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Abstract
This paper focuses on the problem of noise removal. First, we propose a new
convex–nonconvex variation model for noise removal and consider the nonexistence
of solutions of the variation model. Based on the new variation method, we propose a
class of singular diffusion equations and prove the of solutions and comparison rule
for the new equations. Finally, experimental results illustrate the effectiveness of the
model in noise reduction.
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1 Introduction and motivation
Image denoising is used to recover/decompose a true image from an observed noisy image.
Specifically, let f : � →R be a given image defined on the domain � ⊂R

N . Image denois-
ing is used to decompose f into two functions u and n with f = u + n, where u contains the
most meaningful signals depicted by f and n represents the noise. In the ideal case, the
noise part n has no signal information. The task of removing noise can be accomplished
in traditional ways such as employing linear filters, which, though very simple to imple-
ment, may cause the restored image to be blurred at the edges. Various adaptive filters
for noise removal have been proposed. Among these the variational method is one of the
most extensively used techniques. In genal, nonlinear PDEs associated to the variational
method are used as anisotropic diffusion filters because they apply different strengths of
diffusivity to different locations in the image. These variational methods can be classified
into the following two cases.

1.1 Convex variational model and forward diffusion equation
A classical variational model for image denoising was proposed by Rudin, Osher, and
Fatemi [1]. In [1], for a given noisy image f ∈ L2(�), the image denoising problem is equiv-
alent to the following minimization problem (the ROF model):

E(u) =
∫

�

|∇u| +
λ

2

∫
�

(u – f )2 dx,
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where λ > 0 is a tuning parameter. In [2], Vese proposed the following general framework
of variational model for image denoising:

E(u) =
∫

�

φ
(|∇u|)dx +

λ

2

∫
�

(u – f )2 dx.

The author discussed the minimizing problem minu∈BV(�) E(u), when φ(s) is a strictly con-
vex function. In order to use the direct method for the calculus of variations, the convexity
of the function φ(s) is always assumed. The BV norm, i.e., the total variation, is well suited
for φ(|∇u|). And the total variation has also been widely used in other tasks of image pro-
cessing, since it can help prevent the noise from staying in the denoised image u because
the noise part yields a large total variation of u.

The ROF model yields very satisfactory results for removing image noise while preserv-
ing edges and contours of objects. However, it also possesses some unfavorable properties
under some circumstances, such as the loss of image contrast, the smearing of corners,
and the staircase effect. For instance, in [3], Meyer showed that the ROF model cannot
preserve image contrast (cf. Theorem 3, p. 32) and cannot keep corners (cf. Proposition 6,
p. 39). A study of the loss of image contrast can also be found in [4]. And in [5], Bellettini,
Caselles, and Novaga pointed out what kind of shapes can be preserved by the ROF model,
which indicates that the ROF model will smear object corners. A full discussion of these
undesirable properties of the ROF model can also be found in [6].

To remedy these unfavorable properties of the ROF model, new models or techniques
have been proposed [7–17]. Chan and Strong [7] proposed an adaptive total variation
based on a control factor. Chambole and Lions [8] proposed to minimize a combination
of total variation and the integral of the squared norm of the gradient. Yunmei et al. [9]
observed that this model is successful in restoring images where homogeneous regions
are separated by distinct edges, but may become sensitive to the thresholding parameter,
in the event of nonuniform image intensities or heavy degradation. And Yunmei et al.
[9] proposed a variable-exponent approach adaptive model which exploits the benefits of
Gaussian smoothing and the strength of TV regularization. On the other hand, in [10,
11], the authors introduced new variational models based on high-order derivatives of
the denoised image u. In addition to the basic requirements of images denoising, such as
edge preservation and noise removal, these new models effectively ameliorate the staircase
effect.

It is worth mentioning that the diffusion equations associated to these methods are the
forward anisotropic diffusion equations, which smooth homogeneous regions while pre-
serving edges. However, these diffusion equations cannot enhance the image, for exam-
ple, by preserving corners, smoothing parts of objects, as well as image greyscale intensity
contrasts.

1.2 Nonconvex variational model and backward diffusion equation
Most of those existing algorithms are based on a convex potential. For a convex potential,
φ needs to increase near-linearly at least; but for better edge-preservation, φ needs to in-
crease less-linearly, then φ becomes nonconvex, and such a form of φ has been suggested
in [18–23]. It is interesting that Vese proposes several variational models for image de-
noising, when φ(s) is nonconvex and then implements numerical simulations for this case
in [2]. Unfortunately, there is not necessarily a unique solution for the variational model
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with nonconvex potential, and Chipot et al. [22] proved that there is no minimizer in any
reasonable space if f is not a constant. And they introduced the following energy:

Eε(u) = λ

∫
�

|∇u|2
1 + |∇u|2 dx + ε

∫
�

|∇u|2 dx +
∫

�

(u – f )2 dx.

They proved that Eε(u) is convex for ε ≥ λ/4 and nonconvex for ε < λ/4; for ε < λ/4, Eε(u)
has quadratic growth at infinity, and then they use convexification tools to obtain the ex-
istence of a minimizer for Eε(u) in the one-dimensional case. For dimensions greater than
one, the problem is quite open. The behavior of the minimizing sequence is also a chal-
lenging problem, which is closely related to Perona and Malik anisotropic diffusion [23]
whose associated potential is nonconvex also. In spite of the lack of a rigorous mathe-
matical theory for the continuous minimization problem with nonconvex potential, its
associated discrete version can be solved numerically, for example, with the gradient de-
cent algorithm [23], the simulated annealing algorithm [24], the half-quadratic algorithms
[18, 20, 21, 25–29], and so on. The nonconvex potential always leads to the backward diffu-
sion equation or the forward–backward diffusion equation, which can sharpen the edges,
corners, as well as the singular features.

In this paper, we intend to propose a new convex–nonconvex variational model for im-
age denoising. In addition to removing noise and keeping edges and contours of objects,
the new model aims at preserving corners, smoothing parts of objects, as well as image
greyscale intensity contrasts. As corners and edges differ from ordinary points or contours
in their singularities, a natural idea is to incorporate the related geometric quantities into
the process of denoising. Our idea can be described as follows: First, inspired by [22],
instead of ε

∫
�

|∇u|2 dx, we consider the linear growth functional ε
∫
�

ψ(|∇u|) dx, which
can also preserve edges and corners. The new variational model is a combination of the
convex and nonconvex variational models. Second, based on the new idea, we propose
a new variational framework for image denoising, which is under some basic hypotheses
and may not satisfy the convexity condition. Third, we propose and analyze a class of sin-
gular diffusion equations associated with the new variational model. To efficiently solve
the singular diffusion equations, one might employ some fast methods, such as AOS [30],
etc. In this paper, we also use the standard time marching scheme and PM scheme [1].

In fact, the anisotropic diffusion equation has been widely used in the modeling of image
processing during the last two decades. In the famous work [23], Perona and Malik pro-
posed a framework to deal with the denoising problem based on the diffusion equation. To
make the images more pleasing to the eye, it would be useful to reduce staircasing effects.
Many models reducing this effect have been proposed in the literature. In [31, 32], Char-
bonnier and Weickert developed and studied the forward diffusion equation by proposing
the different diffusivity. In [33], Catt et al. proposed the regularization of the Perona and
Malik model to obtain a smoother image. In [34], Keeling et al. proposed the nonlinear
anisotropic diffusion filtering for multiscale edge enhancement. In [35] Gilboa et al. pro-
posed forward–backward diffusion processes for adaptive image enhancement and de-
noising. In [36], Smolka proposed combined forward and backward anisotropic diffusion
filtering of color images. These forward–backward diffusions are related to nonconvex po-
tentials. In all these works, the nonlinear anisotropic diffusion equation was considered,
while in our present work, based on the new nonconvex variational model, we consider
the singular forward–backward diffusion equation for denoising, which can obtain the
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singular solution to preserve the singular parts of the image, such as edges, corners, and
so on.

The rest of this paper is organized as follows. In Sect. 2, our convex–nonconvex vari-
ational model is introduced in detail. We discuss the ill-posed problem. We prove the
existence of Young measure solutions in Sect. 3. Of course, we are very interested in the
investigation of the properties of Young measure solutions in Sect. 4. Numerical imple-
mentation is then developed in Sect. 5. We list numerical experiments for synthetic image
denoising as well as real world image denoising, and compare our results with those ob-
tained by the ROF model. A conclusion is subsequently given in Sect. 6.

2 Convex–nonconvex variational framework for denoising model
The following new variational model is proposed:

E(u) = μ1

∫
�

ψC
(|∇u|)dx + μ2

∫
�

ψNC
(|∇u|)dx + λ

∫
�

(u – f )2 dx, (1)

where μ1 > 0, μ2 > 0. The functions ψC(s) and ψNC(s) are convex and nonconvex, respec-
tively. For the image processing, ψC(s) satisfies the following assumptions [2]:

• ψC is a strictly convex, nondecreasing function from R
+ to R

+, with ψC(0) = 0
(without a loss of generality);

• lims→+∞ ψC(s) = +∞;
• There exist two constants c > 0 and b ≥ 0 such that

cs – b ≤ ψC(s) ≤ cs + b, ∀s ≥ 0,

and ψNC(s) satisfies the following assumptions [18]:
• ψNC is nonconvex;
• ψNC ≈ cs2 as s → 0+;
• lims→+∞ ψNC(s) ≈ γ > 0.

Compared with the conditions about φC and φNC in [2] and [18], the hypotheses on ψNC

and ψC in this paper are as follows:
(H1) ψC ∈ C1(RN ). There exist two constants 0 < λ ≤ � such that

(
λ|X| – 1

)+ ≤ ψC
(|X|) ≤ �|X| + 1, ∀X ∈R

N ;

(H2) Z(X) = ∇ψC(X) and |Z(X)| ≤ �;
(H3) Moreover, we assume that there exist a sequence {ϕp}1<p<2 ⊂ C1(RN ) and C0 > 0

such that {Zp = ∇ϕp}1<p<2 locally and uniformly converges to Z in R
N . For all

p ∈ (1, 2), ϕp and Zp satisfy the structure conditions

(
λ|X|p – 1

)+ ≤ ϕp(X) ≤ �|X|p + 1, ∀X ∈R
N ,

and

∣∣Zp(X)
∣∣ ≤ �|X|p–1, ∀X ∈R

N ;

(H4) ψNC ∈ C1(RN ) and ψNC is a nonconvex function;
(H5) lims→+∞ ψNC(s)

s = 0.



Dong and Wu Boundary Value Problems          (2021) 2021:8 Page 5 of 39

The new variational model is a combination of the convex and nonconvex variational
models. Hence, the new model is demonstrated to be capable of achieving a good trade-
off between noise removal and edge preservation which the convex and nonconvex vari-
ational models are respectively good at. This is not a simple combination: ψC controls
the growth of the new functional and the regularization of the solution; ψNC can’t only
influence the growth of the new functional, but also preserve the singular parts of the im-
age, such as corners, image contrast, edges, and so on, and furthermore, ψNC controls the
convexity of the functional.

In order to use the Young measure theory in [37–40], we have to assume Hypothesis (H3)
on ψC . However, Hypothesis (H3) is easy to be satisfied, for example, if ψC =

√
1 + |s|2. On

the other hand, the new hypotheses are different from the assumptions in [2, 18], since the
new hypotheses do not restrict the convexity of the functionals. Hence, based on the new
framework, we can propose many interesting models. Assuming the hypotheses above, it
is difficult to confirm the convexity of the new variational model, which may yield an ill-
posed problem. The existence may indeed not be straightforward. In the next section, the
existence of solutions of the singular diffusion equations based on the convex–nonconvex
variation is considered. In [41, 42], Guidotti proposed two types of backward–forward
regularization of the Perona–Malik equation. The two models are contained in the new
framework when ψNC = ln(1 + |s|2), ψC = |s|2, and ψC = |s|p–2s, respectively.

2.1 Some special examples
Nevertheless, the potentials satisfy Hypotheses (H1)–(H3), if

ψC(s) =
√

1 + s2,

ψC(s) =
√

β + s2, 0 < β < 1,

ψC(s) =

⎧⎨
⎩

1
2 s2, |s| < 1,

s – 1
2 , |s| ≥ 1,

ψC(s) = s –
1
K

ln(1 + Ks), K > 1,

ψC(s) =

⎧⎪⎨
⎪⎩

√
1 + s2 –

√
1 – β2, |s| < β√

1–β2
,

β|s|, |s| ≥ β√
1–β2

,
0 < β < 1,

and so on. On the other hand, the potentials satisfy Hypotheses (H4)–(H5), like in [2, 18–
23], and there are a lot of nonconvex functionals, such as

ψNC(s) =
s2

1 + s2 ,

ψNC(s) = |s|α , 0 < α < 1,

ψNC(s) =
√

1 + |s|2α , 0 < α < 1,

ψNC(s) = ln
(
1 + |s|2),
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and so on. Moreover,

E(u) =
∫

�

μ1
√

1 + |∇u|2 dx +
∫

�

μ2ψNC
(|∇u|)dx + λ

∫
�

(u – f )2 dx,

where ψNC is any nonconvex functional which satisfies Hypotheses (H4)–(H5).
In this paper, the following model is considered:

E(u) =
∫

�

μ1
√

1 + |∇u|2 dx +
∫

�

μ2 ln
(
1 + |∇u|2)dx + λ

∫
�

(u – f )2 dx, (2)

which can be rewritten as

E(u) = EC(u) + ENC(u),

where

ENC(u) = μ2

∫
�

ln
(
1 + |∇u|2)dx +

λ

2

∫
�

(u – f )2 dx

and

EC(u) = μ1

∫
�

√
1 + |∇u|2 dx +

λ

2

∫
�

(u – f )2 dx.

Following the proof given by Chipot et al. [22], we have

Theorem 1 If f (x) is not a constant and f ∈ L∞(�), then the function ENC(u) has no min-
imizer in W 1,2(�) and infu∈W 1,2(�) ENC(u) = 0.

Proof The theorem in the one-dimensional case � = (a, b) is proved for the clarity sake,
and the same proof goes for N ≥ 2. It’s clear that

ENC(u) ≤ μ2

∫
�

|∇u|0.8 dx +
λ

2

∫
�

(u – f )2 dx.

Let

Eα(u) = μ2

∫
�

|∇u|α dx +
λ

2

∫
�

(u – f )2 dx,

and then we will prove that the theorem is true for Eα(u) with 0 < α < 1.
By density, we always may find a sequence of step functions ũn such that

|ũn| ≤ |f |L∞ , lim
n→+∞|ũn – f |L2(�) = 0.

In fact, we can find a partition a = x0 < x1 < · · · < xn = b such that ũn is the constant ũn,i on
each interval (xi, xi), hn = maxi(xi – xi–1) < 1 with limn→+∞ hn = 0. Let us set σi = xi – xi–1.
Next, we define a sequence of continuous functions un by

un(x) =

⎧⎨
⎩

ũn if x ∈ [xi–1, xi – σ
2/(1–α)
i ],

ũn,i+1–ũn,i

σ
2/(1–α)
i

(x – xi) + ũn,i+1 if x ∈ [xi – σ
2/(1–α)
i , xi].
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Note that

|ũn – un|2L2(�) =
n∑

i=1

∫ xi

xi–σ
2/(1–α)
i

(ũn,i+1 – ũn,i)2
(

x – xi

σ
2/(1–α)
i

+ 1
)2

dx

≤ 4
3
|f |2L∞(�)

n∑
i=1

σ
2/(1–α)
i

≤ 4
3
|f |2L∞(�)h

(1+α)/(1–α)
n

n∑
i=1

σi

=
4
3
|f |2L∞(�)(b – a)h(1+α)/(1–α)

n ,

and therefore,

lim
n→+∞|ũn – un|L2(�) = 0.

Since

|un – f |L2(�) ≤ |ũn – un|L2(�) + |ũn – f |L2(�),

taking the limit on both sides yields

lim
n→+∞|un – f |L2(�) = 0.

Moreover,

1
α

∫ b

a
|∇u|α dx =

1
α

n∑
i=1

∫ xi

xi–σ
2/(1–α)
i

(ũn,i+1 – ũn,i)α

σ
2α/(1–α)
i

dx

≤ 1
α

2α|f |αL∞(�)

n∑
i=1

σ 2
i ≤ 1

α
2α|f |αL∞(�)hn

n∑
i=1

σi =
1
α

2α|f |αL∞(�)hn(b – a).

Thus

lim
n→+∞

1
α

∫ b

a
|∇u|α dx = 0,

and finally,

0 ≤ inf
u∈W 1,2(�)

Eα(u) ≤ lim
n→+∞ Eα(un) = 0,

i.e.,

inf
u∈W 1,2(�)

Eα(u) = 0.
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Now, if there exists a minimizer u ∈ W 1,2(�), then necessarily Eα(u) = 0, which implies

∫ b

a
|u – f |2 dx = 0 ⇔ u = f a.e.,

1
α

∫ b

a
|∇u|2 dx = 0 ⇔ u′ = 0 a.e.

The first equality is possible only if f ∈ W 1,2(�), and in this case the second equality implies
f ′ = 0, which is possible only if f is a constant. Therefore, excluding this trivial case, ENC(u)
has no minimizer in W 1,2(�). �

Remark 1 As we know, if the region � is bounded,

W 1,2(�) ⊂ W 1,1(�) ⊂ BV(�).

Then

inf
u∈W 1,2(�)

ENC(u) ≥ inf
u∈W 1,1(�)

ENC(u) ≥ inf
u∈BV(�)

ENC(u).

Note that ENC(u) ≥ 0, and therefore

inf
u∈BV(�)

ENC(u) = 0.

However, we cannot obtain any information about the minimizer of ENC(u) in BV(�).

3 A class of singular diffusion equations for denoising model
3.1 Singular diffusion equations based on the convex–nonconvex variation
Based on the new variational model, the following diffusion equation is proposed:

∂u
∂t

= μ1 div

( ∇u√
1 + |∇u|2

)
+ μ2 div

( ∇u
1 + |∇u|2

)
– λ(u – f ), (3)

u(x, 0) = f , x ∈ �, (4)

∂u
∂�n = 0, (x, t) ∈ ∂� × (0, T). (5)

For this special equation, what we obtain in this paper will reveal another aspect for the
existence, namely the existence of a discontinuous solution. Note that the equation is
strongly degenerate at the discontinuous points of such a solution. On the other hand,
the new equation can be considered as a perturbation of Perona–Malik model [23]. Such
a perturbation is not the usual viscous one, for example, �u or �2u, which has standard
regularity effects. The perturbation has no hazard for the equation to permit the existence
of discontinuous solutions, which has particular meaning: with the new perturbation, the
new model is still an anisotropic diffusion equation. That is to say, inside the regions where
the magnitude of the gradient of u is weak, the new equation acts as Gaussian smoothing,
resulting in isotropic smoothing; near the region’s boundaries where the magnitude of the
gradient is large, the regularization is “stopped” and the edges are preserved.
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Let

Z(X) = ∇ϕ(X) = μ1
X√

1 + |X|2 + μ2
X

1 + |X|2

and

ϕ(X) = μ1
√

1 + |X|2 +
μ2

2
ln

(
1 + |X|2),

for X ∈R
N . Therefore, the new diffusion equation can be rewritten as

∂u
∂t

= div
(
Z(∇u)

)
– λ(u – f ), (x, t) ∈ � × (0, T),

u(x, 0) = f , x ∈ �,

∂u
∂�n = 0, (x, t) ∈ ∂� × (0, T).

Let ϕ∗∗ denote the convexification of ϕ, namely,

ϕ∗∗(X) = sup
{

l(X) : l ≤ ϕ, l is convex
}

,

and

Z(X) = ∇ϕ(X), Z∗∗(X) = ∇ϕ∗∗(X), X ∈R
N .

Since ϕ ∈ C1(RN ), ϕ∗∗ ∈ C1(RN ) is convex.

Definition 1 A Young measure solution to problem (3)–(5) is a function

u ∈ L∞(
(0, T); BV(�)

) ∩ L∞(QT ),
∂u
∂t

∈ L2(QT )

and there exists a W 1,1(QT )-gradient Young measure ν = (νx,t)(x,t)∈QT on R
N such that

∫∫
QT

(〈ν, Z〉 · ∇ζ + utζ + λ(u – fp)ζ
)

dx dt = 0,

∀ζ ∈ C∞(QT ) with ζ (x, 0) = ζ (x, T) = 0, (6)

∇u(x, t) = 〈νx,t , id〉 a.e. (x, t) ∈ QT , (7)

〈νx,t , Z · id〉 ≤ 〈νx,t , Z〉 · 〈νx,t , id〉 a.e. (x, t) ∈ QT , (8)

suppνx,t ⊂ {
X ∈R

N : ϕ(X) = ϕ∗∗(X)
}

a.e. (x, t) ∈ QT , (9)

where id is the identity mapping in R
N ,

〈ν, Z〉 =
∫
RN

Z(X) dν(X), 〈ν, id〉 =
∫
RN

X dν(X), 〈ν, Z · id〉 =
∫
RN

Z(X) dν(X),

and

u(x, 0) = f (x), x ∈ �, (10)

in the sense of trace.



Dong and Wu Boundary Value Problems          (2021) 2021:8 Page 10 of 39

Theorem 2 Let f ∈ BV(�)∩L∞(�). Then problem (3)–(5) admits at least one Young mea-
sure solution.

3.2 Preliminaries
We use C0(Rd) to denote the closure of the set of continuous functions onR

d with compact
supports. The dual of C0(Rd) can be identified with the space M(Rd) of signed Radon
measures with finite mass via the pairing

〈ν, f 〉 =
∫
Rd

f dνx.

Let D ⊂R
n be a measurable set of finite measure. A map ν : D →M(Rd) is called weakly*

measurable if the functions x �→ ∫
Rd f dνx are measurable for all f ∈ C0(Rd), where νx =

μ(x).
For p ≥ 1, define

Ep
0
(
R

d) =
{
ϕ ∈ C

(
R

d) : lim|X|→+∞
|ϕ(X)|

1 + |X|p exists
}

.

As noted in [11], the space Ep
0 (Rd) is a separable Banach space with the norm

‖ψ‖Ep
0

= sup
X∈Rd

|ψ(X)|
1 + |X|p .

We define

Ep(
R

d) =
{
ϕ ∈ C

(
R

d) : sup
|X|∈Rd

|ϕ(X)|
1 + |X|p < +∞

}
,

which is an inseparable space with the above norm.

Definition 2 Let p ≥ 1. A Young measure ν = (νx)x∈D on R
d is called a W 1,p-gradient

Young measure if
(i) x ∈ D �→ ∫

Rd f dνx ∈R is a Lebesgue measurable function for all f bounded and
continuous on R

d ;
(ii) There is a sequence of functions {uk}∞k=1 ⊂ W 1,p(D) for which the representation

formula

lim
k→∞

∫
E
ψ

(∇uk(x)
)

dx =
∫

E
〈νx,ψ〉dx (11)

holds for all measurable E ⊂ D and all ψ ∈ Ep
0 (Rd), where 〈νx,ψ〉 =

∫
Rd ψ dνx.

We also call ν the W 1,p(D)-gradient Young measure generated by {∇uk}∞k=1 and {∇uk}∞k=1
the W 1,p(D)-gradient generating sequence of ν . In addition, the representation formula
(11) also holds for ψ ∈ Ep(Rd). By the fundamental theorem for Young measure, we see
that

∥∥ν(x)
∥∥
M(Rd) = 1 a.e. x ∈ D.
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Definition 3 Let {zk}∞k=1 ⊂ L1(D) and z ∈ L1(D). We say that {zk}∞k=1 converges to z
in the bitting sense if there is a decreasing sequence of subsets Ej+1 ⊂ Ej of D with
limj→∞ meas(Ej) = 0 such that {zk}∞k=1 converges weakly to z in L1(D\Ej) for all j.

Definition 4 Let p ≥ 1. A Young measure ν = (νx)x∈D on R
d is called a W 1,p(D)-bitting

Young measure if there is a sequence {zk}∞k=1 ⊂ Lp(D) and z ∈ L1(D) such that {|zk|p}∞k=1
converges to z and {ψ(zk(x))}∞k=1 converges to 〈νx,ψ〉 in the bitting sense for all ψ ∈ Ep

0 (Rd)
(or Ep(Rd)).

We also call ν the W 1,p(D)-bitting Young measure generated by {zk}∞k=1 and {zk}∞k=1 the
W 1,p(D)-bitting generating sequence of ν . By the fundamental theorem for Young mea-
sure, we see that

∥∥ν(x)
∥∥
M(Rd) = 1 a.e. x ∈ D.

Kinderlehrer and Pedregal [37] showed a property which characterizes W 1,p-gradient
Young measures as described in the following lemma.

Lemma 1 Let ν = (νx)x∈D be a Young measure on R
d . Then ν = (νx)x∈D is a W 1,p(D)-

gradient Young measure if and only if
(i) There exists u ∈ W 1,p(D) such that

∇u(x) =
∫
Rd

A dνx(x) a.e. x ∈ D;

(ii) Jensen’s inequality

ψ
(∇u(x)

) ≤
∫
Rd

ψ(A) dνx(A)

holds for all ψ ∈ Ep(Rd) continuous, quasiconvex, and bounded below;
(iii) The function

x �→
∫
Rd

|A|p dνx(A)

is in L1(D).

We give the following two lemmas. The proofs can be found in [38, 39].

Lemma 2 Suppose f ∈ Ep(Rd), for some p ≥ 1, is quasiconvex and bounded below and let
{uk}∞k=1 converge weakly to u in W 1,p(D). Then

(i) For all measurable E ⊂ D,
∫

E
f (∇u) dx ≤ lim inf

k→∞

∫
E

f
(∇uk)dx;

(ii) If

lim
k→∞

∫
D

f
(∇uk)dx =

∫
D

f (∇u) dx,
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then {f (∇uk)}∞k=1 are weakly sequentially precompact in L1(D) and the sequence
converges weakly to f (∇u).

Lemma 3 Let f and {uk}∞k=1 be as in Lemma 2 (ii) and assume in addition that

(
c|X|p – 1

)+ ≤ f (X) ≤ C|X|p + 1

for 0 < c ≤ C. Let v be generated by the gradients {∇u}∞k=1. Then ν is a W 1,p(D)-gradient
Young measure.

We now state and prove a result for the sequences of gradient-generated Young measures
[40].

Lemma 4 Let 1 ≤ p < 2. Suppose that {να = (να
x )x∈D}α>0 is a family of W 1,p(D)-gradient

Young measures and each is generated by {∇uα,m}∞m=1, where uα,m is in W 1,p(D) uniformly
bounded in α and m. Then there exist a subsequence of {να}α>0, denoted by {ναi}∞i=1, and a
W 1,p(D)-gradient Young measure ν such that

(i) {ναi}∞i=1 converges weakly* to ν in L∞(D;M(Rd)), namely, {〈ναi ,ψ〉}∞i=1 converges
weakly* to 〈ν,ψ〉 in L∞(D) for all ψ ∈ C0(Rd);

(ii) For 1 ≤ q < p, {ναi}∞i=1 converges weakly to ν in L1(D; (Eq
0 (Rd))′), namely, {〈ναi ,ψ〉}∞i=1

converges weakly to 〈ν,ψ〉 in L∞(D) for all ψ ∈ Eq
0 (Rd);

(iii) {ναi}∞i=1 converges to ν in L1(D; (Eq
0 (Rd))′) in the bitting sense, namely, ψ ∈ Ep

0 (Rd),
{〈ναi ,ψ〉}∞i=1 converges to 〈ν,ψ〉 in the bitting sense.

3.3 Existence of solution to the approximation problem
Since equation (3) is degenerate, singular, and forward–backward, some necessary approx-
imations are required for discussing the existence of solutions. Our approximations will
be divided into two steps. For this purpose, we need to approximate the initial datum f . By
the density properties of BV functions in [7], there exists some subsequence {fp} ⊂ C∞

0 (�)
such that ‖fp‖L∞(�) and ‖∇fp‖L1(�) are uniformly bounded in p, and {fp}0<p<1 converges to
f in L1(�).

As the first step, we consider the following evolution problem:

∂u
∂t

= div
(
Zp(∇u)

)
– λ(u – fp), (x, t) ∈ � × (0, T), (12)

u(x, 0) = fp, x ∈ �, (13)

∂u
∂�n = 0, (x, t) ∈ ∂� × (0, T), (14)

where

Zp(X) = ∇ϕp(X) = μ1
|X|2(p–1)X√
1 + 1

1+δ
|X|2p

+ μ2
X

1 + |X|2

and

ϕp(X) = μ1

√
1 +

1
p
|X|2p +

μ2

2
ln

(
1 + |X|2).
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Let ϕ∗∗
p denote the convexification of ϕp, namely,

ϕ∗∗
p (X) = sup

{
f (X) : f ≤ ϕp, f is convex

}

and

Z∗∗
p = ∇ϕ∗∗

p .

Since ϕp ∈ C1(RN ), ϕ∗∗ ∈ C1(RN ) is convex. In addition,

Zp(X) · id(X) ≥ Z(X) · id(X), ∀X ∈ {
X ∈ R

N : |X| ≥ C0
}

,
{

X ∈R
N : ϕp(X) = ϕ∗∗(X)

} ⊂ {
X ∈ R

N : ϕ(X) = ϕ∗∗(X)
}

.

Definition 5 A Young measure solution to problem (12)–(14) is a function

u ∈ L∞(
(0, T); W 1,p(�)

) ∩ L∞(QT ),
∂u
∂t

∈ L2(QT )

and there exists a W 1,p(QT )-gradient Young measure ν = (νx,t)(x,t)∈QT on R
N such that

∫∫
QT

(〈ν, Zp〉 · ∇ζ + utζ + λ(u – fp)ζ
)

dx dt = 0,

∀ζ ∈ C∞(QT ) with ζ (x, 0) = ζ (x, T) = 0, (15)

∇u(x, t) = 〈νx,t , id〉 a.e. (x, t) ∈ QT , (16)

〈νx,t , Zp · id〉 = 〈νx,t , Zp〉 · 〈νx,t , id〉 a.e. (x, t) ∈ QT , (17)

suppνx,t ⊂ {
X ∈R

N : ϕp(X) = ϕ∗∗
p (X)

}
a.e. (x, t) ∈ QT , (18)

and

u(x, 0) = fp(x), x ∈ �, (19)

in the sense of trace.

Theorem 3 Let fp ∈ W 1,p(�) ∩ L∞(�). Then problem (12)–(14) admits at least one Young
measure solution.

The following existence proof follows by the ideas due to Kinderlehrer and Pedregal [39],
Demoulini [38], and Yin and Wang [40].

In order to obtain the theorem above, the following functionals defined on W 1,p(�) are
considered:

Fh
(
v; uh,j–1) =

∫
�

ϕp(∇v) dx +
1

2h

∫
�

(
v – uh,j–1)2 dx +

λ

2

∫
�

|v – fp|2 dx, v ∈ W 1,p(�),

and

F∗∗
h

(
v; uh,j–1) =

∫
�

ϕ∗∗
p (∇v) dx+

1
2h

∫
�

(
v–uh,j–1)2 dx+

λ

2

∫
�

|v– fp|2 dx, v ∈ W 1,p(�),

where 0 < h < 1, uh,0 = fp, j is an integer and 1 ≤ j ≤ T/h + 1.
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Lemma 5 There exists uh,j ∈ W 1,p(�)∩L∞(�) such that uh,j is a minimum of F∗∗
h (v; uh,j–1)

and

inf
{
Fh

(
v; uh,j–1); v ∈ W 1,p(�)

}
= min

{
F∗∗

h
(
v; uh,j–1); v ∈ W 1,p(�)

}
= F∗∗

h
(
uh,j; uh,j–1).

Moreover,

∥∥uh,j∥∥
W 1,p(�) +

∥∥uh,j∥∥
L∞(�) ≤ M1

and

F∗∗
h

(
uh,j; uh,j–1) ≤ �|∇fp|p + 1,

where � only depends of μ1 and μ2.

Proof By the relaxation theorem (cf. [43]), we get that

F∗∗
h

(
v; uh,j–1) ≤Fh

(
v; uh,j–1), ∀v ∈ W 1,p(�),

inf
{
Fh

(
v; uh,j–1); v ∈ W 1,p(�)

}
= inf

{
F∗∗

h
(
v; uh,j–1); v ∈ W 1,p(�)

}
.

Let {uh,j,k}∞k=1 ⊂ W 1,1+δ(�) be a minimizing sequence of Fh and F∗∗
h . Then

lim
k→∞

∫
�

ϕ∗∗
p

(∇uh,j,k)dx = lim
k→∞

∫
�

ϕp
(∇uh,j,k)dx (20)

and, for k sufficiently large,

∥∥uh,j,k∥∥
L∞(�) ≤ ∥∥uh,j–1∥∥

L∞(�) + 2–j,
∫

�

ϕ∗∗
p

(∇uh,j,k)dx +
λ

2

∫
�

(
uh,j,k – f δ

)2 dx

≤F∗∗
h

(
uh,j,k ; uh,j–1) ≤F∗∗

h
(
uh,j–1; uh,j–1) + 2–j

=
∫

�

ϕ∗∗
p

(∇uh,j–1)dx +
λ

2

∫
�

(
uh,j–1 – f δ

)2 dx + 2–j.

From the growth condition, we see that {uh,j,k}∞k=1 is bounded in W 1,p(�) ∩ L∞(�), and
therefore

∥∥uh,j,k∥∥
W 1,p(�) +

∥∥uh,j,k∥∥
L∞(�) ≤ M1,

where M1 is a constant independent of p, h, j, and k. Hence there exist uh,j ∈ W 1,p(�) ∩
L∞(�) and a subsequence of {uh,j,k}∞k=1, denoted the same, such that

uh,j,k → uh,j, weakly in W 1,p(�),

uh,j,k → uh,j, strongly in Lp(�),

F∗∗
h

(
uh,j; uh,j–1) = inf

{
F∗∗

h
(
v; uh,j–1); v ∈ W 1,p(�)

}
,
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∥∥uh,j∥∥
W 1,p(�) +

∥∥uh,j∥∥
L∞(�) ≤ M1,

and {uh,j,k}∞k=1 ⊂ L∞(�) yields

lim
k→∞

∫
�

(
uh,j,k – uh,j–1)2 dx =

∫
�

(
uh,j – uh,j–1)2 dx (21)

and

lim
k→∞

∫
�

(
uh,j,k – fp

)2 dx =
∫

�

(
uh,j – fp

)2 dx. (22)

Thus uh,j is a minimum of F∗∗
h (v; uh,j–1) and

F∗∗
h

(
uh,j; uh,j) – F∗∗

h
(
uh,j–1; uh,j–1)

=
∫

�

(
ϕ∗∗

p
(∇uh,j) – ϕ∗∗

p
(∇uh,j–1))dx +

λ

2

∫
�

((
uh,j – fp

)2 –
(
uh,j–1 – fp

)2)dx

≤
∫

�

Z∗∗
p

(∇uh,j) · (∇uh,j – ∇uh,j–1)dx +
λ

2

∫
�

(
uh,j + uh,j–1 – 2fp

)(
uh,j – uh,j–1)dx

≤ –
∫

�

div
(
Z∗∗

p
(∇uh,j))(uh,j – uh,j–1)dx +

λ

2

∫
�

(
uh,j + uh,j–1 – 2fp

)(
uh,j – uh,j–1)dx.

Note that

uh,j – uh,j–1

h
= div

(
Z∗∗

p
(∇uh,j)) – λ

(
uh,j – f δ

)
,

and then

F∗∗
h

(
uh,j; uh,j) – F∗∗

h
(
uh,j–1; uh,j–1) ≤ –

∫
�

(uh,j – uh,j–1)2

h
–

λ

2

∫
�

(
uh,j – uh,j–1)2 dx ≤ 0.

Thus

F∗∗
h

(
uh,j; uh,j–1) ≤F∗∗

h
(
uh,j–1; uh,j–1) ≤F∗∗

h
(
uh,j–2; uh,j–2) ≤ · · · ≤F∗∗

h
(
uh,0; uh,0).

Hence

F∗∗
h

(
uh,j; uh,j–1) ≤

∫
�

ϕ∗∗
p (∇fp) ≤ �|∇fp|p + 1. �

Let νh,j = (vh,j
x )x∈� be the Young measure generated by {∇uh,j,k}∞k=1 in the proof of

Lemma 5. By Lemma 3, νh,j is a W 1,p-gradient Young measure. Then

∫
�

〈
νh,j,ϕ∗∗

δ

〉
dx = lim

k→∞

∫
�

ϕ∗∗
p

(∇uh,j,k)dx

= lim
k→∞

∫
�

ϕp
(∇uh,j,k)dx =

∫
�

〈
νh,j,ϕp

〉
dx.

Noticing that ϕ∗∗
p ≤ ϕp, we see that

suppνh,j
x ⊂ {

X ∈ RN : ϕp(X) = ϕ∗∗
p (X)

}
, a.e. x ∈ �. (23)
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Thus,

〈
νh,j, Zp

〉
=

〈
νh,j, Z∗∗

p
〉

a.e. in �,

∇uh,j =
〈
νh,j, id

〉
a.e. in �.

Let χh,j be the indicator function of [hj, h(j + 1)) and

βh,j(t) =

⎧⎨
⎩

t
h – j, t ∈ [hj, h(j + 1)),

0, otherwise.

Define

uh(x, t) =
∑

0≤j≤T/h

χh,j(t)
{

uh,j(x) + βh,j(t)
(
uh,j+1(x) – uh,j(x)

)}
, (24)

wh(x, t) =
∑

0≤j≤T/h

χh,j(t)uh,j(x), (25)

νh =
(
νh

x,t
)

(x,t)∈QT
=

∑
0≤j≤T/h

χh,j(t)νh,j
x . (26)

Then

uh(x, t) ∈ L∞(
(0, T); W 1,p(�)

) ∩ L∞(QT ),

νh ∈ L1(QT ;
(
Ep

0
(
R

N))′) ∩ L∞(
(0, T);

(
Ep

0
(
R

N))′),

uh(x, 0) = fp(x), wh(x, 0) = fp(x), uh(x, T) = wh(x, T) a.e. x ∈ �,

sup
0≤t≤T

∥∥uh∥∥
W 1,p(�) +

∥∥uh∥∥
L∞(QT ) ≤ M1,

sup
0≤t≤T

∥∥wh∥∥
W 1,p(�) +

∥∥wh∥∥
L∞(QT ) ≤ M1.

Based on the facts above, we can obtain the following lemma.

Lemma 6 The functions uh, wh, and the Young measure νh defined above satisfy

∫∫
QT

〈
νh, Zp

〉 · ∇ζ dx dt +
∫∫

QT

∂uh

∂t
ζ dx dt + λ

∫∫
QT

(
wh – fp

)
ζ dx dt = 0, (27)

for ζ ∈ C∞(QT ), with ζ (x, 0) = ζ (x, T) = 0. Moreover,

sup
0≤t≤T

∥∥uh∥∥
W 1,p(�) +

∥∥uh∥∥
L∞(QT ) +

∥∥∥∥∂uh

∂t

∥∥∥∥
L2(QT )

+
∥∥〈

νh
x,t , Zp

〉∥∥
L(p/(p–1))(QT ) ≤ M,

sup
0≤t≤T

∥∥wh∥∥
W 1,p(�) +

∥∥wh∥∥
L∞(QT ) ≤ M,

where M are independent of p and h.
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Proof Let ξ ∈ C∞
0 (�), –1 < ε < 1. Then there exists C > 0 such that

ϕ∗∗
p (X + ε∇ξ ) ≤ �

(
1 + |X|p).

By Lemma 2, we can see that

F∗∗
h

(
uh,j; uh,j–1) ≤F∗∗

h
(
uh,j + εξ ; uh,j–1)

=
∫

�

ϕ∗∗
p

(∇uh,j + ε∇ξ
)

dx +
1

2h

∫
�

(
uh,j + εξ – uh,j–1)2 dx

+
λ

2

∫
�

(
uh,j + εξ – f δ

)2 dx

≤ lim
k→∞

∫
ϕ∗∗

p
(∇uh,j,k + ε∇ξ

)
dx +

1
2h

∫
�

(
uh,j + εξ – uh,j–1)2 dx

+
λ

2

∫
�

(
uh,j + εξ – f δ

)2 dx

=
∫

�

∫
RN

ϕ∗∗
p (X + ε∇ξ ) dνh,j

x (X) dx +
1

2h

∫
�

(
uh,j + εξ – uh,j–1)2 dx

+
λ

2

∫
�

(
uh,j + εξ – f δ

)2 dx,

which implies the equilibrium equation

∫
�

〈
νh,j, Z∗∗

p
〉 · ∇ξ dx +

1
h

∫
�

(
uh,j – uh,j–1)ξ dx + λ

∫
�

(
uh,j – fp

)
ξ dx = 0,

∀ξ ∈ C∞
0 (�). At the minimizer uh,j, the Gâteaux derivative of F∗∗

h is zero, and we obtain

∫
�

Z∗∗
p

(∇uh,j(x)
) · ∇ξ dx +

1
h

∫
�

(
uh,j – uh,j–1)ξ dx + λ

∫
�

(
uh,j – fp

)
ξ dx = 0,

∀ξ ∈ C∞
0 (�). Thus

Zp
(∇uh,j(x)

)
=

〈
νh,j

x , Zp
〉

=
〈
νh,j

x , Z∗∗
p

〉
= Z∗∗

p
(∇uh,j(x)

)
, a.e. x ∈ �, (28)

∫
�

〈
νh,j, Zp

〉 · ∇ξ dx +
1
h

∫
�

(
uh,j – uh,j–1)ξ dx + λ

∫
�

(
uh,j – fp

)
ξ dx = 0, (29)

and, by Lemma 5, we get the estimate

∥∥〈
νh,j, Zp

〉∥∥
Lp/(p–1)(�) =

∥∥Z∗∗
p

(∇uh,j)∥∥
Lp/(p–1)(�) ≤ �

(∫
�

∣∣∇uh,j∣∣p dx
)(p–1)/p

≤ �
∥∥uh,j∥∥δ

W 1,p(�) ≤ �(M1 + 1).

From (24)–(26) and (29),

∫
�

〈
νh, Zp

〉 · ∇ξ dx +
∂uh

∂t
ξ dx + λ

∫
�

(
wh – fp

)
ξ dx = 0, ∀ξ ∈ C∞(�), a.e. t ∈ [0, T],
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which implies that

∫∫
QT

〈
νh, Zp

〉 · ∇ζ dx dt +
∫∫

QT

∂uh

∂t
ζ dx dt + λ

∫∫
QT

(
wh – fp

)
ζ dx dt = 0, (30)

for ζ ∈ C∞(QT ), with ζ (x, 0) = ζ (x, T) = 0. From the direct calculation, we see that

∥∥〈
νh

x,t , Zp
〉∥∥

Lp/(p–1)(QT ) ≤ T sup
0≤j≤T/h

∥∥〈
νh,j

x , Zp
〉∥∥

Lp/(p–1)(�) ≤ T(M1 + 1).

Because

∂uh(x, t)
∂t

=
1
h

∑
0≤j≤T/h

χh,j(t)
(
uh,j+1(x) – uh,j(x)

) ∈ L∞(
(0, T); W 1,p(�)

) ∩ L∞(QT ),

∂tuh can be chosen as the test function in (27), and therefore

∫∫
QT

〈
νh, Zp

〉 · ∇ ∂uh

∂t
dx dt +

∫∫
QT

(
∂uh

∂t

)2

dx dt

+ λ

∫∫
QT

∣∣wh – fp
∣∣p–2(wh – fp

)∂uh

∂t
dx dt = 0.

Then

∫∫
QT

(
∂uh

∂t

)2

dx + λ

∫
�

∣∣uh(x, T) – fp
∣∣2 dx

= –
∫∫

QT

〈
νh, Zp

〉 · ∇ ∂uh

∂t
dx dt + λ

∫
�

(
uh(x, T) – fp

)
fp dx

= –
∑

0≤j≤ T
h

∫∫
QT

χh,j(t)
〈
νh, Zp

〉 · ∂(∇uh)
∂t

dx dt

+ λ

∫
�

(
uh(x, T) – fp

)
fp dx

= –
∑

0≤j≤ T
h

∫∫
QT

χh,j(t)
∂(〈νh, Zp〉 · ∇uh)

∂t
dx dt

+ λ

∫
�

(
uh(x, T) – fp

)
fp dx

= –
∫

�

〈
νh

x,T , Zp
〉 · ∇uh(x, T) dx +

∫
�

〈
νh

x,0, Zp
〉 · ∇uh(x, 0) dx

+ λ

∫
�

(
uh(x, T) – fp

)
fp dx

≤ ∥∥〈
νh

x,T , Zp
〉∥∥

Lp/(p–1)(�)

∥∥∇uh(x, T)
∥∥

Lp(�) +
∥∥〈

νh
x,0, Zp

〉∥∥
Lp/(p–1)(�)‖∇fp‖Lp(�)

+
λ

2

∫
�

∣∣uh(x, T) – fp
∣∣2 dx +

λ

2

∫
�

f 2
p dx,
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and therefore

∫∫
QT

(
∂uh

∂t

)2

dx +
λ

2

∫
�

∣∣uh(x, T) – fp
∣∣2 dx

≤ ∥∥〈
νh

x,T , Zp
〉∥∥

Lp/(p–1)(�)

∥∥∇uh(x, T)
∥∥

Lp(�)

+
∥∥〈

νh
x,0, Zp

〉∥∥
Lp/(p–1)(�)‖∇fp‖Lp(�) +

λ

2

∫
�

f 2
p dx,

≤ 2�M1(M1 + 1) +
λ

2

∫
�

f 2
p dx,

which implies

∥∥∥∥∂uh

∂t

∥∥∥∥
L2(QT )

≤ (
2� + λ1/2 + 1

)
(M1 + 1). �

Let

vh,k(x, t) =
∑

0≤j≤ T
h

χh,j(t)uh,j,k(x),

for k ≥ 1. By Lemma 5, {vh,k}∞k=1 ⊂ L∞((0, T); W 1,p(�))∩L∞(QT ), {vh,k}∞k=1 is the W 1,p(QT )-
gradient generating sequence of νh and

sup
0≤t≤T

∥∥vh,k∥∥
W 1,p(�) +

∥∥vh,k∥∥
L∞(QT ) ≤ M1. (31)

When h → 0 and k → ∞, we have the following lemma.

Lemma 7 There exist u, w ∈ L∞((0, T); W 1,p(�))∩L∞(QT ), ν ∈ L∞((0, T); (Ep(RN ))′), ∂u
∂t ∈

L2(QT ), and subsequences of {uh}0<h<1, {wh}0<h<1, {vh,k}∞0<h<1,k=1, and {νh}0<h<1, denoted by
{uhm}∞m=1, {whm}∞m=1, {vm = vhm ,km}∞m=1, and {νhm}∞m=1, respectively, such that

uhm → u, weakly in L∞(
(0, T); W 1,p(�)

) ∩ L∞(QT ) and strongly in Lp(QT ),

∂uhm

∂t
→ ∂u

∂t
, weakly in L2(QT ),

whm → u, weakly in L∞(
(0, T); W 1,p(�)

) ∩ L∞(QT ) and strongly in Lp(QT ),

vm → v, weakly in L∞(
(0, T); W 1,p(�)

) ∩ L∞(QT ) and strongly in Lp(QT ),

νhm → ν weakly in L1(QT ;
(
Ep(

R
N))′), weakly* in L∞(

QT ;M
(
R

N))
,

and in L∞(
QT ;

(
Ep(

R
N))′) in the bitting sense

and

u(x, t) = v(x, t), a.e. (x, t) ∈ QT ,

u(x, 0) = fp(x), x ∈ �.

∇u = ∇w = ∇v = 〈ν, id〉.
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Proof From Lemma 6, we see that {uh}0<h<1 and {wh}0<h<1 are bounded in L∞((0, T);
W 1,p(�)) ∩ L∞(QT ), {∂tuh}0<h<1 is bounded in L2(QT ), {〈νh, Zp〉}0<h<1 is bounded in
Lp/(p–1)(QT ), {νh}0<h<1 is bounded in L∞((0, T); (Ep

0 (RN ))′), and the bounds are indepen-
dent of δ and h. By weak compactness, we can obtain the convergence of the subsequences
{uhm}∞m=1, {whm}∞m=1, and {νhm}∞m=1. From (26), we can see that (12) holds, namely

u(x, 0) = fp(x), x ∈ �.

From (31), by Lemma 4 and the weak sequential precompactness of L∞((0, T);
W 1,p(�)) ∩ L∞(QT ), there exist w ∈ L∞((0, T); W 1,p(�)) ∩ L∞(QT ) and a diagonal sub-
sequence of {vhm ,k}∞m=1, denoted by {vm = whm ,km}∞m=1, such that {vm}∞m=1 converges to w
weakly in L∞((0, T); W 1,p(�)) ∩ L∞(QT ) and strongly in Lp(QT ),

sup
1≤j≤T/hm

∥∥uhm ,j,km – uhm ,j∥∥
L2(�) ≤ hm,

{vm}∞m=1 ⊂ L∞((0, T); W 1,p(�)) ∩ L∞(QT ),

sup
0≤t≤T

∥∥wm∥∥
W 1,p(�) +

∥∥wm∥∥
L∞(QT ) ≤ M1,

and {∇vm}∞m=1 is the W 1,1(QT )-bitting generating sequence of ν , and then

∇v = 〈ν, id〉.

Now let us prove that

u(x, t) = v(x, t), a.e. (x, t) ∈ QT .

Since

uh(x, t) =
∑

0≤j≤T/h

χh,j(t)
{

uh,j(x) + βh,j(t)
(
uh,j+1(x) – uh,j(x)

)}
,

vh,k(x, t) =
∑

0≤j≤T/h

χh,j(t)uh,j,k(x),

by Lemma 5, we have

∫∫
QT

∣∣uh(x, t) – vh,k(x, t)
∣∣2 dx dt

+ 2
∑

0≤j≤ T
h

(∫∫
QT

∣∣χh,j(t)λh,j(t)
(
uh,j+1 – uh,j(x)

)∣∣2 dx dt

+
∫∫

QT

∣∣χh,j(t)
(
uh,j(x) – uh,j,k(x)

)∣∣2 dx dt
)

≤ 2h
∑

0≤j≤ T
h

(∫
�

∣∣uh,j+1(x) – uh,j(x)
∣∣2 dx +

∫
�

∣∣uh,j(x) – uh,j,k(x)
∣∣2 dx

)
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≤ h2
∑

0≤j≤ T
h

(
Fh

(
uh,j+1; uh,j) + Fh

(
uh,j,k ; uh,j))

≤ 8hT
∑

0≤j≤ T
h

Fh
(
uh,j+1; uh,j) +

4hT
k

≤ 8hT�

∫
�

|∇fp|dx + 4hT

→ 0 (h → 0).

Since {uhm}∞m=1 converges to u in Lp(QT ) and {vhm ,km}∞m=1 converges to w in Lp(QT ), we see
that

u(x, t) = v(x, t), a.e. (x, t) ∈ QT .

Hence

∇u = ∇v = 〈ν, id〉,

which implies (7). Similar to the above arguments, we also obtain that {vhm}∞m=1 converges
to u in Lp(QT ). �

Proof of Theorem 3 From Lemmas 6 and 7, we can obtain
∫∫

QT

〈ν, Zp〉 · ∇ζ dx dt +
∫∫

QT

∂u
∂t

ζ dx dt + λ

∫∫
QT

(u – fp)ζ dx dt = 0, (32)

for ζ ∈ C∞(QT ), with ζ (x, 0) = ζ (x, T) = 0. Therefore, if we prove (8), we will obtain the
weak solution of the problem (3)–(5). Let {uh,j,k}∞k=1 ⊂ W 1,p(�) be a minimizing sequence
of Fh in the proof of Lemma 5. For all ξ ∈ W 1,p(�), we see that

lim
k→∞

∫
�

Z∗∗
p

(∇uh,j,k) · ∇ξ dx +
1
h

∫
�

(
uh,j,k – uh,j–1)ξ dx + λ

∫
�

(
uh,j,k – fp

)
ξ dx

=
∫

�

〈
νh,j, Z∗∗

p
〉 · ∇ξ dx +

1
h

∫
�

(
uh,j – uh,j–1)ξ dx + λ

∫
�

(
uh,j – fp

)
ξ dx = 0

and

lim
k→∞

∣∣∣∣
∫

�

(
Z∗∗

p
(∇uh,j,k) –

〈
νh,j, Z∗∗

p
〉) · (∇uh,j,k – ∇uh,j)dx

∣∣∣∣

= lim
k→∞

∣∣∣∣
∫

�

uh,j,k – uh,j

h
(
uh,j,k – uh,j)dx

+ λ

∫
�

((
uh,j,k – fp

)
–

(
uh,j – fp

))(
uh,j,k – uh,j)dx

∣∣∣∣
≤ 1/h lim

k→∞
∥∥uh,j,k – uh,j∥∥2

L2(�)

+ λ lim
k→∞

(∫
�

∣∣∣∣uh,j,k – fp
∣∣2 –

∣∣uh,j – fp
∣∣2∣∣dx

)1/2(∫
�

∣∣uh,j,k – uh,j∣∣2 dx
)1/2

= 0.
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Since Z∗∗
p (∇uh,j,k) ·∇uh,j,k converges weakly to 〈νh,j, Z∗∗

p · id〉 in L1(�), Z∗∗
p (∇uh,j,k) converges

weakly to 〈νh,j, Z∗∗
p 〉 in Lp/(p–1)(�), ∇uh,j,k converges weakly to 〈νh,j, id〉 in Lp(�) as k tends

to infinity, we get that

〈
νh,j

x , Z∗∗
p · id

〉
=

〈
νh,j

x , Z∗∗
p

〉 · 〈νh,j
x , id

〉
a.e. x ∈ �.

Thus (23) implies that

〈
νh,j

x , Zp · id
〉

=
〈
νh,j

x , Zp
〉 · 〈νh,j

x , id
〉

a.e. x ∈ �.

By the definition of νh in (26), we see that

〈
νh

x,t , Zp · id
〉

=
〈
νh

x,t , Zp
〉 · 〈νh

x,t , id
〉

a.e. x ∈ QT .

From Lemma 7, we can obtain that 〈νhm
x,t , Zp · id〉 converges weakly to 〈νx,t , Zp · id〉 in

the biting sense, 〈νhm
x,t , Zp〉 converges weakly to 〈νx,t , Zp〉 in Lp/(p–1)(QT ), 〈νhm

x,t , id〉 con-
verges weakly to 〈νx,t , id〉 in Lp(QT ) as m tends to infinity. Thus for all η ∈ C∞(QT ), with
η(x, 0) = η(x, T) = 0, (17) and (19) imply that

∣∣∣∣
∫∫

QT

(〈
νhm , Zp

〉
– 〈ν, Zp〉

) · 〈νhm , id
〉
η dx dt

∣∣∣∣

≤
∣∣∣∣
∫∫

QT

(〈
νhm , Zp

〉
– 〈ν, Zp〉

) · ∇(
whmη

)
dx dt

∣∣∣∣

+
∣∣∣∣
∫∫

QT

whm
(〈
νhm , Zp

〉
– 〈ν, Zp〉

) · ∇η dx dt
∣∣∣∣

≤
∣∣∣∣
∫∫

QT

(
∂uhm

∂t
–

∂u
∂t

)
whmη dx dt

∣∣∣∣ + λ

∣∣∣∣
∫∫

QT

((
whm – fp

)
– (u – fp)

)
whmη dx dt

∣∣∣∣

+
∣∣∣∣
∫∫

QT

whm
(〈
νhm , Zp

〉
– 〈ν, Zp〉

) · ∇η dx dt
∣∣∣∣

≤
∣∣∣∣
∫∫

QT

(
∂uhm

∂t
–

∂u
∂t

)
uη dx dt

∣∣∣∣ +
∣∣∣∣
∫∫

QT

(
∂uhm

∂t
–

∂u
∂t

)(
whm – u

)
η dx dt

∣∣∣∣

+ λ

∣∣∣∣
∫∫

QT

((
whm – fp

)
– (u – fp)

)
whmη dx dt

∣∣∣∣

+
∣∣∣∣
∫∫

QT

u
(〈
νhm , Zp

〉
– 〈ν, Zp〉

) · ∇η dx dt
∣∣∣∣

+
∣∣∣∣
∫∫

QT

(
whm – u

)(〈
νhm , Zp

〉
– 〈ν, Zp〉

) · ∇η dx dt
∣∣∣∣

→ 0 (m → ∞).

Hence,
∣∣∣∣
∫∫

QT

(〈
νhm , Zp

〉 · 〈νhm , id
〉
– 〈ν, Zp〉 · 〈ν, id〉)η dx dt

∣∣∣∣

≤
∣∣∣∣
∫∫

QT

(〈
νhm , Zp

〉
– 〈ν, Zp〉

) · 〈νhm , id
〉
η dx dt

∣∣∣∣
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+
∣∣∣∣
∫∫

QT

〈ν, Zp〉 · (〈νhm , id
〉
– 〈ν, id〉)η dx dt

∣∣∣∣
→ 0 (m → ∞).

So 〈νhm
x,t , Zp〉 · 〈νhm

x,t , id〉 weakly converges to 〈νx,t , Zp〉 · 〈νx,t , id〉 in L1(QT ). Since 〈νhm
x,t , Zp · id〉

converges to 〈νx,t , Zp · id〉 in the bitting sense, we obtain that

〈νx,t , Zp · id〉 = 〈νx,t , Zp〉 · 〈νx,t , id〉 a.e. (x, t) ∈ QT \ Ej,∀j ≥ 1.

Since 〈νx,t , Zp · id〉 ∈ L1(QT ),

〈νx,t , Zp · id〉 = 〈νx,t , Zp〉 · 〈νx,t , id〉 a.e. (x, t) ∈ QT ,

which implies (8). Hence, u is the desired Young measure solution of problem (3)–(5). The
proof of Theorem 3 is complete. �

Remark 2 Let u be the Young measure solution of problem (12)–(14) obtained in the proof
of Theorem 3. Then from the proof we see that there exists a constant M depending only
on ‖fp‖W 1,p(�), ‖fp‖L∞(�), �, and meas(�), but independent of p and T , such that

‖u‖L∞((0,T);W 1,p(�)) + ‖u‖L∞(QT ) ≤ M,
∥∥∥∥∂u

∂t

∥∥∥∥
L2(QT )

≤ M,

namely, u ∈ L∞(R+; W 1,p(�)) ∩ L∞(Q∞), ∂u/∂t ∈ L2(Q∞), where Q∞ = � ×R
+.

3.4 Existence of solution to problem (3)–(5)
In this subsection, we consider the limit case of problem (3)–(5), namely, p → 1.

Proof of Theorem 2 Let up be the Young measure solution of problem (12)–(14) with the
initial data fp with respect to the W 1,p(QT )-gradient Young measures νp generated by the
sequence {∇wp,k}∞k=1, which we obtained in the proof of Theorem 3. We see that

up ∈ L∞(
(0, T); W 1,p(�)

) ∩ L∞(QT ),
∂up

∂t
∈ L2(QT ),

νp ∈ L∞(
(0, T);

(
Ep

0
(
R

N))′), 〈νp, Zp〉 ∈ Lp/(p–1)(QT ),

wp,k ∈ L∞(
(0, T); W 1,p(�)

) ∩ L∞(QT ),

and there exists a constant M0 depending only on ‖fp‖W 1,p(�) , ‖fp‖L∞(�), �, and meas(�),
but independent of p, such that

‖up‖L∞((0,T);W 1,p(�)) + ‖up‖L∞(QT ) ≤ M0,
∥∥∥∥∂up

∂t

∥∥∥∥
L2(QT )

≤ M0,

‖νp‖L∞((0,T);(Ep(RN ))′) ≤ M0,
∥∥〈νp, Zp〉

∥∥
Lp/(p–1)(QT ) ≤ M0,

sup
0≤t≤T

∥∥wp,k∥∥
W 1,p(�) +

∥∥wp,k∥∥
L∞(QT ) ≤ M0.
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So there exist u ∈ L∞((0, T); BV(�)) ∩ L∞(QT ) with ∂u/∂t ∈ L2(QT ) and a subsequence of
{up}1<p<2, denoted by {upm}∞m=1, such that

upm → u, strongly in L1(QT ),

∂upm

∂t
→ ∂u

∂t
, weakly in L2(QT ).

By Lemma 4, there exist a W 1,1(QT )-gradient Young measure ν ∈ L∞((0, T); (E1
0 (RN ))′) and

a subsequence of {νpm}∞m=1, denoted the same, such that

νpm → ν, weakly* in L∞(
QT ;M

(
R

N))
,

νpm → ν, in E1
0
(
R

d) in the biting sense,

which implies that there is a decreasing sequence of subsets Ej+1 ⊂ Ej of QT with
limj→∞ meas(Ej) = 0 such that 〈νpm ,ψ〉 converges weakly to 〈ν,ψ〉 in L1(QT\Ej) for all
ψ ∈ E1

0 (Rd) and all j ≥ 1. By (18) we get that

suppν
p
x,t ⊂ {

x ∈R
N : ϕp(X) = ϕ∗∗

p (X)
} ⊂ {

X ∈R
N : ϕ(X) = ϕ∗∗(X)

}

which implies (9). By Lemma 4, there exist w ∈ L∞((0, T); BV(�)) and a subsequence of
{wpm ,k}∞m,k=1, denoted by {wk}∞k=1, such that {wk}∞k=1 converges to w in L1(QT ) and {∇wk}∞k=1
is the W 1,1(QT )-biting generating sequence of ν , namely, there is a decreasing sequence of
subsets Gj+1 ⊂ Gj of QT with limj→∞ meas(Gj) = 0 such that 〈νpm ,ψ〉 converges weakly to
〈ν,ψ〉 in L1(QT\Gj) for all ψ ∈ E1

0 (Rd) and all j ≥ 1.
To prove (6), we first prove that {〈νpm , Zpm〉}∞m=1 converges weakly to 〈ν, Z〉 in L1(QT ).

For i ≥ 1, define

θ i(A) =

⎧⎪⎪⎨
⎪⎪⎩

1, |A| ≤ i,

i + 1 – |A|, i ≤ |A| ≤ i + 1,

0, |A| ≥ i + 1.

Let η ∈ L∞(QT ;RN ). Then
∣∣∣∣
∫∫

QT

(〈
νpm , Zp

〉
–

〈
νpm , Z

〉) · η dx dt
∣∣∣∣

≤ ‖η‖L∞(QT )

∫∫
QT

∣∣〈νp,
(
1 – θ i)(Zp – Z)

〉∣∣dx dt +
∣∣∣∣
∫∫

QT

〈
νp, θ i(Zp – Z)

〉 · η dx dt
∣∣∣∣

= I + II,

I ≤ ‖η‖L∞(QT ) lim
k→∞

∫∫
{(x,t):|∇wp,k |≥i}

∣∣Zp
(∇wp,k) – Z

(∇wp,k)∣∣dx dt

≤ 2�‖η‖L∞(QT ) lim
k→∞

∫∫
{(x,t):|∇wp,k |≥i}

∣∣∇wp,k∣∣p–1 dx dt.

Noticing that

lim
i→∞ meas

{
(x, t) :

∣∣∇wp,k∣∣ ≥ i
}

= 0,
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we see that I tends uniformly to 0 in p as i → ∞. For II , we get that

II ≤ ‖η‖L∞(QT )
∥∥θ i(Zp – Z)

∥∥
L∞(QT )

∫∫
QT

〈
νp, 1

〉
dx dt

= ‖η‖L∞(QT )
∥∥θ i(Zp – Z)

∥∥
L∞(QT ) meas(QT ).

So

lim
p→1+

∫∫
QT

〈
νp, Zp – Z

〉 · η dx dt = 0.

Therefore,
∣∣∣∣
∫∫

QT

〈
νpm , Zpm

〉 · η dx dt –
∫∫

QT

〈ν, Z〉 · η dx dt
∣∣∣∣

≤
∣∣∣∣
∫∫

QT

(〈
νpm , Zpm

〉
–

〈
νpm , Z

〉) · η dx dt
∣∣∣∣ +

∣∣∣∣
∫∫

QT

(〈
νpm , Z

〉
– 〈ν, Z〉) · η dx dt

∣∣∣∣
→ 0 (m → ∞).

So {〈νpm , Zpm〉}∞m=1 converges weakly to 〈ν, Z〉 in L1(QT ). Thus (6) holds, namely,
∫∫

QT

(〈ν, Zp〉 · ∇ζ + utζ – λ(u – fp)ζ
)

dx dt = 0,

∀ζ ∈ C∞(QT ) with ζ (x, 0) = ζ (x, T) = 0.

Since {wk}∞k=1 converges to w in L1(QT ), we get that for all η ∈ C∞
0 (QT\Gj;RN ),

lim
k→∞

(∫∫
QT \Gj

η · ∇wk dx dt –
∫∫

QT \Gj

η · ∇w dx dt
)

= lim
k→∞

∫∫
QT \Gj

(
w – wk)div(η) dx dt = 0.

Thus for all j ≥ 1,

∇w = 〈ν, id〉 in QT\Gj

in the sense of measure. Let G =
⋂∞

j=1 Gj. Then meas(G) = 0 and

∇w = 〈ν, id〉 in QT\G

in the sense of measure. Similar to the proof of Theorem 3, we get that

u(x, t) = w(x, t) a.e. (x, t) ∈ QT .

Thus (7) holds, namely,

∇u(x, t) = 〈νx,t , id〉 a.e. (x, t) ∈ QT

in the sense of measure.
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We now prove (8). For all η ∈ C∞
0 (QT ), we get that

∣∣∣∣
∫∫

QT

(〈
νhm , Zpm

〉
– 〈ν, Z〉) · 〈νpm , id

〉
η dx dt

∣∣∣∣

≤
∣∣∣∣
∫∫

QT

(〈
νpm , Zpm

〉
– 〈ν, Z〉) · ∇(upmη) dx dt

∣∣∣∣

+
∣∣∣∣
∫∫

QT

upm

(〈
νpm , Zpm

〉
– 〈ν, Z〉) · ∇η dx dt

∣∣∣∣

≤
∣∣∣∣
∫∫

QT

(
∂upm

∂t
–

∂u
∂t

)
upmη dx dt

∣∣∣∣ + λ

∣∣∣∣
∫∫

QT

(
(upm – fpm ) – (u – f )

)
upmη dx dt

∣∣∣∣

+
∣∣∣∣
∫∫

QT

upm

(〈
νpm , Zpm

〉
– 〈ν, Z〉) · ∇η dx dt

∣∣∣∣

≤
∣∣∣∣
∫∫

QT

(
∂upm

∂t
–

∂u
∂t

)
uη dx dt

∣∣∣∣ +
∣∣∣∣
∫∫

QT

(
∂upm

∂t
–

∂u
∂t

)
(upm – u)η dx dt

∣∣∣∣

+ λ

∣∣∣∣
∫∫

QT

(upm – u)upmη dx dt
∣∣∣∣ + λ

∣∣∣∣
∫∫

QT

(fpm – f )upmη dx dt
∣∣∣∣

+
∣∣∣∣
∫∫

QT

u
(〈
νpm , Zpm

〉
– 〈ν, Z〉) · ∇η dx dt

∣∣∣∣

+
∣∣∣∣
∫∫

QT

(
upm – u

)(〈
νhm , Zpm

〉
– 〈ν, Z〉) · ∇η dx dt

∣∣∣∣
→ 0 (m → ∞).

Since 〈νpm
x,t , id〉 converges to 〈νx,t , id〉 in the biting sense, we see that for all j ≥ 1 and all

η ∈ C∞
0 (QT\Ej),

∣∣∣∣
∫∫

QT \Ej

(〈
νpm , Zpm

〉 · 〈νpm , id
〉
– 〈ν, Z〉 · 〈ν, id〉)η dx dt

∣∣∣∣

≤
∣∣∣∣
∫∫

QT \Ej

(〈
νpm , Zpm

〉
– 〈ν, Z〉) · 〈νpm , id

〉
)η dx dt

∣∣∣∣

+
∣∣∣∣
∫∫

QT \Ej

(〈
νpm , id

〉
– 〈ν, id〉) · 〈ν, Z〉)η dx dt

∣∣∣∣ → 0 (m → ∞).

Thus for all j ≥ 1,

lim
m→∞

〈
ν

pm
x,t , Zpm · id

〉
= 〈νx,t , Z〉 · 〈νx,t , id〉 a.e. (x, t) ∈ QT\Ej.

Fix i ≥ C0. Let 0 ≤ η ∈ C∞
0 (QT\Ej). Then

∫∫
QT

〈
νpm , Zpm · id

〉
η dx dt –

∫∫
QT

〈ν, Z · id〉η dx dt

=
(∫∫

QT

〈
νpm , θ i(Zpm · id)

〉
η dx dt –

∫∫
QT

〈
ν, θ i(Z · id)

〉
η dx dt

)
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+
(∫∫

QT

〈
νpm ,

(
1 – θ i)(Zpm · id)

〉
η dx dt –

∫∫
QT

〈
ν,

(
1 – θ i)(Z · id)

〉
η dx dt

)

= I + II.

Because θ i(Zpm · id) converge uniformly to θ i(Z · id) in R
N , we see that

∣∣∣∣
∫∫

QT

〈
νpm , θ i(Zpm · id)

〉
η dx dt –

∫∫
QT

〈
νpm , θ i(Z · id)

〉
η dx dt

∣∣∣∣
≤ ‖η‖L∞(QT )

∥∥θ i(Zpm · id) – θ i(Z · id)
∥∥

L∞(QT )

∫∫
QT

〈
νpm , 1

〉
dx dt

= ‖η‖L∞(QT )
∥∥θ i(Zpm · id) – θ i(Z · id)

∥∥
L∞(QT ) meas(QT ) → 0 (m → ∞).

Hence

lim
m→∞ I = lim

m→∞

(∫∫
QT

〈
νpm , θ i(Zpm · id)

〉
η dx dt –

∫∫
QT

〈
νpm , θ i(Z · id)

〉
η dx dt

)

+ lim
m→∞

(∫∫
QT

〈
νpm , θ i(Z · id)

〉
η dx dt –

∫∫
QT

〈
ν, θ i(Z · id)

〉
η dx dt

)

= 0.

From (1 – θ i)(Zpm · id) ≥ (1 – θ i)(Z · id), we get that

lim
m→∞ II ≥ lim

m→∞

(∫∫
QT

〈
νpm ,

(
1 – θ i)(Z · id)

〉
η dx dt –

∫∫
QT

〈
ν,

(
1 – θ i)(Z · id)

〉
η dx dt

)

= 0.

Thus

lim
m→∞

∫∫
QT

〈
νpm , Zpm · id

〉
η dx dt ≥

∫∫
QT

〈ν, Z · id〉η dx dt.

By the arbitrariness of 0 ≤ η ∈ C∞
0 (QT\Ej), we see that

lim
m→∞

〈
ν

pm
x,t , Zpm · id

〉 ≥ 〈νx,t , Z · id〉, a.e. (x, t) ∈ QT\Ej.

Thus for all j ≥ 1,

〈νx,t , Z · id〉 ≤ 〈νx,t , Z〉 · 〈νx,t , id〉 a.e. (x, t) ∈ QT\Ej.

Since 〈νx,t , Z · id〉, 〈νx,t , Z〉 · 〈νx,t , id〉 ∈ L1(QT ), we see that

〈νx,t , Z · id〉 ≤ 〈νx,t , Z〉 · 〈νx,y, id〉 a.e. (x, t) ∈ QT .

So (8) holds, and therefore u is the Young measure solution of the problem (3)–(5). The
proof of the theorem is complete. �

Remark 3 Note that if the initial data f ≡ C, and then f is the Young measure of the prob-
lem (3)–(5).
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4 Properties of the Young measure solution
Theorem 4 Let u1, u2 ∈ B be the Young measure solutions of the problem (3)–(5) with the
initial data f1, f2 and satisfy (H6), respectively. Then for (x, t) a.e. in QT ,

– ess sup
x∈�

(f1 – f2)– ≤ u1(x, t) – u2(x, t) ≤ ess sup
x∈�

(f1 – f2)+. (33)

In particular,

– ess sup
x∈�

u–
0 ≤ u(x, t) ≤ ess sup

x∈�

u+
0 , a.e. (x, t) ∈ QT . (34)

Proof Denote

K = ess sup
x∈�

(f1 – f2)+.

Let G(t) ∈ C1(R) be such that

G(t) = 0, ∀t ∈ (–∞, 0], 0 < G′(t) ≤ B ∀t ∈ (0,∞),

where B is a positive constant, and

H(t) =
∫ t

0
G(s) ds,

ψ(t) =
∫

�

H
(
u1(x, t) – u – 2(x, t) – K

)
dx.

Then ψ ∈ C(R+) ∩ H1(R+), ψ(0) = 0, ψ(t) ≥ 0, for t ∈ R
+, and G(u1(x, t) – u2(x, t) – K) ∈

BV(�). Note that G(uk
1(x, t) – uk

2(x, t) – K) ∈ W 1,1(�) can be chosen as the test function
and, taking Qs for s ∈ [0, T] as the domain of integration, we obtain

∫∫
Qs

〈ν1, Z〉 · (∇uk
1 – ∇uk

2
)
G′(uk

1 – uk
2 – K

)
dx dt +

∫∫
Qs

∂u1

∂t
G

(
uk

1 – uk
2 – K

)
dx dt

+ λ

∫∫
Qs

(u1 – f1)G
(
uk

1 – uk
2 – K

)
dx dt = 0,

∫∫
Qs

〈ν2, Z〉 · (∇uk
1 – ∇uk

2
)
G′(uk

1 – uk
2 – K

)
dx dt +

∫∫
Qs

∂u2

∂t
G

(
uk

1 – uk
2 – K

)
dx dt

+ λ

∫∫
Qs

(u2 – f2)G
(
uk

1 – uk
2 – K

)
dx dt = 0.

From the proof of Theorem 4 and due to 0 < G′ ≤ B,

ψ(s) =
∫ s

0
ψ ′(t) dt

= lim
k→∞

∫∫
Qs

G
(
uk

1 – uk
2 – K

)∂(u1 – u2)
∂t

dx dt

= – lim
k→∞

∫∫
Qs

(〈ν1, Z〉 – 〈ν2, Z〉) · (∇uk
1 – ∇uk

2
)
G′(uk

1 – uk
2 – K

)
dx dt
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– λ lim
k→∞

∫∫
Qs

(u1 – f1 – u2 + f2)G
(
uk

1 – uk
2 – K

)
dx dt

≤ –λ

∫∫
Qs

(u1 – f1 – u2 + f2)G(u1 – u2 – K) dx dt

≤ 0.

Hence

ψ(s) = 0, a.e. s ∈ [0, T].

And therefore

H
(
u1(x, t) – u2(x, t) – K

)
= 0, a.e. t ∈ [0, T].

Then

u1(x, t) – u2(x, t) – K ≤ 0, a.e. (x, t) ∈ QT ,

which implies the right-hand side inequality of (33). Changing the position of u1 and u2

will yield the left-hand side inequality of (33). When the initial data f ≡ ess supx∈� u+
0 , f is

the Young measure solution of (3)–(5); when the initial data f ≡ – ess supx∈� u–
0 , f is also

the Young measure solution of (3)–(5), which completes the proof of the theorem. �

Corollary 1 Let u1, u2 ∈ B be the Young measure solutions of the problem (3)–(5) with the
initial data f1, f2 and satisfy (H1), respectively. Assume

f1(x) ≤ f2(x), a.e. x ∈ �.

Then

u1(x, t) ≤ u2(x, t), a.e. (x, t) ∈ QT .

5 Numerical scheme
In this section, numerical results are presented to demonstrate the performance of our
proposed algorithm for image restoration involving white Gaussian noise. The results are
compared with those obtained by the PM method in [23] and the TV method in [8]. In
the next two subsections, two numerical discrete schemes, the PM scheme (PMS) and the
AOS scheme, will be proposed.

5.1 The AOS scheme
Let

C(X) =
μ1√

1 + |X|2 +
μ2

1 + |X|2 .

Using the scheme in [43], the problem (3)–(5) can be discretized as

λ0 = 0,
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un+1 =
1
m

m∑
l=1

[
I – mτAl

(
uk)]–1[un + λτ

(
f – un)],

divn =
(
un+1 – un)/τ ,

λn =
1

σ 2MN
(u – f ) divn,

u0
i,j = fi,j = f (ih, jh),

un
i,0 = un

i,1, un
0,j = un

1,j, un
I,i = un

I–1,i, un
i,J = un

i,J–1,

where Al(un) = [ai,j(un)],

ai,j
(
un) :=

⎧⎪⎪⎨
⎪⎪⎩

Cn
i +Cn

j
2h2 , j ∈N (i),

–
∑

n∈N (i)
Cn

i +Cn
N

2h2 , j = i,

0, else,

and

Cn
i := C

(∣∣∇un
i,j
∣∣),

where

∣∣∇un
i,j
∣∣ =

1
2

∑
p,q∈N (i)

|un
p – un

q|
2h

,

with N (i) being the set of the two neighbors of pixel i (boundary pixels have only one
neighbor).

5.2 The PM scheme
Similar to the original PM method, the discrete explicit scheme of the problem (3)–(5) is
as follows:

Cn
Ni,j = C

(|∇N ui,j|
)
, Cn

Si,j = C
(|∇Sui,j|

)
,

Cn
Ei,j = C

(|∇Eui,j|
)
, Cn

Wi,j = C
(|∇W ui,j|

)
,

divn
i,j =

(
Cn

Ni,j∇N ui,j + Cn
Si,j∇Sui,j

+ Cn
Ei,j∇Eui,j + Cn

Wi,j∇W ui,j
)
,

λn =
1

σ 2MN
∑

i,j

divn
i,j(ui,j – fi,j),

un+1
i,j = un

i,j + τ divn
i,j –λnτ (ui,j – fi,j),

u0
i,j = fi,j = f (ih, jh),

un
i,0 = un

i,1, un
0,j = un

1,j, un
I,i = un

I–1,i, un
i,J = un

i,J–1,
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where

∇N ui,j = ui–1,j – ui,j, ∇Sui,j = ui+1,j – ui,j,

∇Eui,j = ui,j+1 – ui,j, ∇W ui,j = ui,j–1 – ui,j,

for 0 ≤ i ≤ I , 0 ≤ j ≤ J .

6 Denoising performance
The denoising algorithms are tested on four images: a synthetic image (128 × 128 pixels),
Lena image (300 × 300 pixels), and a tower image (500 × 500 pixels). For each image,
a noisy observation is generated by adding Gaussian noise with the standard deviation
σ ∈ {30, 50} to the original image.

Peak signal-to-noise ratio (PSNR) and the mean absolute deviation error (MAE) are used
to measure the quality of the restoration results. They are defined as

PSNR = 10 log10
(
2552MN/‖uO – u‖2

2
)

dB,

MAE = ‖uO – u‖1/(MN),

where uO and u are the original and restored image, respectively. The stopping criterion
of all methods is set to achieve the maximal PSNR or the best MAE. All methods are
implemented in Matlab R2007b on a 2.8 GHz Pentium 4 processor.

6.1 Measure of similarity of edges
The PSNR does not always give a clear guide as to whether one image is less staircased than
another, so the authors [44] take into account the value of PSNRgrad which they define as
1/2(PSNR(∂xu, ∂xuO)+PSNR(∂yu, ∂yuO)), and this should measure how well the derivatives
of reconstruction match those of the true image.

The edge maps are defined as

EM(u) = 2 –
2

1 + k|∇Gσ ∗ u|2 , k > 0,σ > 0, (35)

where Gσ (x) = 1
4πσ

exp(– |x|2
4σ

). If all images are normalized, their gray-scale is in the range
[0, 255]. The authors [45] find that a value of 0.025 ≤ c ≤ 0.0025 and σ = 0.5 give the best
edge map. In [46], the authors propose the following PSNR:

P̃SNR = 10 log10
MN |max uO – min uO|2

‖u – uO‖2
2

dB, (36)

where |max uO – min uO| gives the gray-scale range of the original image. It is noticed that
P̃SNR can measure how well the reconstruction data match the true data, and the data
need not to be an image. Combining (35) and (36), in [47], we define the following PSNRE

in order to measure the similarity of edges:

PSNRE = P̃SNR
(
EM(u), EM(uO)

)
dB.

If there are wrong edges in the restored image by some method, then the PSNRE will be
positive.
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Figure 1 Synthetic image (128× 128): (a) noisy image corrupted by Gaussian noise for σ = 30; (b) original
image; (c) our algorithm by PMS, μ1 = 0.5, μ2 = 0.5, and τ = 0.2; (d) our algorithm by AOS, μ1 = 0.9, μ2 = 0.1,
and τ = 2; (e) TV algorithm, τ = 0.2; and (f) PM algorithm, τ = 0.2 and K = 7

6.2 Comparison with other methods
The results are depicted in Figs. 1–3 for the synthetic image and Figs. 4–5 for Lena image.
Our methods do a good job in restoring faint geometrical structures of the images even
for high values of σ , for instance, the results on Lena image for σ = 50. Our algorithm dis-
tinguishes itself from its competitors most of the time both visually and quantitatively, as
revealed by the PSNR and MAE values. For TV method, the number of iterations which is
necessary to satisfy the stopping rule increases rapidly when σ increases. For PM method,
the appropriate parameter K is indispensable to get the best result.
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Figure 2 Synthetic image (128× 128): (a) noisy image corrupted by Gaussian noise for σ = 50; (b) original
image; (c) our algorithm by PMS, μ1 = 0.3, μ2 = 0.7, and τ = 0.2; (d) our algorithm by AOS, μ1 = 0.9, μ2 = 0.1,
and τ = 2; (e) TV algorithm, τ = 0.2; and (f) PM algorithm, τ = 0.2 and K = 8

Figures 1–3 illustrate that the proposed model is able to reconstruct sharp edges and
nonuniform regions while avoiding staircasing. TV-based diffusion reconstructs sharp
edges, but the staircasing effect is obvious. PM-based diffusion also reconstructs sharp
edges, but it creates isolated black and white speckles in the restored image. The proposed
model reconstructs sharp edges as effectively as PM-based diffusion and meanwhile recov-
ers smooth regions as effectively as pure isotropic diffusion (in particular, without staircas-
ing). Figure 3 shows the edge functions when the smoothed images by the new methods,
TV, and PM attain the largest PSNR, respectively. Note that PM and TV methods create
many new edges in the restored images.
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Figure 3 The edge indicator function. (a)–(d) The edge indicator functions for the denoising results of every
methods when σ = 30; (e)–(h) The edge indicator functions for the denoising results of every methods when
σ = 50
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Figure 4 Lena image (300× 300): (a) noisy image corrupted by Gaussian noise for σ = 20; (b) original image;
(c) our algorithm by PMS, μ1 = 0.3, μ2 = 0.7, and τ = 0.2; (d) our algorithm by AOS, μ1 = 0.9, μ2 = 0.1, and
τ = 2; (e) TV algorithm, τ = 0.2; and (f) PM algorithm, τ = 0.2 and K = 5

Figures 4–5 show the restored Lena images produced by the Perona–Malik equation, the
TV method, PMS, and AOS. Figures 4(e) and 5(e) show the processed images by the PM
diffusion with isolated black and white speckles. However, in Figs. 4(c)–4(d), the processed
images using the new methods are very clear. Inside the regions, the new diffusion acts as
Gaussian smoothing, so our method can effectively avoid staircase effect. In Tables 1 and 2,
we observe that both PSNRs and MAEs of the restored images in our methods are better
than those in the PM and TV methods. And the increase in PSNRE is obvious with the
new diffusion operators.
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Figure 5 Lena image (300× 300): (a) noisy image corrupted by Gaussian noise for σ = 30; (b) original image;
(c) our algorithm by PMS, μ1 = 0.5, μ2 = 0.5, and τ = 0.2; (d) our algorithm by AOS, μ1 = 0.9, μ2 = 0.1, and
τ = 2; (e) TV algorithm, τ = 0.2; and (f) PM algorithm, τ = 0.2 and K = 7

The denoising performance results are tabulated in Tables 1–2 where the best PSNR,
MAE, PSNRE, and CPU time are shown in boldface. The PSNR improvement brought by
our approach can be quite high, particularly for σ = 50 (see, e.g., Figs. 1–2), and the visual
resolution is quite remarkable. For σ = 30, the PSNRs of our algorithm also can be higher
than that of PM and TV methods. Moreover, the new algorithm by AOS scheme shows
high PSNRs on real images (Figs. 3–4). Note that for big size images (Figs. 3–4, 300×300),
the new methods take less time than TV and PM methods.



Dong and Wu Boundary Value Problems          (2021) 2021:8 Page 37 of 39

Table 1 PSNR, MAE, PSNRE , and CPU time (seconds) of all methods for the synthetic image
(128× 128)

σ

PSNR MAE PSNRE CPU(s)

30 50 30 50 30 50 30 50

PMS 36.87 32.99 3.65 5.71 21.20 18.73 1.67 1.94
AOS 36.67 33.43 3.74 5.43 20.83 19.11 0.33 0.59
PM 35.78 31.27 4.14 6.97 20.58 18.36 0.15 0.29
TV 34.31 31.26 4.91 6.97 13.81 12.58 1.12 1.79

Table 2 PSNR, MAE, PSNRE , and CPU time (seconds) of all methods for the Lena image (300× 300)

σ

PSNR MAE PSNRE CPU(s)

20 30 30 50 30 50 30 50

PMS 29.64 27.97 8.40 10.36 11.35 10.09 1.69 4.86
AOS 29.94 28.13 8.11 10.00 11.75 10.64 0.65 0.83
PM 28.49 26.36 9.58 12.25 10.77 9.53 0.80 0.92
TV 28.62 26.84 9.42 11.33 10.87 9.71 0.73 4.02

7 Conclusion
In this paper, based on convex and nonconvex linear growth functionals, we proposed a
class of singular diffusion equations for noise removal. In our method, the convex and non-
convex functionals are combined into a new functional. It is hard to consider the analysis
of the new functional. However, the new singular forward–backward diffusion equation
is introduced from the functional. And the existence, uniqueness, and long-time behavior
of solutions for the new equation are investigated. Finally, experimental results illustrate
the effectiveness of the model in noise reduction.

This work proposes quite an original and efficient method for noise removal. Noise re-
moval is a difficult problem that arises in various applications relevant to active imaging
system. The main ingredients of our method are as follows: (1) The new framework is
based on a combination between convex and nonconvex functions; (2) The new equa-
tion is a forward–backward diffusion and it is singular; (3) The Young measure solution
is obtained, and some useful properties of the solution are considered, such as long-time
behavior, stability, maximum principle, and so on; (4) The new diffusion can be simulated
by the efficient AOS scheme.

The obtained numerical results are really encouraging since they outperform the most
recent methods in this field.
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