - F, (v@))| +a ) | F, (¥(t) - F, (vE)|

=1 =1

J
R
L Z (W(t) - F, (vie)| + /|h V(D) - I (v(2)) | de

X |

1
pi |h2(1/f(z)) 2(v (z))|dz+}7/ I (¥(2) - I (v(2)) | dz
+ F(tg)/ (1-2)571|dy (2) - Do(2)| dz
N £y
% Z/ (t, -2 @y (2) - Do(2)| dz (25)
=1 -1
R ¢
(- tf)/ (t, —2) 72| Dy (2) — Do (2)| dz
J=1 -1
qt ! o
fpre-n ), 17 |42 - 2.(2)| dz

R t

LS 7 (- 2520, (0) - bu(2)] dz

N
+Pt2(1_tj)‘]}/(w(t1))_ Fy(v()]
J=1
N at N .
+ptZ|]—'/ (Vf(tf)) -5 (U(tj))| * ; Z|}—/(W(t/)) ‘]:/(U(tj))|
j=1 j=1
t 1
+I;'/0 |h1( z)) h1 |dz+—/ |h2 ’dz
%/ﬁk(t—zgl\y(ﬂdﬂ 2/ (t -2 [y(@)| dz
+;Z(t—t)/tt 22 |y(z ‘dz+2’t t)|| |+Z|
F'e-1) O<ty<t ) I (e e O<ty<t I O<ty<t &
pF(g) 5 (1 2)* " y(2)| dz + e )21:/] 1(t -2)*7|y(2)| dz
N
4 R T 21 Dl B Gt VLI
pl ”/ Me-1) / TTG-1

J=

Ly [ -2
+ (t, -2 |y(2)| dz
pzr(g - 1) 7=1 t;-1

N N 2 N 1
t
+q2(1—t_,)|y_,|+q2|y,|+"—22|y_,|+—/ (1-2)*"[y(2)| dz
J=1 J=1 p J=1 F(g) tk
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J

PO [ . ¢ N : i
T ;/tj_l(tf 9 @l de+ 5 ;(1 tj)l_l(tj 2)°|y(2)| dz
at ! -2 qt N t ,
HM/ (-2 |y(z)|d“m121/t1_l(t,—z>g y(2)| e

N N N
t
wptY A=)y 4oyl + T3 .
Jj=1 Jj=1 p Jj=1

Using assumptions (H;)—(H,) and (i) of Remark 1, we get the result

2L, ((N +1)(2p+q) . 28p2 + pg(2R + 1) + *(R + 1))

IV = vlpc = [(1 N\ e+ D) PT(0)

+NCI@+q+1)+NCZ<P2(p+q+ 1)+q(p+q)>

p2

2p + +
+C3( p2q> +C4(p 2q>]||1ﬁ—v||1>c
p p

1 I:N+p+(N+1)(p+q)]
+ €
I'(c+1)

p
1 [2Np(p+q)+pq+q2(ﬁ+l)] [p(p+1)(2p+q)+qz}
+ > €+R 5 €,
I'(s) P p
where
2L N+ 1)(2 28p? 2R +1 2N+ 1
K= ¢ <( + V@) 29 +pgl b AUAL )>+NC1(10+61+1)
(1-Ng)\ pI'(c+1) P*T(s)
2 1 2
+NC2<‘D p+q+ 3+q(p+q))+cs< p;rq>+c4<p+2q)<1.
p p p
This implies that

[l —vllpc < Cge.

We see that

C, = [(s+1) p I'(s) P>
1-K

> 0.

L (Seprl)(prg)y | 1 (2Np(p+q)+pq+qz(N+l))+R(P(p+1)(2127+q)+q2)
p ]

Therefore, problem (1) is Hyers—Ulam stable. d

Corollary 4.2 In Theorem 4.1, if we set x(€) = Cq(€) such that x(0) = 0, then problem (1)
becomes generalized Hyers—Ulam stable.

To prove the next result, we further need another assumption as follows:
(Hg) Let, for a nondecreasing function x € C(I,R), there exist constants p, >0, € >0
such that

ol *x(t) < pax(t).
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Theorem 4.3 If assumptions (H,)—(Hy), (Hg) and inequality (21) are satisfied, then prob-
lem (1) is Hyers—Ulam—Rassias stable with respect to (§,x).

Proof Let ¢ € # be any solution of inequality (6) and v be a unique solution of problem
(1). Then, from the above proof of Theorem 4.1, we obtain the following result for ¢ €

(t]k’ 1]:

[y (8) - v ()|

= Tg) . (t—z)g_l‘GDV,(z) - CDU(z)‘ dz

1 LS
T Yoo -2 Py (2) - Du(2)| dz

O<ty<t ¥ k-1

; ﬁ();kd|t—tk|f%i(tk—z)§2|<1>1,,(z)— D, (2)| dz

+ Z It — tiel | Fie (¥ () — Fie(v(t)) | + Z | Fic (¥ (t)) = Fie(v(t)) |

O<ty <t O<ty <t

a [ e .
+PF(§)/%(1 2@y (2) - @,(2)|(2) dz

R )
Yo (-2 Py(2) - Do) dz

7=1Y%-1

q
* pr(s)

R t
q ! -2
b3 1-t) [ (6, -2 2Py (2) - u(2)| dz
pr(s-1) P ! /!;1 ! y

q2 1

+ Pric-1) ), (1-2)572| @y (2) - Du(2)| dz

+ —2 E /t] (If —Z)g 2|<I>1/,(z)—d> (Z)|dZ
] J v
p2 (g ) ./:1

-1

N N
+qZ(1 -t)|F, (v (@)) - F, (v(e)]| +‘IZ|]:J(1/f(tJ)) - F,(v()]
Jj=1

J=1

P _ q (!
‘o ;M (4e) = 7, ()] + 5 fo I (v(@) - (v(2) | de

1 1
. ;% /0 s (1(2)) - B (v(2)) | de + % /0 11 (¥(2)) - I (v(2) | de

: 1
+ e 5 (1-2) Dy (2) - u(2)| dz

t oo [
+mjz1:~/ (tj_Z)§71|<D¢,(z)—(I)U(Z)‘dZ

t-1

N t
+ r(gt_ ) ;(1 _t’)/t_,_l(t’ ~2)57%| Dy (2) - Py (2)| dz (26)
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qt ! 2
"D t(l‘z) |y () - @, (2)| dz

(t ~2)7%| Dy (2) - Dy (2)| dz
PF(S' 1) 21: t1 v ’

+ ptZu —t)|F; (w(t) = F, (v(t))|

J=1

N N
+ptZ|.F, (v(t)) - F, (U(tj))| + q;t Z|}:J (v()) - F (U(t]))|
J=1 J=1

1 1
+f/ |h1(w(z))—h1(u(z))|dz+f/ I (¥(2) -y (v(2) | dz

)/ (t-2z)" 1|y(z|r712+— > k(tk—Z)§‘1|y(z)|dZ

0<L‘]k<t 1
F(gl— (- tk)/ (6 =22 y@|de+ Y [ -t)|ly, 1+ D Iyl
) o ot ool
e \ -2 ez Z f 1<t -2 y(2)| dz
2F(g 1)2/} (=2 2|y(z)|d2+q2(1—t )Iy]|+qZ|y,
Z—i e )/ (-2 )| de+ = X;/”@ 9 yta)| e
gt 1)2 f)/ &, -2 de+ gy /(1 22 |y(z)| dz

pr(g 1)Z : 1(t -] s

N
qt
+ptZ(1—tj)|y,| +prZ|y,| ¥ ;Zlyjl.
J=1

J=1 J=1

Using assumptions (H1)—(Ha), (Hs), and Remark 3, we get the result

2L, ((N +1)2p+q) 2%p* +pq(2R + 1) + > (R + l))

1= vlee = [(1 N\ ple s D PT(S)

+RCi(p+qg+ 1)+Rcz<p2(p+q+1)+q(p+q))

p2

2p +
¥ c3<"’—2"> + c4<” ")]nw vllec
p p?
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2
) (2(2& )+ Ianr)+ vy 1))
p p

+Re§(2(p+q+ 1)+Z(z+l))
p\p

[ 2L, ((N +1)(2p+q) . 28p2 + pg(2R + 1) + *(N + 1))
(1-Ng\ pl'(c+1) p°T(s)

2 1
+NC1(p+q+1)+NC2<p (p+q+p3+q(p+q)>

2p + +
+cg<’”2q>+c4(” ")]nw vllec
V4 p?

¥ (x(t) + £) [ux (2(2& 1)+ g(ax +2)+ Z—z(x + 1))

+N<2(p+q+1)+g<§ +1>>]e.

Simplifying further, we have

IA

(27)

¥ —vllpc

() + &) [ (228 + 1) + 1%’(3& +2) + é(& +1)+RQ2p+g+1)+L(L +1))]e
- p p'\p
- 1-K

)

where

K=

2L, R+1DRp+q) 2802 +pq2R +1) + g2(R + 1)
=Ny ( e+ 2T(c) ) HRGEra+D)

2 1 2
+xc2<p p+q+ 3+q(p+q))+cs< p;rq) C4<p+2q) 1
p P p

Therefore, problem (1) is Hyers—Ulam—Rassias stable. O

5 Applications

Example 1
§Dfu(0) = 55 + 38+t2(sm(|U(t)|)+U( 0 +sin(§D (),
te(0,1],¢#3,
e P il
U( ) 1(U( )) 60_;_:(, )|)| (28)
AV'(3) = Fi(v(3)) = 80+|v( b
v(0)+v/(0) = [y 22 dz,
v(1)+v'(1) = 01 20+|(u)(‘z)| Z

where e is an exponential function, p =g = 1.
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Here

—TTL —t

g(t, v(t), v(me), SDS u(8)) = ——

: 1 . 3
5t <Sm(|v(t)|) ¥ “(;t) * SIH(|5Dz2v(t)I))

The continuity of g is obvious.

with ¢ = Z,m—i
(H.

By hypothesis (H,), for any v, v € R, we have

]g(t,u(t) v(mt),§D; v(t)) - g(t, 0(2), D(me), § D; O(t))|

[2|U(t) o(t)| + D2 u(t) - CDt o(®)|]-

Hence g satisfies hypothesis (H) with Ly = Ng = 1 .Also hypothesis (Hy) holds with 8y (¢) =

7, (t) ez(t)—ggfi,whereeg(t)—15,9(t) Gz(t)

Att = g the impulsive conditions are given as follows.
1 1
.FIU(—) = 4“}(3)'1 ,
3/ 60+ u(d)|
_ 1 1
Jflv/(_) — |U(3)|1 .
3] 80+ u(d)
For any v, v € E, we have
1 1 1 1
A(G)-A(6)) @t @rna
3 3 60+ [v(3)] 60+ [v(3)]
. 1 _ 1 : :
ACG)-A(06)) - wrie-wr e
3 3 80 +|u(3)| 80+ |u(3)l

which satisfy (H3) with real constants C; = 60, Cy= . And

1

60

()0

1

|71 (v) = Iy (D) || < 1—16||v -9,

1
[) = (@) = 511w - o]

satisfy (H,) with real constants Cs = Cy= 2—10. So we have

16’

2L, ((N +1)2p+q) 2892 +pq(2R +1) + g2(R + 1)

K= + +RCi(p+gq+1)
(1-Ng\  pl(s+1) P (S) ) g
2 1 2
+NC2(p wrg+ 3+q(p+q))+cg(_p:q> C4<p+q>=0.78<1.
p p p?

Therefore, by Theorem 3.3, problem (28) has a unique solution. And by result Theo-
rem 4.1, problem (28) is Hyers—Ulam stable. Similarly, by setting x(¢) = ¢, taking & = 1,
and applying the obtained result Theorem 4.3, it is obvious that, for any ¢ € [0, 1], the
numerical problem (28) is Hyers—Ulam—Rassias stable with respect to (£, x).
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6 Conclusion

By using classical fixed point results, we have established some useful results about the
existence and stability of Ulam type for an impulsive problem of FODEs under integral
boundary conditions. The concerned results have been testified by an example. Hence
fixed point approach is a powerful technique to investigate various nonlinear problems of
impulsive FODEs which have many applications in dynamics and fluid mechanics.
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