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Abstract
In this paper, we study the global C1,1 regularity for viscosity solution of the
degenerate Monge–Ampère type equation det[D2u – A(x,Du)] = B(x,u,Du) with the
Neumann boundary value condition Dνu = ϕ(x), where the matrix A is under the
regular condition and some structure conditions, and the right-hand term B is
nonnegative.
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1 Introduction
In this paper, we study the degenerate Monge–Ampère type equation

det
[
D2u – A(·, Du)

]
= B(·, u, Du) in �, (1)

associated with the Neumann boundary value condition

Dνu = ϕ(x) on ∂�, (2)

where � is a bounded domain, Du and D2u denote the gradient and Hessian matrix of
second order derivatives of the unknown function u : � →R, respectively, A : � ×R

n →
R

n×n is a symmetric n × n matrix-valued function and A ∈ C2(�̄×R
n,Rn×n), B : �̄×R×

R
n → R

+ ∪ {0} is a nonnegative scalar function, ν denotes the unit inner normal on ∂�

and ϕ is a scalar-valued function defined on ∂�. We shall use x, z, and p to denote the
points in �, R, and R

n, respectively.
We introduce the definitions of nondegenerate and degenerate Monge–Ampère type

equation respectively. The Monge–Ampère type equation (1) is called nondegenerate or
degenerate if D2u – A is positive definite or nonnegative definite, namely the right-hand
side term B ≥ B0 > 0 or B ≥ 0, respectively, where B0 is a constant. Accordingly, a solution
u of the Neumann boundary value problem (1)–(2) is called elliptic (degenerate elliptic) if
D2u – A > 0 (≥ 0).
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We say that A is strictly regular in �, if

n∑

i,j,k,l=1

Akl
ij (x, p)ξiξjηkηl ≥ c0|ξ |2|η|2 (3)

holds for all (x, p) ∈ � ×R
n, ξ ,η ∈R

n with ξ · η = 0, and some positive constant c0, where
Akl

ij = ∂2Aij
∂pk∂pl

. If c0 on the right-hand side in (3) is replaced with 0, we say that A is regular
in �. As usual, the strictly regular condition and regular condition are also said to be the
A3 condition and the A3w condition, respectively, see [1, 2].

For the Dirichlet boundary value problem, the regularity for degenerate Monge–
Ampère equation has been extensively studied, see [3–8]. When A ≡ 0, equation (1) re-
duces to the classical Monge–Ampère equation. The global C1, 1

3 regularity was obtained
by Bao in [4] under the condition B 1

n (x) ∈ C1,1(�̄). Guan, Trudinger, and Wang showed
the global C1,1 regularity in [7] with the relaxed condition B 1

n–1 (x) ∈ C1,1(�̄). Using the
Pogorelov estimates independent of the lower bound B, the interior regularity was estab-
lished by Błocki [5] and the authors [8]. When A �≡ 0, Andriyanova [3] proved the second
order derivative estimates under the A3w condition with the right-hand term B(x, Du) =
q(x)ξ (x, Du), where q

1
n–1 (x) ∈ C1,1(�̄) is nonnegative and ξ

1
n–1 (x, Du) ∈ C1,1(�̄ × R

n) is
positive.

When A �= 0, the nondegenerate Monge–Ampère type equation (1) arises in various
aspects such as optimal mass transportation problems, geometric optics, and conformal
geometry (see, for instance, [1, 9–11]). Ma, Trudinger, and Wang [1] obtained a priori
interior second order estimates under the A3 condition. The boundary C2,α estimate for
the Dirichlet problem was established by Huang et al. [12] under the A3 condition. Jiang
et al. [13] obtained the global smooth solutions under the A3w condition. Furthermore,
Leoper [2] proved that the A3w condition is necessary for C0 regularity of the optimal
map in the optimal transportation problem.

For the Neumann boundary value problem, the global regularity of solutions for the
classical Monge–Ampère equation was established by Lions, Trudinger, and Urbas in
[14]. Subsequently, Jiang, Trudinger, and Xiang [15] proved the second order derivative
estimates of solutions for the Monge–Ampère type equation (1) under the A3w condi-
tion. However, as far as we know, there is no regularity result for the degenerate Monge–
Ampère type equation with Neumann boundary value condition, which is the motivation
of this work.

Our global second derivative estimate is obtained by mixing the Bernstein type argu-
ment and the barrier argument. In order to construct the global barrier function under
the regularity assumption of A, we need to assume the existence of a subsolution (strict
subsolution) u to equation (1) satisfying

det
[
D2u – A(x, Du)

] ≥ (>) B(x, u, Du) in � (on �̄), (4)

together with the Neumann boundary condition

Dνu = ϕ(x) on ∂�. (5)
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In order to treat the degenerate case for equation (1), we assume that B satisfies the
following conditions:

|Bi|, |Bz|, |Bpi | ≤ C1B1– 1
2(n–1) , (6)

|Bij|, |Biz|, |Bipj |, |Bzz|, |Bzpi |, |Bpipj | ≤ C2B1– 1
n–1 , (7)

and

{Bpipj – Bpi Bpj}n×n ≥ –C3B2I, (8)

in � ×R×R
n for i, j = 1, . . . , n, where C1, C2, and C3 are positive constants, I denotes the

unit matrix, Bi, Bz, and Bpi denote the partial derivatives of B with respect to xi, z, and pi,
respectively. In fact, we can have the following relaxed version of condition (6) if |B| ≤ C:

|Bi|, |Bz|, |Bpi | ≤ C4B1– 1
n–1 , (9)

in � ×R×R
n for i = 1, . . . , n, where C4 depends on n, sup B, and C1.

We define the domain � to be uniformly A-convex with respect to u ∈ C1(�̄) if

n∑

i,j=1

(
Diνj(x) – Ak

ij(x, Du)νk
)
τiτj ≤ –δ0 on ∂� (10)

for all vectors τ = τ (x) tangent to ∂� and some positive constant δ0. For the Neumann
problem, the definition of uniform A-convexity of � with respect to u is introduced in
[15]. We refer the readers to [15] for more descriptions of this definition. Based on (10),
we can define a barrier function in the neighborhood of the boundary ∂� by using the
defining function of the domain �, which will be used in the double normal derivative
estimate of u on ∂� in Sect. 3.

We now formulate the main result.

Theorem 1.1 Let � be a bounded C3,1 domain inR
n and u ∈ C4(�)∩C1,1(�̄) be an elliptic

solution of Neumann (1)–(2). Assume that ϕ ∈ C2,1(∂�), A ∈ C2(�̄×R
n,Rn×n) satisfies the

A3w condition and � is uniformly A-convex with respect to u. Suppose that B ∈ C1,1(�̄ ×
R×R

n) is a positive function satisfying conditions (6)–(8) and Bz > 0. Assume that either
of the following conditions holds:

(a) Aij = fij(x, ui)δij, where fij (i, j = 1, . . . , n) are given functions and δij is the usual
Kronecker delta;

(b) There exists a sufficiently small constant δ depending on n, A, B, sup� |u| and
sup� |Du| such that if |Dpk Aij| < δ for all i, j, k = 1, . . . , n.

Assume further that there exists a subsolution u ∈ C2(�̄) of Neumann problem (1)–(2) sat-
isfying (4)–(5). Then we have the estimate

sup
�

∣∣D2u
∣∣ ≤ C, (11)

where the constant C depends on n, �, |A|2;�̄, |u|1;�̄, u, C1, C2, C3, sup�̄ |B|, ‖ϕ‖C2,1(∂�),
and δ0.
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We remark that the alternative conditions (a) and (b) for the matrix A are used in the
treatment of the third derivative terms in the proof, see the details in Sect. 3.

Since the global second order derivative estimates are independent of the lower bound
of B, we have the following existence result by approximation. Before stating the theo-
rem, we introduce the definition of viscosity solution of equation (1). An upper (lower)-
semicontinuous function u is called a viscosity subsolution (supersolution) of equation (1)
if, for any function φ ∈ C2(�) such that u – φ has a local maximum (minimum) at some
point x0 ∈ �, there holds

det
{

D2φ(x0) –
[
A

(
x0, Dφ(x0)

)]} ≥ (≤) B
(
x0, u(x0), Dφ(x0)

)
. (12)

A continuous function u is a viscosity solution of equation (1) if it is both a viscosity sub-
solution and a viscosity supersolution of equation (1).

Based on the a priori second derivative estimate, we now establish the existence result
in the following theorem.

Theorem 1.2 Under the assumption of Theorem 1.1, assume that “B is a nonnegative func-
tion” and “a strict subsolution u ∈ C2(�̄)” in place of “B is a positive function” and “a subso-
lution u ∈ C2(�̄)”, respectively. Assume further that there exists a supersolution ū of equa-
tion (1) satisfying Dν ū ≤ ϕ(x) on ∂�, and A satisfies the quadratic structure condition from
below, namely

A(x, p) ≥ –μ0
(
1 + |p|2)I, (13)

where μ0 is a positive constant depending on sup |u| and I denotes the n × n identity ma-
trix. Then there exists a degenerate elliptic viscosity solution u ∈ C1,1(�̄) for the Neumann
problem (1)–(2).

Remark 1 Note that in Theorem 1.2, if B is a positive function and u ∈ C2(�̄) is merely a
subsolution, we can get the existence and uniqueness of the elliptic solution u ∈ C3,α(�̄)
of problem (1)–(2) for some α ∈ (0, 1). We can prove this by following the proof of Theo-
rem 1.2 in [15] and replacing ū in its original proof with u. The reason why we can replace
ū with u is that both A in (1) and ϕ in (2) have no u dependence. Indeed, when A in (1) is
independent of u, we can obtain Lemma 2.2, which can replace Lemma 2.1 of [15]. Mean-
while, since ϕ in (2) has no u dependence, we are still able to get the key inequality (47) in
our proof. Then we can follow the proof of Theorem 1.2 in [15] to establish u ∈ C3,α(�̄).

Remark 2 It is clear that Theorem 1.2 can be applied to the Monge–Ampère equation
with homogenous right-hand side as follows:

det
[
D2u – A(x, Du)

]
= c0|x|α in �, (14)

where c0 is a nonnegative constant, α ∈ [2(n – 1), +∞) is a constant. Thus, there exists a
unique convex solution u ∈ C1,1(�̄) of equation (14) under the Neumann boundary value
condition (2). For the Dirichlet problem of the totally degenerate Monge–Ampère equa-
tion (14) when c0 = 0 and A ≡ 0, we refer the reader to [16–18].
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Remark 3 Condition (a) in Theorems 1.1 and 1.2 can include A = diag(u2
1, . . . , u2

n) as an
example, which satisfies both the A3w condition and the structure condition (13). Both
conditions (a) and (b) in Theorems 1.1 and 1.2 can cover the special case when the matrix
A is independent of p, so that the standard Monge–Ampère case is already involved. It
would be interesting to relax restrictions (a) or (b) of the matrix A in Theorems 1.1 and 1.2.

The paper is organized as follows. In Sect. 2, we introduce two lemmas which will be
used to deal with the degenerate term and in the construction of the global barrier func-
tion, respectively. In Sect. 3, we give the proof of Theorem 1.1 which constitutes the core of
this paper. In this section, we reduce the global estimates to the boundary by using a global
auxiliary function, where the computations of the third order derivatives are carried out
in detail under the two alternative conditions of Theorem 1.1. For the boundary estimates,
we construct a suitable barrier function which can be used to control the degenerate term,
originating from the differentiation of equation (1). In this part, we mix the techniques of
dealing with the Neumann problems for nondegenerate Monge–Ampère type equations
in [14, 15] and the Dirichlet problems for degenerate Monge–Ampère type equations in
[3, 5–7]. In Sect. 4, we complete the proof of Theorem 1.2.

2 Preliminaries
In this section, we introduce two lemmas. One lemma is used to deal with the degenerate
term which arises in differentiating equation (1). The other lemma is used to construct
the global barrier function. In equation (1), we first suppose B > 0 in �,

{ũij} := {uij – Aij} and
{

ũij} := {ũij}–1.

Then both the matrices {ũij} and {ũij} are positive definite. We can rewrite equation (1) in
the form

log
[
det(ũij)

]
= B̃ in �, (15)

where B̃ := log B. By differentiating equation (15) in the direction ξ ∈ R
n once and twice

respectively, we have

ũij(Dξ uij – Aij,kξk – Ak
ijDξ uk

)
= Dξ B̃ (16)

and

ũij(Dξξ uij – Aij,klξkξl – Akl
ij Dξ ukDξ ul – Ak

ijDξξ uk – 2Ak
ij,lξlDξ uk

)

= ũisũjtDξ ũijDξ ũst + Dξξ B̃,
(17)

where

Dξ B̃ =
Bξ + BzDξ u + Bpk Dkξ u

B
(18)
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and

Dξξ B̃ =
Bξξ + Bzz(Dξ u)2 + BzDξξ u + Bpk Dξξ uk + Bpk pl (Dξ ul)(Dξ uk)

B

+
2BξzDξ u + 2Bξpl Dξ ul + 2Bzpk (Dξ u)(Dξ uk)

B

–
B2

ξ + B2
z (Dξ u)2 + Bpk Bpl (Dξ uk)(Dξ ul)

B2

–
2Bξ Bzuξ + 2Bξ Bpl Dξ ul + 2BzBpl (Dξ u)(Dξ ul)

B2 ,

(19)

where Bi = ∂B
∂xi

, Bz = ∂B
∂z , Bpk = ∂B

∂pk
, Aij,k = ∂Aij

∂xk
, Ak

ij = ∂Aij
∂pk

,

Div =
∂v
∂xi

+
∂v
∂z

Diu +
∂v
∂pk

Dkiu = vi + vzDiu + vpk Dkiu,

and

Dξ v = Divξi = viξi + vzDiuξi + vpk Dkiuξi

for a function v = v(x, z, p). Note that we use the standard summation convention in the
context that repeated indices indicate summation from 1 to n unless otherwise specified.

Next, we point out several facts that will be used in the proof of Theorem 1.1.

Lemma 2.1 Let u ∈ C3(�) be a solution of equation (1) in a bounded domain � ⊂ R
n.

Assume that B satisfies (6), B > 0, and B̃ = log B. Then we have the following properties:
(i)

|DiB̃| ≤ C
[

1 + max
j

(|ũij|
)]

B– 1
n–1 (20)

holds for i = 1, . . . , n, where the constant C depends on n, C1, A, and ‖u‖C1(�̄).
(ii) If B also satisfies conditions (7)–(8), then

DiiB̃ ≥ –C
[

1 + max
j

(|ũij|
)]

B– 1
n–1 – C′

[
1 + max

j

(|ũij|
)]2

+
n∑

k=1

B̃pk Diiuk (21)

holds for i = 1, . . . , n, where the constant C depends on n, C1, C2, A, and ‖u‖C1(�̄),
and the constant C′ depends on C3 and A.

Lemma 2.1 can be proved by direct calculations using (6) (or (9)), (7), and (8). We briefly
prove it here. A more detailed proof can be found in [19].

Proof of Lemma 2.1 By choosing ξ = ei in (18) and using ũij = uij – Aij and (9) (the relaxed
version of (6)), we get (20) and finish the proof of conclusion (i).

Next, we turn to proving (ii). By condition (8), we have

Bpk pl B – Bpk Bpl

B2 uiluik ≥ –C3δkl(ũil + Ail)(ũik + Aik)

≥ –C′
[
1 + max

j

(|ũij|
)]2

,
(22)
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where δkl denotes the usual Kronecker delta, the constant C′ depends on C3 and A. It
follows from (6) and (7) that the sum of the other terms on the right-hand side of (7) has a
lower bound –C[1 + maxj(|ũij|)]B– 1

n–1 , where the constant C depends on n, C1, C2, sup |B|,
A, and sup� |Du|.

Using the lower bounds –C[1 + maxj(|ũij|)]B– 1
n–1 and (22), and taking ξ = e1 in (19), we

get (21) and finish the proof of conclusion (ii). �

Remark 4 We remark that B̃ = log B satisfies condition (8) if it is semi-convex in p. The
term

∑n
k=1 B̃pk Diiuk on the right-hand side of (21) can also be dealt with directly. We shall

explain the treatment in the later discussion.

We introduce the following linearized operator of equation (1):

L =
n∑

i,j,k=1

[
ũij(Dij – Ak

ij(x, Du)Dk
)

– B̃pk Dk
]
. (23)

We introduce a fundamental lemma, which is important for constructing the global barrier
function in the next section.

Lemma 2.2 Let u ∈ C2(�̄) be an elliptic solution of (1), and let u ∈ C2(�̄) be an elliptic
function of equation (1) satisfying D2u – A(x, Du) ≥ δI > 0 in �̄ for some positive constant
δ, A is regular and B ∈ C1,1(�̄ ×R×R

n) is a positive function satisfying (6). Then

L
(
eK (u–u)) ≥ ε1T – C

(
B– 1

2(n–1) + 1
)

(24)

holds in � for sufficiently large positive constant K and uniform positive constants ε1, C
depending on ‖A‖C2 , ‖B‖C1,1 , �, ‖u‖C1 , ‖u‖C1 , δ, and C1 in (6), where L is the operator in
(23), and T =

∑n
i ũii.

Proof Since A is regular, similar to Lemma 2.1(ii) in [20], we have

L
(
eK (u–u)) ≥ ε1(T + 1) + C

{

log
det[D2u – A(x, Du)]
det[D2u – A(x, Du)]

–
n∑

k=1

B̃pk (x, u, Du)Dk(u – u)

}

(25)

≥ ε1T + ε1 + C
[

log
δn

M1
– B– 1

2(n–1)

]
,

where D2u – A(x, Du) ≥ δI > 0 and condition (6) are used in the second inequality of (25),
M1 = supx∈� B(x, u, Du), and the constant C changes from line to line. Then estimate (24)
follows by further adjusting the constant C. �

Remark 5 Note that the barrier inequality in Lemma 2.2 is different from that in [15].
Here the constants ε1 and C in estimate (24) of Lemma 2.2 are independent of the positive
lower bound of B. Note also that estimate (24) is proved under condition (6), while in [19]
a similar estimate is proved under condition (8).
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3 Global second order derivative estimates
In this section, by constructing a global auxiliary function, we can reduce the global es-
timates to the boundary. On the boundary, in order to get the mixed tangential normal
second order derivatives of u, we apply the tangential operator to the boundary value con-
dition (2). A bound of double normal derivative of u on ∂� is obtained by constructing
a suitable auxiliary function. We use the key trick of [14] to establish the global second
order derivative estimates of solutions for the degenerate Monge–Ampère type equations
with the Neumann boundary value condition. For the argument below, we assume that
the functions ϕ, ν are smoothly extended to �̄. The constant C in this section changes
from line to line.

Mixed tangential normal derivative estimate on ∂�. We introduce the tangential gradi-
ent operator δ = (δ1, δ2, . . . , δn), where δi =

∑n
j=1(δij – νiνj)Dj for i = 1, . . . , n. Applying this

tangential operator to boundary condition (2), we have

(Dku)(δiνk) + νk(δiDku) = δiϕ on ∂�. (26)

If τ is a direction tangential to ∂� at any point y ∈ ∂�, we have

Dτνu(y) =
n∑

i,k=1

τiνkDiku =
n∑

i,k=1

τiνkDiku –
n∑

i,j,k=1

τiνkνiνjDjku

=
n∑

i,j,k=1

τiνk(δij – νiνj)Djku =
n∑

i,k=1

τiνkδiDku

=
∑

i,k=1

τiδiϕ – τi(δiνk)Dku =
∑

i,k=1

τiDiϕ – τi(Diνk)Dku,

(27)

where the second equality and the last equality are both valid using the fact that τ · ν = 0,
and the fifth equality holds by (26). Hence, from (27) we obtain

|Dτνu| ≤ C (28)

on ∂�, where the constant C depends on sup�̄ |Du| and �.

Double normal derivative estimate on ∂�. We may consider any boundary point. With-
out loss of generality, we may take it to be the origin and the xn-axis in the direction of the
interior normal. From the uniform A-convexity of � and the regularity of A, there exists
a C2 defining function in �̄ satisfying

φ = 0 on ∂�, Dνφ = –1 on ∂�, and φ < 0 in �, (29)

together with the inequality

{
Dijφ – Ak

ij(x, Du)Dkφ
}

n×n ≥ δ0I, (30)

in a neighborhood N of ∂�, whenever Dνu ≥ ϕ(x), where δ0 is a positive constant and I
denotes the identity matrix. We employ the auxiliary function

w = ±(
Dνu – ϕ(x)

)
+ βφ (31)
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in

�d0 :=
{

x ∈ � | dist(x, ∂�) < d0
}

,

where β and d0 are two positive constants to be determined. By the continuity of Dνφ and
Dνφ = –1 on ∂�, there exists a small constant d0 such that Dνφ ≤ – 1

2 in �d0 .
It follows from (16) that

Lw = ±ũij[Dij(νkDku) – Al
ijDl(νkDku)

] ∓ Lϕ + βLφ

= ±ũij[(Dijνk)Dku + 2DjνkDiku – Al
ij(Dlνk)Dku + νkAij,k

]

+ νkB̃pk ∓ Lϕ + βLφ

≥ βLφ – CT – C – CB– 1
n–1

≥ βLφ – CT – CB– 1
n–1 ,

(32)

where T =
∑n

i=1 ũii, the first inequality is obtained by using (20) in Lemma 2.1, the second
inequality is obtained by using the fact that

1
n
T ≥

( n∏

i=1

ũii

) 1
n

=

( n∏

i=1

ũii

)– 1
n

= B– 1
n ≥ C. (33)

By a direct calculation, we obtain

Lφ = ũij[Dijφ – Ak
ij(x, Du)Dkφ

]
– B̃pk Dkφ

≥ δ0T – B̃pk Dkφ

≥ δ0T – CB– 1
2(n–1) ,

(34)

where the first and second inequalities are established by using (34) and (6), respectively.
Therefore, from (32), (33), and (34), we have

Lw ≥ (βδ0 – C)T – CB– 1
n–1 – CβB– 1

2(n–1) . (35)

We decompose �d0 = �1
d0

∪ �2
d0

, where

�1
d0 = �d0 ∩

{ n∑

i=1

ũii ≥ n

}

and

�2
d0 = �d0 ∩

{ n∑

i=1

ũii < n

}

.

If max�̄d0
w = w(x̄) for some x̄ ∈ �̄d0 . The proof of the double normal derivative estimate

of u on ∂� splits into three stages according to whether x̄ ∈ �1
d0

or x̄ ∈ �2
d0

, or neither.
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Case 1. x̄ ∈ �1
d0

. Since max�̄d0
w = w(x̄) for x̄ ∈ �1

d0
, then we have

Lw(x̄) ≤ 0. (36)

We may assume that ũij(x̄) is diagonal. Without loss of generality, we may assume that
ũ11(x̄) ≥ 1. At the point x̄, we have

T ≥
n∑

i=2

ũii

≥ (n – 1)

( n∏

i=2

ũii

) 1
n–1

= (n – 1)

( n∏

i=1

ũii

) 1
n–1

(ũ11)
1

n–1

≥ (n – 1)B– 1
n–1 ,

(37)

where ũ11(x̄) ≥ 1 is used in the last inequality. At x̄, we can assume that
√
T ≥ 3C

δ0
√

n–1 ,
otherwise we have already got the global second order derivative estimates. Therefore at
x̄, by (35), we have

Lw ≥
(

βδ0

3
– C

)
T +

βδ0

3
T – CB– 1

n–1 +
βδ0

3
T – CβB– 1

2(n–1)

≥
(

βδ0

3
– C

)
T +

(
βδ0

3
–

C
n – 1

)
T +

(
βδ0

3
√
T –

Cβ√
n – 1

)√
T

> 0,

(38)

where we choose β ≥ 3C
δ0

+ 1 such that the last inequality holds. It is a contradiction with
(36). Therefore, x̄ /∈ �1

d0
.

Case 2. x̄ ∈ �2
d0

. For the unit inner normal vector ν = (ν1, . . . ,νn), we must have

0 ≤ |νi| ≤ 1 for i = 1, . . . , n. (39)

Since max�̄2
d0

w = w(x̄), x̄ = (x̄1, . . . , x̄n) ∈ �2
d0

, we obtain

wν(x̄) = 0. (40)

Therefore, we have at x̄

0 = wν = ±(Dννu – Dνϕ) + βDνφ

= ±
( n∑

i,j

νiνjDiju

)

∓ Dνϕ + βDνφ

≤ n2
n∑

i=1

ũii ∓ Dνϕ + βDνφ.

(41)
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Choose β ≥ 2 max |Dϕ| + 4n3 such that
∑n

i=1 ũii ≥ 2n, which is a contradiction with
∑n

i=1 ũii < n. Therefore, x̄ /∈ �2
d0

.

Case 3. x̄ ∈ ∂�d0 . On ∂�d0 ∪ �, we have

w = ±(Dνu – ϕ) + βφ ≤ 0, (42)

where β is chosen large enough such that the last inequality holds. On ∂�, we have

w = ±(
Dνu – ϕ(x)

)
+ βφ = 0. (43)

Therefore, for all x ∈ �̄d0 , we have

w(x) ≤ 0. (44)

Since w(0) = 0, we have

Dνw(0) ≤ 0, (45)

which implies

|Dννu| ≤ C on ∂�. (46)

Remark 6 In the above proof, we only use (30) in a neighborhood N of ∂� whenever
Dνu ≥ ϕ(x). If Dνu < ϕ(x) in a neighborhood N0 of some boundary point x0 ∈ ∂�, from
the boundary condition, we directly get an upper bound Dννu(x0) ≤ Dνϕ(x0). While the
lower bound Dννu ≥ ∑n

i,j Aijνiνj at x0 can be derived from the ellipticity.

Based on the mixed tangential normal derivative estimate and the double normal deriva-
tive estimate on ∂�, we now use the method in [15] to prove Theorem 1.1, which is a
modification of the original method in [14].

Proof of Theorem 1.1 We modify the elliptic subsolution u by adding a perturbation func-
tion aφ, where a is a small positive constant and φ is the defining function of the domain
� satisfying (29). Note that the function u

�
:= u – aφ is still uniformly elliptic in � if a is a

sufficiently small. By a direct computation, we have

Dν(u
�

– u) = Dνu – Dνu – aDνφ

= –aDνφ

= a

(47)

on ∂�. We define a function with the form � = exp[K(u
�

– u)] with a positive constant K .
Replacing u in Lemma 2.2 with u

�
, from (24), we have

L� ≥ ε1T – C
(
B– 1

2(n–1) + 1
)

in �. (48)
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By a direct calculation, we also have

Dν� ≥ Ka inf
(
eK (u–u)) > 0 on ∂�. (49)

We employ the auxiliary function

G(x, ξ ) =
(
ũξξ – v′(x, ξ )

)
e

α
2 |Du|2+κ� (50)

in �̄ ×R
n, where |ξ | = 1, α and κ are positive constants to be determined, v′ is given by

v′(x, ξ ) = 2(ξ · ν)ξ ′
i
(
Diϕ(x) – DkuDiνk – Aijνj

)
, (51)

and ξ ′ is given by

ξ ′ = ξ – (ξ · ν)ν. (52)

Assume that G attains its maximum at x0 ∈ � and ξ = ξ0. Let

H(x, ξ ) = log G(x, ξ ) = log
(
ũξξ – v′) +

α

2
|Du|2 + κ�, (53)

then the function H attains its maximum at x0 ∈ � and ξ = ξ0. From now on, all the cal-
culations will be made at the point x = x0 and ξ = ξ0 unless otherwise specified. At x0, we
obtain

0 = DiH =
Di(ũξξ – v′)

ũξξ – v′ + αDkuDiku + κDi�, for i = 1, . . . , n, (54)

0 ≥ DijH

=
Dij(ũξξ – v′)

ũξξ – v′ –
Di(ũξξ – v′)Dj(ũξξ – v′)

(ũξξ – v′)2

+ α(DikuDjku + DkuDijku) + κDij�.

(55)

Therefore, at x0 we have

0 ≥ LH

=
1

ũξξ – v′ L
(
ũξξ – v′) –

1
(ũξξ – v′)2 ũijDi

(
ũξξ – v′)Dj

(
ũξξ – v′)

+ αũijDikuDjku + αDkuLuk + κL�.

(56)

By a direct computation and using (17)–(19), we have

Luξξ ≥ ũikũjlDξ ũijDξ ũkl + ũijDpk pl AijDξ ukDξ ul

– C
[
(1 + ũii)T + (ũii)2] – C(1 + ũii)B– 1

n–1

≥ ũikũjlDξ ũijDξ ũkl – C
[
(1 + ũii)T + (ũii)2] – C(1 + ũii)B– 1

n–1 ,

(57)
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where the first inequality is established by (21) in Lemma 2.1, and the second inequality is
obtained by using the A3w condition. Note that the term

∑n
k=1 B̃pk Diiuk in (21) does not

appear on the right-hand side of the first inequality in (57) since it can be subtracted using
the definition of the linearized operator L in (23). By a direct computation, we obtain

|LAξξ | ≤ C
[
(1 + ũii)T + ũii

]
+

∣∣
∣∣
Bpl

B
Aξξ ,l

∣∣
∣∣

≤ C
[
(1 + ũii)T + ũii

]
+ C(1 + ũii)B– 1

n–1 ,
(58)

where (20) in Lemma 2.1 is used in the second inequality. It follows from (16) and (20) in
Lemma 2.1 that

∣
∣Lv′∣∣ ≤ CT + C

∣
∣L(uk)

∣
∣

≤ CT + CB– 1
n–1 .

(59)

Note that there is no 1 + ũii in the coefficient of B– 1
n–1 in (59) since the term B̃pl Dluk is

already subtracted in L(uk).
Hence, combining (57), (58), and (59), we have

L
(
ũξξ – v′) ≥ ũikũjlDξ ũijDξ ũkl – C

[
(1 + ũii)T + ũ2

ii
]

– C(1 + ũii)B– 1
n–1 . (60)

By Cauchy’s inequality, we obtain

ũijDi
(
ũξξ – v′)Dj

(
ũξξ – v′) ≤ (1 + θ )ũijDiũξξ Djũξξ + C(θ )ũijDiv′Djv′ (61)

for any θ > 0, where C(θ ) is a positive constant depending on θ . Inserting (48), (60), and
(61) into (56), by calculations, we get

0 ≥ LH

≥ 1
ũξξ – v′ ũikũjlDξ ũijDξ ũkl –

1 + θ

(ũξξ – v′)2 ũijDiũξξ Djũξξ

– C
1

ũξξ – v′
{[

(1 + ũii)T + (ũii)2] + C(1 + ũii)B– 1
n–1

}

–
C(θ )

(ũξξ – v′)2 ũijDiv′Djv′ – Cα
(
B– 1

n–1 + T
)

+ α

n∑

i=1

ũii + κ
[
ε1T – C

(
B– 1

2(n–1) + 1
)]

.

(62)

Next, we shall deal with the terms on the right-hand side of (62). Without loss of gen-
erality, we assume that {ũij} is diagonal at x0 with the maximum eigenvalue ũ11. We can
always assume that ũ11 > 1 and is as large as we want; otherwise we are done. Since v′ is
bounded, ũ11 and ũξξ are comparable in the sense that, for any θ > 0, there exists a further
constant C(θ ) such that

∣∣ũ11 – ũξξ + v′∣∣ < θ ũ11 (63)
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if ũ11 > C(θ ). Therefore, using (63), we have

1
ũξξ – v′

[
(1 + ũii)T + (ũii)2]

≤ 1
(1 – θ )ũ11

[
(1 + ũii)T + (ũii)2]

≤ C

(

T +
n∑

i=1

ũii

)
(64)

for some constant C if θ ∈ (0, 1/2).
We shall treat the first two terms on the right-hand side of (62). For this purpose, we

will make a more detailed calculations than [15] since the equality DiAξξ = Dξ Aiξ does
not hold in general. Because in (62) the vector ξ is not equal to e1, the situation here is
different from the formula below (24) in [21]. Next, we divide the discussions into the two
cases (a) and (b) assumed in the statement of this theorem.

In case (a), Aij = fij(x, ui)δij. We define

P :=
1

ũ11
ũikũjlDξ ũijDξ ũkl –

1 – 2θ

1 – θ

1
ũ2

11
ũijDiũξξ Djũξξ , (65)

we shall get a lower bound of the quantity P in terms of T . We define the matrix

{aik} :=
{

ũjlDξ ũijDξ ũkl
}

(66)

and let � be its maximum eigenvalue. For the first term of P , we have

1
ũ11

ũikũjlDξ ũijDξ ũkl =
trace{ũikakj}

ũ11
≥ ũ11�

ũ11
=

�

ũ2
11

. (67)

For the second term of P , using {ũij} := {uij – Aij}, we have

1 – 2θ

1 – θ

1
ũ2

11
ũijDiũξξ Djũξξ

=
1 – 2θ

1 – θ

1
ũ2

11
ũij(Dξ uki – DiAkξ )(Dξ ulj – DiAlξ )ξkξl

=
1 – 2θ

1 – θ

1
ũ2

11
ũij[Dξ (uik – Aik) + (Dξ Aki – DiAkξ )

]

· [Dξ (ujl – Ajl) + (Dξ Ajl – DjAlξ )
]
ξkξl

=
1 – 2θ

1 – θ

1
ũ2

11
ũijDξ ũiξ Dξ ũjξ +

1 – 2θ

1 – θ

2
ũ2

11
ũijDξ ũiξ (Dξ Ajξ – DjAξξ )

+
1 – 2θ

1 – θ

1
ũ2

11
ũij(Dξ Aiξ – DiAξξ )(Dξ Ajξ – DjAξξ )

≤ 1
ũ2

11
ũijDξ ũiξ Dξ ũjξ +

1 – 2θ

θ

1
ũ2

11
ũij(Dξ Aiξ – DiAξξ )(Dξ Ajξ – DjAξξ ),

(68)
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where the last inequality is valid by using Cauchy’s inequality. We now calculate the terms
DiAξξ and Dξ Aiξ . For general A(x, Du), we have

DiAξξ = Dxi Aξξ + (Dpk Aξξ )uki, ∀i = 1, . . . , n. (69)

For Aij = fij(x, ui)δij, we have

Dξ Aiξ = (Dxk fii)ξiξk + (Dpi fii)ξiuiξ , ∀i = 1, . . . , n. (70)

Substituting (69) and (70) into the last term of (68), we have

1 – 2θ

θ

1
ũ2

11
ũij(Dξ Aiξ – DiAξξ )(Dξ Ajξ – DjAξξ )

=
1 – 2θ

θ

1
ũ2

11
ũij(Dξ Aiξ Dξ Ajξ – Dξ Aiξ DjAξξ – DiAξξ Dξ Ajξ + DiAξξ DjAξξ )

≤ 1 – 2θ

θ

C
ũ2

11
(T + ũ11)

≤ C(T + 1),

(71)

where ũijũjk = δik and {ũij} := {uij – Aij} are used in the first inequality, and ũ11 ≥ 1–2θ
θ

is
assumed in the last inequality. Combining (65), (67), (68), and (71), we now get the lower
bound of P in terms of T ,

P ≥ 1
ũ2

11
(� – aklξkξl) – C(T + 1) ≥ –C(T + 1), (72)

where the definitions of the matrix {aik} and its maximum eigenvalue � are used succes-
sively. On the other hand, it follows from DiH = 0 in (54) that

ũijDiũξξ Djũξξ ≤ 2ũii[∣∣Div′∣∣2 +
(
ũξξ – v′)2(αDkuDiku + κDi�)2]

≤ 2ũii∣∣Div′∣∣2 + C
(
ũξξ – v′)2

(

α2
n∑

i=1

ũii + κ2T
)

.
(73)

Combining (63), (72), and (73), we obtain

1
ũξξ – v′ ũikũjlDξ ũijDξ ũkl –

1 + θ

(ũξξ – v′)2 ũijDiũξξ Djũξξ

≥ 1
1 – θ

(
1

ũ11
ũikũjlDξ ũijDξ ũkl –

1 + θ

(1 – θ )ũ2
11

ũijDiũξξ Djũξξ

)

≥ 1
1 – θ

(
P –

3θ

(1 – θ )ũ2
11

ũijDiũξξ Djũξξ

)

≥ –
C(T + 1)

1 – θ
–

3θ

[(1 – θ )ũ11]2

[

2ũii∣∣Div′∣∣2 + C
(
ũξξ – v′)2

(

α2
n∑

i=1

ũii + κ2T
)]

≥ –C(T + 1) – Cθα2
n∑

i=1

ũii – Cθκ2T

(74)
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for θ ∈ (0, 1/2), where C becomes a further constant in the last inequality. We can assume
ũ11 ≥ 1, otherwise we have already obtained the desired estimate. Similar to (37), we also
have

B– 1
n–1 ≤ T

n – 1
. (75)

For the last term in (62), using Cauchy’s inequality, we have

ε1T – C
(
B– 1

2(n–1) + 1
)

≥ ε1T – εB– 1
n–1 – C(ε)

≥ ε1

2
T – C(ε1),

(76)

where we take ε = n–1
2 ε1 and use (75) in the second inequality.

Inserting (63), (64), (74), (75), and (76) into (62), we obtain, for ũ11 ≥ max{C(θ ), 1},

α

n∑

i=1

ũii +
κε1

2
T

≤ C

{
[
1 + κC(ε1)

]
+

(
1 + α2θ

) n∑

i=1

ũii +
(
1 + α + κ2θ

)
T

}

.

(77)

By choosing κ � α � 1 and fixing a small positive θ = 1/κ2, we can get from (77) that

n∑

i=1

ũii(x0) ≤ C, (78)

which implies a corresponding estimate for |D2u(x0)| in case (a).
In case (b), |Dpk Aij| < δ for all i, j, k = 1, . . . , n, and sufficiently small δ. We define

P ′ :=
1

ũ11
ũikũjlDξ ũijDξ ũkl –

1
ũ2

11
ũijDiũξξ Djũξξ . (79)

Similarly to (68), we can get

1
ũ2

11
ũijDiũξξ Djũξξ

=
1

ũ2
11

ũijDξ ũiξ Dξ ũjξ +
2

ũ2
11

ũijDξ ũiξ (Dξ Ajξ – DjAξξ )

+
1

ũ2
11

ũij(Dξ Aiξ – DiAξξ )(Dξ Ajξ – DjAξξ ).

(80)

For the middle term on the right-hand side of (80), rather than using Cauchy’s inequality,
it can be dealt with by using Dξ ũiξ = Diuξξ –Dξ Aiξ , (69), (70), (54), and |Dpk Aij| < δ, namely

2
ũ2

11
ũijDξ ũiξ (Dξ Ajξ – DjAξξ )

=
2

ũ2
11

ũij[Diũξξ – (Dξ Aiξ – DiAξξ )
]
(Dξ Ajξ – DjAξξ )



Shi and Jiang Boundary Value Problems         (2021) 2021:11 Page 17 of 22

≤ 2
ũ2

11
ũijDiũξξ (Dξ Ajξ – DjAξξ ) (81)

=
2

ũ2
11

ũij[Div′ –
(
ũξξ – v′)(αDkuDiku + κDi�)

]
(Dξ Ajξ – DjAξξ )

≤ C
[
1 + δ(α + κT )

]
,

provided ũ11 ≥ 1. We can analyze the last term on the right-hand side of (80) for general
matrix A to get

1
ũ2

11
ũij(Dξ Aiξ – DiAξξ )(Dξ Ajξ – DjAξξ ) ≤ C(T + 1), (82)

provided ũ11 ≥ 1. Combining (79), (80), (81), and (82), we obtain

P ′ ≥ 1
ũ2

11
(� – aklξkξl) – C

[
1 + T + δ(α + κT )

]

≥ –C
[
1 + T + δ(α + κT )

]
.

(83)

Combining (63), (83), and (73), we obtain

1
ũξξ – v′ ũikũjlDξ ũijDξ ũkl –

1 + θ

(ũξξ – v′)2 ũijDiũξξ Djũξξ

≥ 1
1 – θ

(
1

ũ11
ũikũjlDξ ũijDξ ũkl –

1 + θ

(1 – θ )ũ2
11

ũijDiũξξ Djũξξ

)

≥ 1
1 – θ

(
P ′ –

2θ

(1 – θ )ũ2
11

ũijDiũξξ Djũξξ

)

≥ –C
[
1 + T + δ(α + κT )

]
– Cθα2

n∑

i=1

ũii – Cθκ2T

(84)

for θ ∈ (0, 1/2). Using the estimate in (83) and deducing as in case (a), for ũ11 ≥
max{C(θ ), 1}, we obtain in place of (77)

α

n∑

i=1

ũii +
κε1

2
T

≤ C

{
[
1 + κC(ε1) + δα

]
+

(
1 + α2θ

) n∑

i=1

ũii +
(
1 + α + κ2θ + κδ

)
T

}

.

(85)

By choosing α = 2C +1 and κ = 2[C(α+3)+1]
ε1

successively and fixing the positive constants θ =
1/κ2 and δ = 1/κ , we can get from (85) that (78) holds again, which implies a corresponding
estimate for |D2u(x0)| in case (b).

Next, we consider the case x0 ∈ ∂�, namely the function G in (50) attains its maximum
over �̄ at x0 ∈ ∂� and a unit vector ξ . The estimation of the rest of the Hessian D2u splits
into two stages according to a different direction of ξ .
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Case (i). ξ tangential. Since v′(x0, ξ ) = 0, at x0 we obtain

0 ≥ DνG

= Dν

{[
ũξξ – v′(x, ξ )

]
e

α
2 |Du|2+κ�

}

= e
α
2 |Du|2+κ�

{(
ũξξ – v′(x, ξ )

)
Dν

(
α

2
|Du|2 + κ�

)
+ Dν

(
ũξξ – v′(x, ξ )

)}

= e
α
2 |Du|2+κ�

{[
αDkuDν(Dku) + κDν�

]
ũξξ + Dνuξξ – Dν

(
Aξξ + v′)}

= e
α
2 |Du|2+κ�

{[
κDν� + αDku(ϕk – DiuDkνi)

]
ũξξ

+ Dνuξξ – Dν

(
Aξξ + v′)}

≥ e
α
2 |Du|2+κ�

{
(κc0 – αM)ũξξ + Dνuξξ – Dν

(
Aξξ + v′)},

(86)

where c0 = Ka inf(eK (u–u)), M = maxx∈∂� |Dku(ϕk – DiuDkνi)|. The above inequality gives a
relationship between ũξξ (x0) and Dνuξξ (x0) at x0, namely

Dνuξξ ≤ –(κc0 – αM)ũξξ + Dν

(
Aξξ + v′). (87)

On the other hand, by tangential differentiating the boundary condition twice, we obtain

(Dku)δiδjνk + (δiDku)δjνk + (δjDku)δiνk + νkδiδjDku = δiδjϕ on ∂�. (88)

Hence, for the tangential direction ξ at x0, we have

Dνuξξ ≥ –2(δiνk)Djkuξiξj + (δiνj)ξiξjDννu – C

≥ –2(δiνk)Djkuξiξj – C,
(89)

where the double normal derivative estimate (46) on ∂� is used in the second inequality.
Thus, at x0 we have

(κc0 – αM)ũξξ ≤ 2(δiνk)Djkuξiξj + Dν

(
Aξξ + v′) + C

≤ 2(δiνk)Djkuξiξj + C|DDνu| + C

≤ 2(δiνk)Djkuξiξj + C,

(90)

where the mixed tangential normal derivative estimate (28) and the double normal deriva-
tive estimate (46) are used to obtain the last inequality, and the constant C changes from
line to line. Without loss of generality, we can assume the normal at x0 to be ν = (0, . . . , 1),
and we can assume {ũij(x0)}i,j<n is diagonal with maximum eigenvalue ũ11(x0) > 1. Then,
at x0 we obtain

(κc0 – αM)ũξξ ≤ C(ũ11 + 1). (91)

Since G(x0, e1) ≤ G(x0, ξ ), we have

ũ11(x0) ≤ ũξξ (x0) + v′(x0, e1) – v′(x0, ξ ). (92)
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Combining (91) and (92) and choosing κ ≥ 2
c0

(αM + C), we obtain

uξξ (x0) ≤ C. (93)

Case (ii). ξ non-tangential. We write ξ as

ξ = ατ + βν, (94)

where α = ξ · τ , |τ | = 1, τ · ν = 0, β = ξ · ν �= 0, and

α2 + β2 = 1. (95)

Therefore, at x0 we have

Dξξ ũ = α2ũττ + β2ũνν + 2αβũτν

= α2ũττ + β2ũνν + v′(x, ξ ),
(96)

where the definition of v′ in (51) is used. Since G(x0, τ ) ≤ G(x0, ξ ), we obtain

G(x0, ξ ) = α2G(x0, τ ) + β2G(x0,ν)

≤ α2G(x0, ξ ) + β2G(x0,ν).
(97)

Using (95) in (97), we get

G(x0, ξ ) ≤ G(x0,ν), (98)

which implies

Dξξ u(x0) ≤ C + Dννu(x0) ≤ C, (99)

where the double normal derivative estimate (46) on ∂� is used again.
Therefore, we can conclude from the two cases (i) and (ii) that if G attains its global

maximum at x0 ∈ ∂� and a unit vector ξ , then Dξξ u(x0) is bounded from above. Taking
(78) into account, we can derive estimate (11). Hence, Theorem 1.1 is proved. �

4 C0, C1 estimates and the existence
In this section, we derive the lower order a priori derivative estimates (i.e., the C0 and
C1 estimates) for Monge–Ampère type equations (1) with the Neumann boundary value
condition (2). Using these estimates together with the second derivative estimate in The-
orem 1.1, we give the proof of Theorem 1.2.

Since Bz > 0, the comparison principle for the classical solutions is valid. Under the as-
sumptions that u satisfies (4)–(5) and ū satisfies (1) and Dν ū ≤ ϕ(x) on ∂�, by comparison
principle, we have

u ≤ u ≤ ū (100)

in �̄, which gives the C0 estimate of the solution u.
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The C1 estimate is established in [15, 22] in a general form. For convenience, we repeat
it here.

Theorem 4.1 Let u ∈ C2(�) ∩ C1,1(�̄) satisfy

D2u ≥ –μ0
(
1 + |Du|2)I (101)

in a C2 domain � ⊂R
n, with Dνu ≥ –δ on ∂�, where μ0 and δ are nonnegative constants.

Then we have the estimate

|Du| ≤ C, (102)

where C depends on μ0, δ, �, and sup |u|.

From the ellipticity and the quadratic lower bound for A in (13), it is easy to get inequality
(101). Setting δ = max{– min∂� ϕ, 0}, u satisfying (2) automatically satisfies Dνu ≥ –δ on
∂�. Hence, the gradient estimate (102) holds for the solution u of problem (1)–(2).

With the preparations of a priori estimates (100), (102), and (11), we are able to prove
the existence result in Theorem 1.2.

Proof of Theorem 1.2 We shall prove the existence of a viscosity solution u of the Neumann
problem of the degenerate Monge–Ampère equation (1)–(2) by approximations.

We consider the following approximating problem:

det
[
D2u – A(·, Du)

]
= Bε > 0, in �,

Dνu = ϕ(x), on ∂�,
(103)

where

Bε(·, u, Du) := B(·, u, Du) + ε

for small positive constant ε. If B satisfies conditions (6)–(8), it is obvious that Bε still
satisfies the same conditions.

By Remark 1, there exists a unique elliptic solution uε ∈ C3,α of problem (103), where
α ∈ (0, 1). Since ū is still the supersolution of problem (103), and for sufficiently small
ε > 0, u is still the subsolution of problem (103) as well, we get the uniform estimate

u ≤ uε ≤ ū (104)

for sufficiently small ε > 0. Notice that the gradient estimate in Theorem 4.1 is independent
of the lower bound of the right-hand side term of the equation. Therefore, we have

|Duε | ≤ C, (105)

where the constant C is independent of ε. By Theorem 1.1, we obtain the uniform second
derivative estimate

sup
�

∣
∣D2uε

∣
∣ ≤ C. (106)
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From the remarks in the paragraph below Theorem 1.1 (or from the proof of Theorem 1.1),
we know that the constant C in (106) is independent of ε. With the uniform estimates
(104), (105), and (106), we can pass the limit to uε . Now letting ε → 0 (passing to a sub-
sequence if necessary), we get a viscosity solution u of the degenerate Monge–Ampère
equation (1) with the Neumann boundary condition (2), which is degenerate elliptic and
satisfies the estimate

‖u‖C1,1(�̄) ≤ C. (107)

Therefore, the proof of Theorem (1.2) is completed. �

Remark 7 In Theorem 1.2, we proved the existence of a viscosity solution u ∈ C1,1(�̄)
by smooth approximations. Such uniqueness of viscosity solutions in our Az = 0, Bz > 0,
and ϕz = 0 case is not covered in Sect. 4 of [23]. It would be interesting to investigate
the uniqueness of the viscosity solutions of the degenerate Monge–Ampère equation (1)
satisfying the Neumann boundary condition (2).

Remark 8 In the current paper, we show that “the existence of a subsolution implies the
existence of a solution”, which is the new point of the existence result to the Neumann
problem (1)–(2) of degenerate Monge–Ampère type equations. This idea is also new even
for nondegenerate Monge–Ampère type equations. For the nondegenerate case in [15],
for a more general problem with A and ϕ depending also on u,

det
[
D2u – A(·, u, Du)

]
= B(·, u, Du) in �,

Dνu = ϕ(·, u) on ∂�,
(108)

the result is that “the existence of a supersolution implies the existence of a solution”. If we
consider such a general problem (108) in the degenerate elliptic setting, the supersolution
u is only degenerate elliptic and is not enough to construct a barrier function. It needs
new ideas to solve the general Neumann problem (108) in the degenerate case.
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