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Abstract
A stochastic four species food-chain model is proposed in this paper. Here, artificial
harvest in each species and the effect of time delay for interaction between species
are considered, which makes the model more applicable in real situations. Specifically,
we address the stochastic global dynamics behavior, including the existence of global
positive solutions, stochastic ultimate boundedness, extinction with probability one,
persistence in mean and global stability. The asymptotic stability in the probability
distribution is obtained, and the criterion for the existence and non-existence of the
optimal harvesting strategy is also derived. Furthermore, this paper can provide
reference for the research of general n-species stochastic food-chain models.
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1 Introduction
Ecosystem of one species is very rare in nature. In natural ecosystems, the coexistence of
a large number of species is almost universal (see [1]). Over the last few decades, two or
three species systems such as predator–prey and food-chain systems have long been the
main topic of mathematical ecology and ecology (see [2–5]). However, we have realized
that many phenomena in nature cannot be described by an ecosystem with two species or
three interacting species. It is extremely important to develop theoretical methods with
four or more species (see [6, 7]). El-Owaidy et al. in [7] studied a four-level generalized
food-chain model, they analyzed the existence of a bounded solution and investigated the
stability of various equilibrium points. However, the complex dynamics of the model was
not explored.

Nowadays, the harvesting policies and regulations of wildlife in various countries have
been gradually established. The most important thing of such regulations is to formu-
late an optimal harvesting plan that integrates the three aspects of ecology, environment
and economy. So, it is extremely important to develop theoretical methods to get optimal
harvesting result (see [8–17]). Tuerxun et al. in [17] studied a stochastic two-predators
one-prey system with distributed delays, harvesting and Lévy jumps. They mainly dis-
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cussed the global dynamics and the optimal harvesting strategy, also obtained the optimal
harvesting result was affected by environmental fluctuations.

In the presence of such a variety of environmental randomness, which can lead to cru-
cial impact (see [18–24]). Lande et al. in [19] carried out that maybe largely because of the
ignorance of randomness, the extinction of numerous species caused by over-harvesting.
The next question is: if all species are affected by harvesting and environmental random-
ness, what role does randomness play? To answer the above question and inspired by the
above literature, this article discusses the influence of environmental randomness.

Apart from randomness, time delay is another factor that is easily overlooked by schol-
ars. Xu (see [25]) and Ma (see [26]) pointed out that systems with distributed delay are
divided into two categories: discrete delay and continuous distributed delay. Whether dis-
tributed delay or discrete delay has a crucial impact on the result, because it is inevitable
in nature world. Generally, when changes occur, it takes a certain amount of time for
species in nature to show this effect. No species will react immediately in this situation
(see [25, 26]).

In [27], the authors studied a tri-trophic stochastic food-chain model with harvesting.
For each species, the threshold of persistence in mean and extinction, and the criterion
for the stability in distribution of the system are obtained. Furthermore, the necessary
and sufficient criterion for existence of the optimal harvesting strategy are established.
The sustainable maximum yield and optimal harvesting effort are also given. In [28], tak-
ing harvesting and distributed delays into consideration, the authors investigated a class of
stochastic three species food-chain models. The global dynamics of the model, including
global asymptotic stability, extinction, random boundedness, and the probability distribu-
tion are obtained. Furthermore, the maximum of expectation of sustainable yield (MESY
for short) and the optimal harvesting strategy are acquired.

However, we see that the similar research work for the general n-species (when n ≥ 4)
stochastic food-chain models is not found up to now. After a preliminary attempt, we
find that there exists the larger difficulty to straightway investigate the dynamical behavior
of the general n-species stochastic food-chain model at present. We cannot yet give a
universal method or formula to establish the ideal results for the moment. For this reason,
we focus on the following stochastic four species food-chain model with harvesting and
distributed delay:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) = x1(t)[r1 – h1 – a11x1(t) – a12
∫ 0

–τ12
x2(t + θ ) dμ12(θ )] dt + σ1x1(t) dB1(t),

dx2(t) = x2(t)[r2 – h2 + a21
∫ 0

–τ21
x1(t + θ ) dμ21(θ ) – a22x2(t)

– a23
∫ 0

–τ23
x3(t + θ ) dμ23(θ )] dt + σ2x2(t) dB2(t),

dx3(t) = x3(t)[r3 – h3 + a32
∫ 0

–τ32
x2(t + θ ) dμ32(θ ) – a33x3(t)

– a34
∫ 0

–τ34
x4(t + θ ) dμ34(θ )] dt + σ3x3(t) dB3(t),

dx4(t) = x4(t)[r4 – h4 + a43
∫ 0

–τ43
x3(t + θ ) dμ43(θ ) – a44x4(t)] dt + σ4x4(t) dB4(t).

(1)

We expect that the method and results introduced in this paper can help for us to inves-
tigate the general n-species stochastic food-chain models.

In model (1), the parameter r1 > 0 is intrinsic growth rate of species x1, ri ≤ 0 (i = 2, 3, 4)
represents death rates of species xi, aii > 0 (i = 1, 2, 3, 4) is density dependent coefficient of
species xi, a12 ≥ 0, a23 ≥ 0 and a34 ≥ 0 are capture rates, a21 ≥ 0, a32 ≥ 0 and a43 ≥ 0 stand
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for efficiency of food conversion, hi ≥ 0 (i = 1, 2, 3, 4) measures for the harvesting effort of
species xi, μij(θ ) (i, j = 1, 2, 3, 4) is nonnegative variation function defined on [–τij, 0] sat-
isfying

∫ 0
–τij

dμij(θ ) = 1, Bi(t) (i = 1, 2, 3, 4) is the independent standard Brownian motion
defined on the complete probability space (�, {Ft}t≥0, P) with a filtration {Ft}t≥0 satisfying
the usual conditions, and σ 2

i (i = 1, 2, 3, 4) is the intensity of Bi(t).
We conduct research from two major aspects of model (1) in this article. One is the

global dynamics, we mainly use the stochastic inequalities, the inequality estimation tech-
nique and Lyapunov function method to obtain. Another is about the harvesting, we con-
sider the relation between the extinction, persistence of species and the influence of har-
vesting, we also obtain the optimal harvesting strategy H∗ = (h∗

1, h∗
2, h∗

3, h∗
4) and the maxi-

mal expectation of sustained yield Y (H∗) = limt→∞
∑4

i=1 E(h∗
i xi(t)) under the premise that

all species are not extinct.
The specific content of this paper is listed as follows. We first provide few necessary

lemmas to prove the main results. In Sect. 2, for any positive initial value, the existence
of the global unique positive solution is obtained, meanwhile, the random boundedness
is also acquired. In Sect. 3, we not only establish the overall criterion of extinction and
persistence in mean, but also establish the condition of the global asymptotic stability in
distribution. We address the discussion that the impact of harvesting on extinction and
persistence, and provide the sufficient and prerequisite criterion for the existence and non-
existence of optimal harvesting strategy in Sect. 4. In order to clarify the main conclusions
of the paper, we provide numerical simulations in Sect. 5. Finally, in Sect. 6, we not only
give a concise conclusion, but also put forward some interesting relevant questions based
on the thinking of this research.

2 Preliminaries
Firstly, introduce the following notations:

b1 = r1 – h1 –
1
2
σ 2

1 , b2 = r2 – h2 –
1
2
σ 2

2 , b3 = r3 – h3 –
1
2
σ 2

3 ,

b4 = r4 – h4 –
1
2
σ 2

4 , �11 = b1, �21 = b1a22 – b2a12, �22 = b1a21 + b2a11,

�31 = b1(a22a33 + a32a23) – b2a33a12 + b3a12a23,

�32 = a33(b1a21 + b2a11) – b3a11a23,

�33 = (b1a21 + b2a11)a32 + b3(a11a22 + a12a21),

�41 = b1(a22a34a43 + a22a33a44 + a23a32a44) – b2(a34a43a12 + a33a44a12)

+ b3a12a23a44 – b4a12a23a44,

�42 = b1(a21a34a43 + a21a33a44) + b2(a34a43a11 + a33a44a11)

– b3a11a23a44 + b4a11a23a34,

�43 = b1a21a32a44 + b2a11a32a44 + b3a44(a11a22 + a12a21) – b4a34(a11a22 + a12a21),

�44 = b1a21a32a43 + b2a11a32a43 + b3a43(a11a22 + a12a21)

+ b4
(
a33(a11a22 + a12a21) + a11a23a32

)
,

H1 = a11, H2 = a11a22 + a12a21, H3 = a11a22a33 + a33a12a21 + a11a32a23,

H4 = a11a22a33a44 + a12a21a33a44 + a11a32a23a44 + a34a43a11a22 + a34a43a12a21.
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It is clear that bi ≤ 0 for i = 2, 3, 4 and when b1 ≥ 0 we have �21 ≥ 0. Furthermore, we
have the following lemma.

Lemma 1 If �44 > 0 (≥ 0), then �33 > 0, �41 > 0 (≥ 0), �42 > 0 (≥ 0) and �43 > 0 (≥ 0). If
�33 > 0 (≥ 0), then �22 > 0, �31 > 0 (≥ 0) and �32 > 0 (≥ 0).

Proof Let �44 > 0. Obviously, we have �33 > 0. Since �44a44 – �43a43 = –H2[–b4(a34a43 +
a33a44) + a11a23a32], we obtain �44a44 ≤ �43a43, which implies �43 > 0.

By calculating we furthermore have

�43a33 + �44a34 – b3
[
(a34a43 + a33a44)(a11a22 + a12a21)

+ a11a23a32a44
]

– b4a33a34(a11a22 + a12a21) = �42a32.

Hence, we obtain �42 > 0.
Furthermore, by calculating we also have

a22�42 + a23�43 – b2
[
a11a44(a22a33 + a23a32)

+ a34a43(a11a22 + a12a21) + a12a21a33a44
]

= a21�41.

Hence, we obtain �41 > 0.
Let ω∗

1 = �31
H3

, ω∗
2 = �32

H3
, ω∗

3 = �33
H3

. Then ω∗
3 > 0. By calculating, we can obtain

a32ω
∗
2 = –b3 + a33ω

∗
3 > 0, a21ω

∗
1 = –b2 + a22ω

∗
2 + a23ω

∗
3 > 0.

Therefore, we have �31 > 0 and �32 > 0. Obviously, we have �22 > 0. Similarly, we can
prove the case of “≥ 0”. �

Lemma 2 For all real numbers P ≥ 0, Q ≥ 0, Pj ≥ 0, and a > 0, b > 0 with 1
a + 1

b = 1, where
1 ≤ j ≤ n, one has

( n∑

j=1

Pj

)a

≤ na
n∑

j=1

Pa
j , PQ ≤ Pa

a
+

Qb

b
.

Lemma 3 Assume that positive constants αi, i = 1, 2, 3, 4 and an integer n > 0 such that

αi

(

–aii +
aii–1

2n

)

+ αi–1
ai–1i

2n2 + αi+1
nai+1i

2
< 0, i = 1, 2, 3, 4, (2)

where we stipulate α0 = α5 = 0 and a10 = a01 = a45 = a54 = 0.

Proof Define the matrix as follows:

P =

⎛

⎜
⎜
⎜
⎝

a11 – n
2 a21 0 0

– 1
2n2 a12 a22 – 1

2n a21 – n
2 a32 0

0 – 1
2n2 a23 a33 – 1

2n a32 – n
2 a43

0 0 – 1
2n2 a34 a44 – 1

2n a43

⎞

⎟
⎟
⎟
⎠

.
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Calculating the principal minors of P, we obtain

P2 = det

(
a11 – n

2 a21

– 1
2n2 a12 a22 – 1

2n a21

)

= a11

(

a22 –
1

2n
a21

)

–
1

4n
a12a21,

P3 = det

⎛

⎜
⎝

a11 – n
2 a21 0

– 1
2n2 a12 a22 – 1

2n a21 – n
2 a32

0 – 1
2n2 a23 a33 – 1

2n a32

⎞

⎟
⎠

= a11

(

a22 –
1

2n
a21

)(

a33 –
1

2n
a32

)

–
(

a33 –
1

2n
a32

)
1

4n
a12a21 –

1
4n

a11a23a32,

and

P4 = det P =
(

a44 –
1

2n
a43

)

P3 –
1

4n
a34a43P2.

From the expressions of Pi (i = 2, 3, 4), we easily see that there are enough large integers n
such that Pi > 0 (i = 2, 3, 4). Therefore, P is a M-matrix. By the properties of M-matrix,
there are the positive constant vector α = (α1,α2,α3,α4)T such that Pα > 0. Therefore,
(–P)α < 0 which is equivalent to the inequality (2). This completes the proof. �

Let r = max{τ12, τ21, τ23, τ32, τ34, τ43}. From the biological background, the initial data of
any solution x(t) = (x1(t), x2(t), x3(t), x4(t)) for model (1) is defined as follows:

x(θ ) =
(
ς (θ ), ξ (θ ),κ(θ ),η(θ )

)
, –r ≤ θ ≤ 0. (3)

For model (1), in regard to ultimate boundedness and existence of the positive global so-
lution, we obtain the conclusions shown below.

Lemma 4 For all initial data x(θ ) = (ς (θ ), ξ (θ ),κ(θ ),η(θ )) ∈ C([–γ , 0], R4
+), model (1) with

condition (3) has a unique global solution x(t) = (x1(t), x2(t), x3(t), x4(t)) ∈ R4
+ a.s. for all

t ≥ 0. Moreover, for any p > 0 there exist constants Ki(p) > 0, i = 1, 2, 3, 4 such that

lim sup
t→∞

E
[
xp

i (t)
] ≤ Ki(p), i = 1, 2, 3, 4.

Proof The proof of Lemma 4 is similar to Lemma 3 given in [28]. But, here we will give
an improvement. Obviously, the model investigated here has local Lipschitz continuous
coefficients. Then, for any (ς (θ ), ξ (θ ),κ(θ ),η(θ )) ∈ C([–r, 0], R4

+), there is a unique solution
x(t) = (x1(t), x2(t), x3(t), x4(t)) ∈ R4

+ on t ∈ [–r, τe), here τe represents the explosion time. In
order to obtain that the solution is global, τe = ∞ a.s. should be proved. We first assume
a large enough k0 > 0 to let ς (0), ξ (0),κ(0),η(0) ∈ ( 1

k0
, k0). Then, for any integer k > k0, we

define the following stopping time:

τk = inf

{

t ∈ [0, τe) : min
1≤i≤4

{
xi(t)

} ≤ 1
k

or max
1≤i≤4

{
xi(t)

} ≥ k
}

. (4)

τk is increasing as k → ∞. Let τ∞ = limk→∞ τk . τ∞ ≤ τe a.s. is obtained. Therefore, we just
have to clarify τ∞ = ∞ a.s.
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Suppose that the assertion is wrong, then constants ε ∈ (0, 1) and T > 0 such that P(τ∞ ≤
T) > ε. Thus, an integer k1 > k0 satisfying

P(τk ≤ T) > ε (5)

for any k > k1. Define Vi(xi) = xi – 1 – ln xi (i = 1, 2, 3, 4). Using the Itô formula, we obtain

dVi(xi) = L
[
Vi(xi)

]
dt + σi(xi – 1) dBi(t), i = 1, 2, 3, 4, (6)

here

L
[
V1(x1)

]
= (x1 – 1)

(

r1 – h1 – a11x1(t) – a12

∫ 0

–τ12

x2(t + θ ) dμ12(θ )
)

+
1
2
σ 2

1 ,

L
[
Vi(xi)

]
= (xi – 1)

(

ri – hi + aii–1

∫ 0

–τii–1

xi–1(t + θ ) dμi–1i(θ ) – aiixi(t)

– aii+1

∫ 0

–τii+1

xi+1(t + θ ) dμii+1(θ )
)

+
1
2
σ 2

i , i = 2, 3,

L
[
V4(x4)

]
= (x4 – 1)

(

r4 – h4 – a44x4(t) + a43

∫ 0

–τ43

x3(t + θ ) dμ43(θ )
)

+
1
2
σ 2

4 .

By Lemma 2 and for an integer n > 0, we get

L
[
V1(x1)

] ≤ σ 2
1

2
– (r1 – h1) +

n2

2
a12 + (r1 – h1)x1 + a11x1 – a11x2

1

+
1

2n2 a12

∫ 0

–τ12

x2
2(t + θ ) dμ12(θ ),

L
[
Vi(xi)

] ≤ σ 2
i

2
– (ri – hi) +

n
2

aii–1

∫ 0

–τii–1

x2
i–1(t + θ ) dμii–1(θ )

+ (ri – hi)xi + aiixi – aiix2
i +

x2
i

2n
aii–1 +

n2

2
aii+1

+
1

2n2 aii+1

∫ 0

–τii+1

x2
i+1(t + θ ) dμii+1(θ ), i = 2, 3,

L
[
V4(x4)

] ≤ σ 2
4

2
– (r4 – h4) +

x2
4

2n
a43 + (r4 – h4)x4 + a44x4

– a44x2
4 +

n
2

a43

∫ 0

–τ43

x2
3(t + θ ) dμ43(θ ).

(7)

Define V0(x) =
∑4

i=1 αiVi(xi) + V5(t), here x = (x1, x2, x3, x4) and

V5(t) =
3∑

i=1

αi
1

2n2 aii+1

∫ 0

–τii+1

∫ t

t+θ

x2
i+1(s) ds dμii+1(θ )

+
3∑

i=1

αi+1
n
2

ai+1i

∫ 0

–τi+1i

∫ t

t+θ

x2
i (s) ds dμi+1i(θ ).

(8)
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From the Itô formula

d
[
V0(x)

]
= LV0(x) dt +

4∑

i=1

αiσi(xi – 1) dBi(t).

From (7) and (8), we obtain

L
[
V0(x)

]
=

4∑

i=1

αiLVi(xi) +
d
dt

V5(t)

≤
4∑

i=1

αi

{
σ 2

i
2

– (ri – hi) + aii+1
n2

2
+ (ri – hi)xi + aiixi – aiix2

i + aii–1
1

2n
x2

i

}

+
4∑

i=1

αiaii+1
1

2n2 x2
i+1 +

4∑

i=1

αi+1ai+1i
n
2

x2
i ,

where we stipulate α5 = 0, a10 = a01 = 0 and a45 = a54 = 0. From (2) in Lemma 3, it is easy
to find that there is a constant K > 0 so that

d
[
V0(x)

] ≤ K dt +
4∑

i=1

αiσi(xi – 1) dBi(t). (9)

Then, from (5) and (9), then we can get the following contradiction:

∞ > V0
(
x(0)

)
+ KT ≥ ∞.

Hence, we derive τ∞ = ∞ a.s., as a result, τe = ∞ a.s.
For a constant p > 0, assume R1(t) = etxp

1(t). Using the Itô formula again,

dR1(t) = LR1(t) dt + petxp
1σ1 dB1(t), (10)

where

LR1(t) = etxp
1

{

1 +
p(p – 1)σ 2

1
2

+ p
[

r1 – h1 – a11x1 – a12

∫ 0

–τ12

x2(t + θ ) dμ12(θ )
]}

≤
{[

p(r1 – h1) + 1 +
p(p – 1)σ 2

1
2

]

xp
1 – pa11xp+1

1

}

et .

(11)

Assume that an integer n > 0 and a constant p > 0 satisfy a22 – a21
p

p+1 n– p+1
p > 0, we define

R2(t) as follows:

R2(t) = C∗
1 R1(t) + etxp

2(t) + eτ21
pnp+1

p + 1
a21

∫ 0

–τ21

∫ t

t+θ

esxp+1
1 (s) ds dμ21(θ ), (12)

where C∗
1 = a–1

11 eτ21 np+1a21. By the Itô formula, we get

dR2(t) = LR2(t) dt + C∗
1 petxp

1σ1 dB1(t) + petxp
2σ2 dB2(t), (13)
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where

LR2(t) = C∗
1 etxp

1

{

1 +
p(p – 1)σ 2

1
2

+ p
[

r1 – h1 – a11x1 – a12

∫ 0

–τ12

x2(t + θ ) dμ12(θ )
]}

+ etxp
2

{

1 +
p(p – 1)σ 2

2
2

+ p
[

r2 – h2 + a21

∫ 0

–τ21

x1(t + θ ) dμ21(θ )

– a22x2(t) – a23

∫ 0

–τ23

x3(t + θ ) dμ23(θ )
]}

+ eτ21
pnp+1

p + 1
a21

(

etxp+1
1 (t) –

∫ 0

–τ21

et+θ xp+1
1 (t + θ ) dμ21(θ )

)

≤ C∗
1 et

{[

1 +
p(p – 1)σ 2

1
2

+ p(r1 – h1)
]

xp
1 – pa11xp+1

1

}

+ et
{[

1 +
p(p – 1)σ 2

2
2

+ p(r2 – h2)
]

xp
2 – p

[

a22 – a21
p

p + 1
n– p+1

p

]

xp+1
2

+
p

p + 1
np+1a21

∫ 0

–τ21

xp+1
1 (t + θ ) dμ21(θ )

}

+ eτ21
pnp+1

p + 1
a21

(

etxp+1
1 (t) – e–τ21

∫ 0

–τ21

etxp+1
1 (t + θ ) dμ21(θ )

)

≤ et
{[

1 +
p(p – 1)σ 2

2
2

+ p(r2 – h2)
]

xp
2 – p

[

a22 – a21
p

p + 1
n– p+1

p

]

xp+1
2

+ C∗
1

[

1 +
p(p – 1)σ 2

1
2

+ p(r1 – h1)
]

xp
1 – eτ21

p2

p + 1
np+1a21xp+1

1

}

.

(14)

Assume that an integer n > 0 and a constant p > 0 satisfy a33 – a32
p

p+1 n– p+1
p > 0, we define

R3(t) as follows:

R3(t) = C∗
2 R2(t) + etxp

3 + eτ32
pnp+1

p + 1
a32

∫ 0

–τ32

∫ t

t+θ

esxp+1
2 (s) ds dμ32(θ ), (15)

where C∗
2 = a–1

22 eτ32 np+1a32. By the Itô formula, we obtain

dR3(t) = LR3(t) dt + C∗
2
(
C∗

1 petxp
1σ1 dB1(t) + petxp

2σ2 dB2(t)
)

+ petxp
3σ3 dB3(t), (16)

where similarly to (14) we can obtain

LR3(t) ≤ et
{[

1 + p(r3 – h3) +
p(p – 1)σ 2

3
2

]

xp
3 – p

[

a33 – a32
p

p + 1
n– p+1

p

]

xp+1
3

+ C∗
2

[

1 + p(r2 – h2) +
p(p – 1)σ 2

2
2

]

xp
2 –

p2

p + 1
(
np+1a32eτ32 + n– p+1

p a21C∗
2
)
xp+1

2

+ C∗
1 C∗

2

[

1 + p(r1 – h1) +
p(p – 1)σ 2

1
2

]

xp
1 – C∗

2 eτ21
p2

p + 1
np+1a21xp+1

1

}

.
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Finally, assume that an integer n > 0 and a constant p > 0 satisfy a44 – a43
p

p+1 n– p+1
p > 0,

we define R4(t) as follows:

R4(t) = C∗
3 R3(t) + etxp

4 + eτ43
pnp+1

p + 1
a43

∫ 0

–τ43

∫ t

t+θ

esxp+1
3 (s) ds dμ43(θ ), (17)

where C∗
3 = a–1

33 eτ43 np+1a43. From the Itô formula, we derive

dR4(t) = LR4(t) dt + C∗
3
(
C∗

2
(
C∗

1 petxp
1σ1 dB1(t) + petxp

2σ2 dB2(t)
)

+ petxp
3σ3 dB3(t)

)
+ petxp

4σ4 dB4(t),
(18)

where similarly to (14) we can obtain

LR4(t) ≤ et
{[

1 + p(r4 – h4) +
p(p – 1)σ 2

4
2

]

xp
4 – p

[

a44 – a43
p

p + 1
n– p+1

p

]

xp+1
4

+ C∗
3

[

1 + p(r3 – h3) +
p(p – 1)σ 2

3
2

]

xp
3 –

p2

p + 1
(
np+1a43eτ43 + n– p+1

p a32C∗
3
)
xp+1

3

+ C∗
2 C∗

3

[

1 + p(r2 – h2) +
p(p – 1)σ 2

2
2

]

xp
2

– C∗
3

p2

p + 1
(
np+1a32eτ32 + n– p+1

p a21C∗
2
)
xp+1

2

+ C∗
1 C∗

2 C∗
3

[

1 + p(r1 – h1) +
p(p – 1)σ 2

1
2

]

xp
1 – C∗

2 C∗
3 eτ21

p2

p + 1
np+1a21xp+1

1

}

.

For any t ≥ 0, we derive here exists a constant K4(p) > 0 so that LR4(t) ≤ K4(p)et by
the above inequality, Hence, E[R4(t)] ≤ E[R4(0)] + K4(p)(et – 1) for all t ≥ 0 is obtained.
Consequently, from the definitions of Qi(t) (i = 1, 2, 3, 4) we furthermore have

C∗
3 E

[
R3(t)

] ≤ E
[
R4(0)

]
+ K4(p)

(
et – 1

)
,

C∗
2 C∗

3 E
[
R2(t)

] ≤ E
[
R4(0)

]
+ K4(p)

(
et – 1

)
,

C∗
1 C∗

2 C∗
3 E

[
R1(t)

] ≤ E
[
R4(0)

]
+ K4(p)

(
et – 1

)
,

for any t ≥ 0. Since E[etxp
i (t)] ≤ E[Ri(t)] (i = 1, 2, 3, 4) is also acquired for all t ≥ 0, this

shows that there are constants Ki(p) > 0, i = 1, 2, 3, 4, satisfying lim supt→∞ E[xp
i (t)] ≤ Ki(p)

(i = 1, 2, 3, 4). �

Remark 1 Observing the proof process from Lemma 4, we easily find that Lemma 4 seem-
ingly can be extended to the general n-species stochastic food-chain system with dis-
tributed delay and harvesting.

Lemma 5 Suppose that the functions P ∈ C(R+ × �, R+) and Q ∈ C(R+ × �, R) satisfy
limt→∞ Q(t)

t = 0 a.s.
(1) Assume that there exist a few constants β > 0, T > 0 and β0 > 0 such that for t ≥ T

ln P(t) = βt – β0

∫ t

0
P(s) ds + Q(t) a.s.,

then limt→∞〈P(t)〉 = β

β0
a.s., and limt→∞ ln P(t)

t = 0 a.s.



Tuerxun et al. Boundary Value Problems         (2021) 2021:12 Page 10 of 27

(2) Assume that there are constants T > 0, β0 > 0 and β ∈ R such that for t ≥ T

ln P(t) ≤ βt – β0

∫ t

0
P(s) ds + Q(t) a.s.,

then lim supt→∞〈P(t)〉 ≤ β

β0
a.s. as β ≥ 0, and limt→∞ P(t) = 0 a.s. as β < 0.

(3) Assume that there exist constants β > 0, β0 > 0 and T > 0 such that for t ≥ T

ln P(t) ≥ βt – β0

∫ t

0
P(s) ds + Q(t) a.s.,

then lim inft→∞〈P(t)〉 ≥ β

β0
a.s.

We consider an auxiliary system as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dy1(t) = y1(t)[r1 – h1 – a11y1(t)] dt + σ1y1(t) dB1(t),

dyi(t) = yi(t)[ri – hi + aii–1
∫ 0

–τii–1
yi–1(t + θ ) dμii–1(θ ) – aiiyi(t)] dt

+ σiyi(t) dBi(t), i = 2, 3, 4,

(19)

and the initial value is given by

(
y1(θ ), y2(θ ), y3(θ ), y4(θ )

)
=

(
ς (θ ), ξ (θ ),κ(θ ),η(θ )

)
, –r ≤ θ ≤ 0. (20)

Here, we use the same argument as in the proof of Lemma 3, with the condition (20) we
can easily derive model (19) has a unique global solution (y1(t), y2(t), y3(t), y4(t)) ∈ R4

+ a.s.
for all t ≥ 0. The following conclusions are derived.

Here, for convenience, we denote �11 = �11, �22 = �22, �33 = �33 – b3a12a21 and �44 =
�44 – b4(a33a12a21 + a11a23a32).

Lemma 6 Assume that (y1(t), y2(t), y3(t), y4(t)) is any positive global solution of model (19).
We derive:

(1) Suppose that �11 < 0, then limt→∞ yi(t) = 0 a.s., i = 1, 2, 3, 4.
(2) Suppose that �11 = 0, then limt→∞〈Z1(t)〉 = 0, and limt→∞ yi(t) = 0 a.s., i = 2, 3, 4.
(3) Suppose that �11 > 0 and �22 < 0, then limt→∞〈y1(t)〉 = �11

a11
, and limt→∞ yi(t) = 0

a.s., i = 2, 3, 4.
(4) Suppose that �22 = 0, then limt→∞〈y1(t)〉 = �11

a11
, and limt→∞〈y2(t)〉 = 0,

limt→∞ yi(t) = 0 a.s., i = 3, 4.
(5) Suppose that �22 > 0 and �33 < 0, then limt→∞〈yi(t)〉 = �ii∏i

j=1 ajj
a.s., i = 1, 2 and

limt→∞ yi(t) = 0 a.s., i = 3, 4.
(6) Suppose that �33 = 0, then limt→∞〈yi(t)〉 = �ii∏i

j=1 ajj
a.s., i = 1, 2, limt→∞〈y3(t)〉 = 0

a.s. and limt→∞ y4(t) = 0 a.s.
(7) Suppose that �33 > 0 and �44 < 0, then limt→∞〈yi(t)〉 = �ii∏i

j=1 ajj
a.s., i = 1, 2, 3,

limt→∞ y4(t) = 0 a.s.
(8) Suppose that �44 = 0, then limt→∞〈yi(t)〉 = �ii∏i

j=1 ajj
a.s., i = 1, 2, 3, limt→∞〈y4(t)〉 = 0

a.s.
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(9) Suppose that �44 > 0, then limt→∞〈yi(t)〉 = �ii∏i
j=1 ajj

a.s., i = 1, 2, 3, 4.

(10) lim supt→∞
ln yi(t)

t ≤ 0 a.s., for i = 1, 2, 3, 4.

The proving process of Lemma 6 is similar to Lemma 5 given in [28]. We hence omit
it here. It is clear that Lemma 6 also seemingly can be extended to the general n-species
stochastic food-chain system with distributed delay and harvesting.

Lemma 7 Assume that (x1(t), x2(t), x3(t), x4(t)) and (y1(t), y2(t), y3(t), y4(t)) are the solu-
tions of model (1) and model (19), respectively. Then, for any –r ≤ θ ≤ 0 and i = 1, 2, 3, 4,
we obtain:

(1) If the initial conditions such that xi(θ ) ≤ yi(θ ), then xi(t) ≤ yi(t) for t ≥ 0,
(2) lim supt→∞

ln xi(t)
t ≤ 0 a.s.,

(3) limt→∞ 1
t

∫ t
t–τ

xi(s) ds = 0 a.s. when the constant τ > 0.

Proof From model (1) we get

dx1(t) ≤ x1(t)
[
r1 – h1 – a11x1(t)

]
dt + σ1x1(t) dB1(t),

dxi(t) ≤ xi(t)
[

ri – hi + aii–1

∫ 0

–τii–1

xi–1(t + θ ) dμii–1(θ ) – aiixi(t)
]

dt

+ σixi(t) dBi(t), i = 2, 3, 4.

From the comparison theorem, we obtain xi(t) ≤ yi(t) (i = 1, 2, 3, 4) on t ≥ 0. Thus, for
a constant τ > 0, we find that lim supt→∞

ln xi(t)
t ≤ 0 a.s. and limt→∞ 1

t
∫ t

t–τ
xi(s) ds = 0 a.s.

(i = 1, 2, 3, 4) hold from Lemma 6. �

Remark 2 It is clear that Lemma 7 also is satisfied for the general n-species stochastic
food-chain system with distributed delay and harvesting.

3 Global dynamics
Here, we firstly introduce the following useful lemma.

Lemma 8 Assume that model (1) has the solution (x1(t), x2(t), x3(t), x4(t)). If there is an
i ∈ {1, 2, 3} to satisfy limt→∞〈xi(t)〉 = 0 a.s., then, for all j > i, limt→∞ xj(t) = 0 a.s. holds.

Proof We first use the Itô formula, then

ln x1(t) = b1t – a11

∫ t

0
x1(s) ds – a12

∫ t

0
x2(s) ds + φ1(t), (21)

ln xi(t) = bit + aii–1

∫ t

0
xi–1(s) ds – aii

∫ t

0
xi(s) ds

– aii+1

∫ t

0
xi+1(s) ds + φi(t), i = 2, 3,

(22)

and

ln x4(t) = b4t + a43

∫ t

0
x3(s) ds – a44

∫ t

0
x4(s) ds + φ4(t), (23)
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where

φ1(t) = σ1B1(t) + ln x1(0) + a12

∫ 0

–τ12

∫ t

t+θ

x2(s) ds dμ12(θ )

– a12

∫ 0

–τ12

∫ 0

θ

x2(s) ds dμ12(θ ),

φi(t) = σiBi(t) + ln xi(0) + aii–1

∫ 0

–τii–1

∫ 0

θ

xi–1(s) ds dμii–1(θ )

– aii–1

∫ 0

–τii–1

∫ t

t+θ

xi–1(s) ds dμii–1(θ ) + aii+1

∫ 0

–τii+1

∫ t

t+θ

xi+1(s) ds dμii+1(θ )

– aii+1

∫ 0

–τii+1

∫ 0

θ

xi+1(s) ds dμii+1(θ ), i = 2, 3,

φ4(t) = σ4B4(t) + ln x4(0) + a43

∫ 0

–τ43

∫ 0

θ

x3(s) ds dμ43(θ )

– a43

∫ 0

–τ43

∫ t

t+θ

x3(s) ds dμ43(θ ).

Obviously, limt→∞ φi(t)
t = 0 a.s. is obtained for i = 1, 2, 3, 4 by Lemma 7. Assume

limt→∞〈xi(t)〉 = 0 a.s. Then for any constant ε > 0 with bi+1 + ai+1iε < 0 there exists a T > 0
to satisfy

∫ t
0 xi(s) ds < εt for any t ≥ T . Therefore, for t ≥ T , by (22) and (23), the following

inequality is found:

ln xi+1(t) ≤ bi+1t + ai+1iεt – ai+1i+1

∫ t

0
xi+1(s) ds + φi+1(t).

Thus, by Lemma 5 we derive limt→∞ xi+1(t) = 0 a.s. Consequently, limt→∞ xj(t) = 0 a.s. for
any j > i. �

Remark 3 It is easy for us to find that Lemma 8 also seemingly can be extended to the
general n-species stochastic food-chain system with distributed delay and harvesting.

In the following theorem, we state and prove a screening criterion as a main result in
this paper on the extinction and persistence in mean of global positive solutions for model
(1).

Theorem 1 Suppose that (x1(t), x2(t), x3(t), x4(t)) is any positive global solution of model
(1). Then we derive:

(1) If �11 < 0, then limt→∞ xj(t) = 0 a.s. for j = 1, 2, 3, 4.
(2) If �11 = 0, then limt→∞〈x1(t)〉 = 0 and limt→∞ xj(t) = 0 a.s. for j = 2, 3, 4.
(3) If �11 > 0 and �22 < 0, then limt→∞〈x1(t)〉 = �11

H1
and limt→∞ xj(t) = 0 a.s. for

j = 2, 3, 4.
(4) If �22 = 0, then limt→∞〈x1(t)〉 = �11

H1
, limt→∞〈x2(t)〉 = 0 and limt→∞ xj(t) = 0 a.s. for

j = 3, 4.
(5) If �22 > 0 and �33 < 0, then limt→∞〈xj(t)〉 = �2j

H2
, j = 1, 2, and limt→∞ xj(t) = 0 a.s. for

j = 3, 4.
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(6) If �33 = 0 and the condition

a33a22H2 – a12a21a23a32 > 0 (24)

holds, then limt→∞〈xj(t)〉 = �2j
H2

, j = 1, 2, limt→∞〈x3(t)〉 = 0 and limt→∞ x4(t) = 0 a.s.
(7) If �33 > 0, �44 < 0 and the condition (24) holds, then limt→∞〈xj(t)〉 = �3j

H3
, j = 1, 2, 3,

limt→∞ x4(t) = 0 a.s.
(8) If �44 = 0 and the condition

(a22a33H2 – a12a21a23a32)a44H3 – a23a32a34a43H2
2 > 0 (25)

holds, then limt→∞〈xj(t)〉 = �3j
H3

, j = 1, 2, 3 and limt→∞〈x4(t)〉 = 0 a.s.
(9) If �44 > 0 and the condition (25) holds, then limt→∞〈xj(t)〉 = �4j

H4
, j = 1, 2, 3, 4, a.s.

Proof For model (1), (x1(t), x2(t), x3(t), x4(t)) can be the positive global solution. Let V2(t) =
a21 ln x1(t) + a11 ln x2(t), V3(t) = a32V2(t) + H2 ln x3(t) and V4(t) = a43V3(t) + H3 ln x4(t).
From (21)–(23), we obtain

V4(t) = �44t – H4

∫ t

0
x4(s) ds + φ5(t), (26)

where φ5(t) = a21a32a43φ1(t) + a43a11a32φ2(t) + a43H2φ3(t) + H3φ4(t). we apply the similar
method that used for φ1(t), limt→∞ φ5(t)

t = 0 a.s. is obtained.
If �44 > 0, then, by Lemma 7, and for any ε > 0 with �44 – 3ε > 0, there exists a constant

T > 0 satisfies ln x1(t) < ε
a43a32a21+1 t, ln x2(t) < ε

a43a32a11+1 t and ln x3(t) < ε
a43H2+1 t for all t ≥ T .

Then, from (26) we obtain

H3 ln x4(t) > (�44 – 3ε)t – H4

∫ t

0
x4(s) ds + φ5(t)

for all t ≥ T . Thus, from the arbitrary ε and Lemma 4

lim inf
t→∞

〈
x4(t)

〉 ≥ �44

H4
(27)

is obtained.
If �44 ≤ 0, then since lim inft→∞〈x4(t)〉 ≥ 0, we also have lim inft→∞〈x4(t)〉 ≥ �44

H4
. Let

U2(t) = a22 ln x1(t) – a12 ln x2(t) and U4(t) = a43U2(t) – a12a23 ln x4(t). By (21), (22) and (23),
we compute

U4(t) = (a43�21 – b4a12a23)t + a12a23a44

∫ t

0
x4(s) ds – H2a43

∫ t

0
x1(s) ds + φ6(t), (28)

where φ6(t) = a22a43φ1(t) – a12a43φ2(t) – a12a23φ4(t). we apply the similar method that
used for φ1(t), limt→∞ φ6(t)

t = 0 a.s. is derived. For all ε > 0, there exists a constant T > 0
such that ln x2(t) < ε

a43a12+1 t, ln x3(t) < ε
a12a23+1 t and

∫ t

0
x4(s) ds ≤

(
lim sup

t→∞

〈
x4(t)

〉
+ ε

)
t

for any t ≥ T .
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Thus, from (28), we obtain

a43a22 ln x1(t) ≤
(

a43�21 – b4a12a23 + 2ε + a12a23a44

(
lim sup

t→∞

〈
x4(t)

〉
+ ε

))
t

– H2a43

∫ t

0
x1(s) ds + φ6(t)

(29)

for any t ≥ T . Thus, from the arbitrary ε and Lemma 4

lim sup
t→∞

〈
x1(t)

〉 ≤ (a43�21 – b4a12a23 + a12a23a44 lim supt→∞〈x4(t)〉)
H2a43

(30)

is furthermore obtained.
From (21) and (22), we have

V3(t) = �33t – H3

∫ t

0
x3(s) ds + φ7(t) – a34H2

∫ t

0
x4(s) ds, (31)

where φ7(t) = a21a32φ1(t) + a11a32φ2(t) + H2φ3(t). we apply the similar method that used
for φ1(t), limt→∞ φ7(t)

t = 0 a.s. is obtained. By Lemma 7, and for all ε > 0, there exists a con-
stant T > 0 for any t ≥ T such that ln x1(t) < ε

a32a21+1 t, ln x2(t) < ε
a32a11+1 t and

∫ t
0 x4(s) ds ≤

(lim supt→∞〈x4(t)〉 + ε)t. Thus, for all t ≥ T and by (31)

H2 ln x3(t) > (�33 – 2ε)t – a34H2

(
lim sup

t→∞

〈
x4(t)

〉
+ ε

)
t – H3

∫ t

0
x3(s) ds + φ7(t)

is furthermore obtained.
If �33 – a34H2 lim supt→∞〈x4(t)〉 > 0, then by Lemma 5 and the arbitrary ε we further-

more have

lim inf
t→∞

〈
x3(t)

〉 ≥ �33

H3
–

a34H2

H3

(
lim sup

t→∞
〈
x4(t)

〉)
. (32)

If �33 – a34H2 lim supt→∞〈x4(t)〉 ≤ 0, then since lim inft→∞〈x3(t)〉 ≥ 0, we also have

lim inf
t→∞

〈
x3(t)

〉 ≥ �33

H3
–

a34H2

H3

(
lim sup

t→∞
〈
x4(t)

〉)
.

Provided that, for any ε > 0, there is a constant T > 0 satisfying for t ≥ T

∫ t

0
x1(s) ds ≤ a43�21 – b4a12a23 + a12a23a44(lim supt→∞〈x4(t)〉 + ε)

H2a43

and

∫ t

0
x3(s) ds ≥ �33

H3
–

a34H2

H3

(
lim sup

t→∞

〈
x4(t)

〉
– ε

)
.
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Combining with (22), for all t ≥ T ,

ln x2(t) ≤
[

b2 + a21
a43�21 – b4a12a23 + a12a23a44(lim supt→∞〈x4(t)〉 + ε)

H2a43

– a23

(
�33

H3
–

a34H2

H3

(
lim sup

t→∞

〈
x4(t)

〉
– ε

))]

t + φ2(t) – a22

∫ t

0
x2(s) ds

(33)

is furthermore obtained.
We have limt→∞ φ2(t)

t = 0 a.s. by Lemma 7. We denote

M1 = b2 + a21
(a43�21 – b4a12a23 + a12a23a44 lim supt→∞〈x4(t)〉)

H2a43

– a23

(
�33

H3
–

a34H2

H3
lim sup

t→∞

〈
x4(t)

〉
)

.

If M1 ≥ 0, then we can obtain

lim sup
t→∞

〈
x2(t)

〉 ≤ 1
a22

[

b2 + a21
a43�21 – b4a12a23

H2a43
– a23

�33

H3

+
(

a12a21a23a44

a43H2
+

a23a34H2

H3

)

lim sup
t→∞

〈
x4(t)

〉
]

=
M1

a22
.

(34)

If M1 < 0, then limt→∞ x2(t) = 0 is directly obtained. From this and Lemma 8, limt→∞ xj(t) =
0, j = 3, 4, is furthermore derived.

Let M1 ≥ 0, for all ε > 0, there is a constant T > 0 such that

∫ t

0
x4(s) ds ≥

(
�44

H4
– ε

)

t,
∫ t

0
x2(s) ds ≤

(
M1

a22
+ ε

)

t

for any t ≥ T . From (22), (27) and (34), we derive for any t ≥ T

ln x3(t) ≤
(

b3 + a32

(
M1

a22
+ ε

)

– a34

(
�44

H4
– ε

))

t – a33

∫ t

0
x3(s) ds + φ4(t). (35)

We have limt→∞ φ3(t)
t = 0 a.s. by Lemma 7. We denote

M2 = b3 +
a32

a22
M1 – a34

�44

H4
.

If M2 ≥ 0, then from the arbitrary ε and Lemma 4 we furthermore have

lim sup
t→∞

〈
x3(t)

〉 ≤ 1
a33

[

b3 +
a32M1

a22
–

a34�44

H4

]

. (36)

If M2 < 0, then we obtain limt→∞ x3(t) = 0. From this and Lemma 8, limt→∞ x4(t) = 0 is
furthermore obtained.

Let M2 ≥ 0. From (36) and for any ε > 0, there exists a constant T > 0, we obtain

∫ t

0
x3(s) ds ≤ 1

a33

[

b3 +
a32M1

a22
–

a34�44

H4
+ ε

]

t
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for t ≥ T . From (23), we derive

ln x4(t) ≤
[

b4 +
a43

a33

(

b3 +
a32M1

a22
–

a34�44

H4
+ ε

)]

t – a44

∫ t

0
x4(s) ds + φ4(t) (37)

for any t ≥ T . We have limt→∞ φ4(t)
t = 0 a.s. by Lemma 7. We denote

M3 = b4 +
a43

a33

(

b3 +
a32M1

a22
–

a34�44

H4

)

.

If M3 ≥ 0, then from the arbitrary ε and Lemma 4

lim sup
t→∞

〈
x4(t)

〉 ≤ 1
a44

[

b4 +
a43

a33

[

b3 +
a32

a22
M1 – a34

�44

H4

]]

=
1

a44

[

b4 +
a43

a33

[

b3 +
a32

a22

[

b2 + a21
a43�21 – b4a12a23

H2a43

– a23
�33

H3

]

– a34
�44

H4

]]

+
a12a21a23a32a44H3 + a23a32a34a43H2

2
a22a33a44H2H3

lim sup
t→∞

〈
x4(t)

〉

(38)

is furthermore obtained. By a detailed calculation we can obtain

1
a44

[

b4 +
a43

a33

[

b3 +
a32

a22

[

b2 + a21
a43�21 – b4a12a23

H2a43
– a23

�33

H3

]

– a34
�44

H4

]]

=
1

a22a33a44

[
a22a33a44H2H3 – a12a21a23a32a44H3 – a23a32a34a43H2

2
]�44

H4
.

Thus, we furthermore find that (38) is equal with the inequality as follows:

[
a22a33a44H2H3 – a12a21a23a32a44H3 – a23a32a34a43H2

2
]

lim sup
t→∞

〈
x4(t)

〉

≤ [
a22a33a44H2H3 – a12a21a23a32a44H3 – a23a32a34a43H2

2
]�44

H4
.

(39)

If M3 < 0, then from (37) and Lemma 5 we directly have limt→∞ x4(t) = 0.
Assume �44 > 0, then we can obtain

M1 ≥ b2 + a21
a43�21 – b4a12a23 + a12a23a44

�44
H4

H2a43

– a23
�33

H3
+

a23a34H2�44

H3H4
= a22

�41

H4
> 0,

M2 ≥ b3 +
a32�41

H4
–

a34�44

H4
= a33

�43

H4
> 0,

M3 ≥ b4 + b3
a43

a33
–

a32a43�41

a33H4
–

a43�44

a33a34H4
= a44

�44

H4
> 0.

Hence, from (39) and condition (25), lim supt→∞〈x4(t)〉 ≤ �44
H4

is obtained. Hence,
limt→∞〈x4(t)〉 = �44

H4
is directly derived.
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From the above conclusion and (30), we have

lim sup
t→∞

〈
x1(t)

〉 ≤ (a43�21 – b4a12a23 + a12a23a44
�44
H4

)
H2a43

=
b1(a22a34a43 + a22a33a44 + a23a32a44) – b2a12(a33a44 + a34a43)

H4

+
–b4a12a23a34 + b3a12a23a44

H4
=

�41

H4
.

(40)

Then, from (32) we furthermore obtain

lim inf
t→∞

〈
x3(t)

〉 ≥ �33

H3
–

a34H2

H3

�44

H4
=

�43

H4
. (41)

Similarly, by (33)

lim sup
t→∞

〈
x2(t)

〉 ≤ b2H4 + a21�41 – a23�43

a22H4
=

�42

H4
(42)

is also obtained. For all ε > 0, there is a T > 0 for all t ≥ T such that
∫ t

0 x2(s) ds < ( �42
H4

+ ε)t
and

∫ t
0 x4(s) ds > ( �44

H4
– ε)t. From (22), we compute

ln x3(t) ≤ b3t + a32

(
�42

H4
+ ε

)

– a33

∫ t

0
x3(s) ds – a34

(
�44

H4
– ε

)

+ φ3(t). (43)

We have limt→∞ φ3(t) = 0. Thus, from the arbitrariness of ε and Lemma 5

lim sup
t→∞

〈
x3(t)

〉 ≤ b3H4 + a32�42 – a34�44

a33H4
=

�43

H4
(44)

is furthermore derived. Hence, limt→∞〈x3(t)〉 = �43
H4

is obtained.
From (21) and (22), we compute

V2(t) = �22t – H2

∫ t

0
x2(s) ds – a11a23

∫ t

0
x3(s) ds + φ8(t), (45)

where φ8(t) = a21φ1(t) + a11φ2(t). By Lemma 7, limt→∞ φ8(t)
t = 0 a.s. is obtained. From

Lemma 7 and for ε > 0, there exists a T > 0 satisfying
∫ t

0 x3(s) ds < ( �43
H4

+ ε)t and ln x1(t) <
ε

a21+1 t for t > T . Thus

a11 ln x2(t) ≥
(

�22 – a11a23

(
�43

H4
+ ε

)

– ε

)

t – H2

∫ t

0
x2(s) ds + φ8(t) (46)

is obtained. Therefore, from the arbitrariness of ε and Lemma 5

lim inf
t→∞

〈
x2(t)

〉 ≥ H4�22 – a11a23�43

H2H4
=

�42

H4
(47)

is furthermore obtained. Then, we obtain limt→∞〈x2(t)〉 = �42
H4

.
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For any ε > 0, there is a T > 0 such that
∫ t

0 x2(s) ds < ( �42
H4

+ ε) for any t > T . Hence, from
(21), we have

ln x1(t) ≥
(

b1 – a12

(
�42

H4
+ ε

))

t – a11

∫ t

0
x1(s) ds + φ1(t). (48)

Hence, by Lemma 5 and the arbitrariness of ε we furthermore have

lim inf
t→∞

〈
x1(t)

〉 ≥ b1H4 – a12�42

a11H4
=

�41

H4
. (49)

Then, we also have limt→∞〈x1(t)〉 = �41
H4

. Therefore, conclusion (9) in Theorem 1 is proved.
Assume �44 = 0. If there an i ∈ {1, 2, 3} such that Mi < 0, then we furthermore have

limt→∞ xi+1(t) = 0 from the above discussions. Hence, by Lemma 8, limt→∞ x4(t) = 0. Oth-
erwise, we have Mi ≥ 0, i = 1, 2, 3. Then, from the above discussions we also have

[
a22a33a44H2H3 – a12a21a23a32a44H3 – a23a32a34a43H2

2
]

lim sup
t→∞

〈
x4(t)

〉

≤ [
a22a33a44H2H3 – a12a21a23a32a44H3 – a23a32a34a43H2

2
]�44

H4
= 0.

Therefore, from condition (25) we have limt→∞〈x4〉 = 0 a.s.
Assume �44 < 0. Then from (26) we obtain

V4(t) ≤ �44t + φ5(t).

Hence,

lim sup
t→∞

1
t

[[
a32

(
a21 ln x1(t) + a11 ln x2(t)

)
+ H2 ln x3(t)

]
a43 + H3 ln x4(t)

] ≤ �44 < 0.

Thus, we have

lim
t→∞

[(
x1(t)

)a43a32a21 (
x2(t)

)a43a32a11 (
x3(t)

)a43H2 (
x4(t)

)H3 ]
= 0.

This shows that there exists a j ∈ {1, 2, 3, 4} that satisfies limt→∞ xj(t) = 0. Consequently,
by Lemma 8, limt→∞ x4(t) = 0.

In conclusion, when �44 ≤ 0 we always obtain limt→∞〈x4(t)〉 = 0 or limt→∞ x4(t) = 0.
Thus, applying the similar arguments used in the proving process of Theorem 1 listed in
[28], the remaining conclusions in Theorem 1 can be proved. �

Remark 4 Observe the proving process of the above, the criterion (25) only used to obtain
lim supt→∞〈x4(t)〉 ≤ �44

H4
from the inequality (39). This shows that conditions (24) and (25)

appear to be the supererogatory and pure mathematical conditions.

Remark 5 An important and interesting open problem is how to extend Theorem 1 to the
general n-species stochastic food-chain system with distributed delay and harvesting.

In the following theorem, we mainly investigate that, for all positive global solutions of
model (1), the conclusion about global attractiveness in the expectation.
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Theorem 2 For initial conditions φ,φ∗ ∈ C([–r, 0], R4
+), assume that model (1) has two so-

lutions (x1(t;φ), x2(t;φ), x3(t;φ), x4(t;φ)) and (y1(t;φ∗), y2(t;φ∗), y3(t;φ∗), y4(t;φ∗)). If there
are positive constants wi (i = 1, 2, 3, 4) such that

w1a11 – w2a21 > 0, wiaii – wi–1ai–1i – wi+1ai+1i > 0 (i = 2, 3),

w4a44 – w3a34 > 0.

Then

lim
t→∞ E

( 4∑

i=1

∣
∣xi(t,φ) – yi

(
t,φ∗)∣

∣2
) 1

2

= 0.

The proof of Theorem 2 is similar to Theorem 2 from [28]. Hence it is omitted here.
Now let P([–r, 0], R4

+) represent the whole measurable probability space on C([–r, 0], R4
+).

For P1,P2 ∈P([–r, 0], R4
+), set the metric as follows:

dL(P1,P2) = sup
f ∈L

∣
∣
∣
∣

∫

R4
+

f (u)P1(du) –
∫

R4
+

f (u)P2(du)
∣
∣
∣
∣,

where

L =
{

f : C
(
[–r, 0], R4

+
) → R :

∣
∣f (u1) – f (u2)

∣
∣ ≤ ‖u1 – u2‖,

∣
∣f (·)∣∣ ≤ 1

}
.

Let p(t,φ, dx) represents the transition probability of process x(t) = (x1(t), x2(t), x3(t), x4(t)).
In the following theorem, we consider the condition of asymptotically stability. The results
as follows are obtained.

Theorem 3 Suppose that positive constants qi (i = 1, 2, 3, 4) satisfies

q1a11 – q2a21 > 0, qiaii – qi–1ai–1i – qi+1ai+1i > 0 (i = 2, 3),

q4a44 – q3a34 > 0.

Then model (1) is asymptotically stable in distribution, i.e., for all initial value φ ∈
C([–γ , 0], R4

+), a unique probability measure v(·) satisfies the transition probability p(t,φ, ·)
of solution (x1(t,φ), x2(t,φ), x3(t,φ), x4(t,φ)) such that

lim
t→∞ dBL

(
p(t,φ, ·), v(·)) = 0.

Remark 6 Obviously, Theorems 2 and 3 also seemingly can be extended to the general
n-species stochastic food-chain system with distributed delay and harvesting.

4 Effect of harvesting
We firstly introduce the following lemma.
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Lemma 9 Assume that there exist positive constants qi (i = 1, 2, 3, 4) satisfying

q1a11 – q2a21 > 0, qiaii – qi–1ai–1i – qi+1ai+1i > 0 (i = 2, 3),

q4a44 – q3a34 > 0.

Then we have

a22a33a44H2H3 – a12a21a23a32a44H3 – a23a32a34a43H2
2 > 0.

Proof In fact, we obtain

a11 >
q2

q1
a21, aii >

1
qi

(qi–1ai–1i + qi+1ai+1i), i = 2, 3, a44 >
q3

q4
a34.

By calculating we obtain

(a22a33H2 – a12a21a23a32)a44H3

>
(

1
q2

[q1a12 + q3a32]
1
q3

[q2a23 + q4a43][a11a22 + a12a21] – a12a21a23a32

)

a44H3

≥
((

1
q2

q1a12
1
q3

[q2a23 + q4a43] +
q4

q2
a32a43

)

(a11a22 + a12a21)
)

a44H3

≥ q4

q2
a32a43(a11a22 + a12a21)

q3

q4
a34H3.

Since

H3 > (a11a22 + a12a21)a33 > (a11a22 + a12a21)
q2

q3
a23,

we furthermore obtain

(a22a33H2 – a12a21a23a32)a44H3

>
q4

q2
a32a43(a11a22 + a12a21)

q3

q4
a34(a11a22 + a12a21)

q2

q3
a23

= a23a32a34a43H2
2 .

This completes the proof. �

For the convenience, we define the following matrix:

B =

⎛

⎜
⎜
⎜
⎝

a11 a12 0 0
–a21 a22 a23 0

0 –a32 a33 a34

0 0 –a43 a44

⎞

⎟
⎟
⎟
⎠

.

It is clear that the determinant |B| = H4 > 0. Hence, there exists B–1. Let H = (h1, h2, h3, h4)T

and R = (r1 – 1
2σ 2

1 , r2 – 1
2σ 2

2 , r3 – 1
2σ 2

3 , r4 – 1
2σ 2

4 )T . Furthermore, let H∗ = (h∗
1, h∗

2, h∗
3, h∗

4)T =
(B(B–1)T + E)–1R, where E is the unit matrix.
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Theorem 4 Suppose that the positive constants qi (i = 1, 2, 3, 4) satisfy

q1a11 – q2a21 > 0, qiaii – qi–1ai–1i – qi+1ai+1i > 0 (i = 2, 3),

q4a44 – q3a34 > 0.

Then the following conclusions hold.
(A1) If h∗

i ≥ 0 for i = 1, 2, 3, 4, �44|hi=h∗
i ,i=1,2,3,4 > 0 and B–1 + (B–1)T is positive semi-

definite, then model (1) has the optimal harvesting strategy H = H∗ and

MESY � Y
(
H∗)

=
(
H∗)T B–1(

R – H∗)
. (50)

(A2) If any of the following conditions holds:
(B1) �44|hi=h∗

i ,i=1,2,3,4 ≤ 0;
(B2) h∗

1 < 0 or h∗
2 < 0 or h∗

3 < 0 or h∗
4 < 0;

(B3) B–1 + (B–1)T is not positive semi-definite,
then the optimal harvesting strategy of model (1) does not exist.

Proof Let U = {H = (h1, h2, h3, h4)T ∈ R4 : �44 > 0, hi ≥ 0, i = 1, 2, 3, 4}. Obviously, for H ∈
U , the conclusion (9) of Theorem 1 stands. Meanwhile, supposing H∗ exists, then H∗ ∈ U .

At the beginning, let us prove (A1). The set U is not empty for H∗ ∈ U . From Theorem 3,
a unique invariant measure v(·) for model (1) exists. And thus it yields by Corollary 3.4.3
in Prato and Zbczyk [29] that v(·) is strongly mixing. The measure v(·) is ergodic from
Theorem 3.2.6 in [29]. For initial condition (ς (θ ), ξ (θ ),κ(θ ),η(θ )) ∈ C([–r, 0], R4

+), model
(1) has a global positive solution x(t) = (x1(t), x2(t), x3(t), x4(t)). In view of Theorem 3.3.1
in [29], we obtain

lim
t→∞

1
t

∫ t

0
HT x(s) ds =

∫

R4
+

HT xv(dx), (51)

where H = (h1, h2, h3, h4)T ∈ U . Let �(z) be the stationary probability density of model (1),
then we have

Y (H) = lim
t→∞ E

[ 4∑

i=1

hixi(t)

]

= lim
t→∞ E

[
HT x(t)

]
=

∫

R4
+

HT x�(x) dx. (52)

For model (1), in view of the invariant measure is sole, one also has a one-to-one corre-
spondence among �(z) and its corresponding invariant measure;

∫

R4
+

HT x�(x) dx =
∫

R4
+

HT xv(dx) (53)

is deduced. Therefore, from the conclusion (9) of Theorem 1, Lemma 9, and (51)–(53)

Y (H) = lim
t→+∞

1
t

∫ t

0
HT x(s) ds

= h1 lim
t→+∞

1
t

∫ t

0
x1(s) ds + h2 lim

t→+∞
1
t

∫ t

0
x2(s) ds + h3 lim

t→+∞
1
t

∫ t

0
x3(s) ds
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+ h4 lim
t→+∞

1
t

∫ t

0
x4(s) ds

= h1�41 + h2�42 + h3�43 + h4�44

is obtained. It can be carefully calculated that Y (H) = HT B–1(R – H). Calculating the gra-
dient of Y (H), we have

∂Y (H)
∂H

=
∂HT

∂H
B–1(R – H) +

∂(R – H)T

∂H
(
B–1)T H .

Since ∂HT

∂H = E is unit matrix, we furthermore have

∂Y (H)
∂H

= B–1(R – H) –
(
B–1)T H = B–1R –

(
B–1 +

(
B–1)T )

H .

Solving the equation ∂Y (H)
∂H = 0, we obtain the critical value H = (B–1 + (B–1)T )–1B–1R. We

have

H =
[
B–1(

B
(
B–1)T + E

)]–1B–1R =
(
B

(
B–1)T + E

)–1R = H∗.

Furthermore calculating the Hessian matrix of Y (H), we obtain

∂

∂H

(
∂Y (H)

∂H

)

= –
∂(B–1 + (B–1)T )H

∂H
= –

(
B–1 +

(
B–1)T )

. (54)

Since B–1 +(B–1)T is positive semi-definite, from the existence principle of extremum value
for multivariable functions, we find that Y (H) has the maximum global value H = H∗.
Clearly, H∗ is unique, hence if H∗ ∈ U , i.e., h∗

i ≥ 0 (i = 1, 2, 3, 4) and �44|hi=h∗
i ,i=1,2,3,4 > 0,

thus we finally obtain the result that H∗ is an optimal harvesting strategy, and MESY shown
in (50).

Now we need to prove (A2). We first assume that (B1) or (B2) stands. Suppose that
�̃ = (γ1,γ2,γ3,γ4) is the optimal harvesting strategy, thus � ∈ U . That is,

�44|hi=γi ,i=1,2,3,4 > 0, γi ≥ 0, i = 1, 2, 3, 4. (55)

Then again, if � ∈ U is the optimal harvesting strategy, we find that � is the unique so-
lution of the equation ∂Y (H)

∂H = 0. Therefore, we have (h∗
1, h∗

2, h∗
3, h∗

4) = (γ1,γ2,γ3,γ4). Thus,
condition (55) becomes

�44|hi=h∗
i ,i=1,2,3,4 > 0, h∗

i ≥ 0, i = 1, 2, 3, 4,

which is impossible.
Lastly, let us consider (B3). We first assume that (B1) and (B2) fail to stand. Thus, h∗

i ≥ 0,
i = 1, 2, 3, 4, and �44|hi=h∗

i ,i=1,2,3,4 > 0. Thus, U is not empty. That is to say, (51)–(54) hold.
Let B–1 + (B–1)T = (bij)4×4. Then, by calculating we have

b11 =
2(a22a33a44 + a22a34a43 + a23a32a44)

H4
.
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Obviously, b11 > 0. In other words, B–1 + (B–1)T is not negative semi-definite. From B3, we
see that B–1 + (B–1)T is indefinite. Therefore, there is no optimal harvesting strategy if B3

holds. �

Remark 7 We easily observe from the above proving process of Theorem 4 that, for the
general n-species stochastic food-chain system with distributed delay and harvesting, sim-
ilar results can be established.

5 Numerical examples
Next, we give three examples and a few figures to illustrate our main results. The numerical
methods are proposed in the numerical examples section of [28]. In model (1), we indicate
the initial conditions x1(θ ) = 0.3eθ , x2(θ ) = 0.2eθ , x3(θ ) = 0.3eθ and x4(θ ) = 0.2eθ for all
θ ∈ [– ln 2, 0], and τ12 = τ21 = τ23 = τ32 = τ34 = τ43 = ln 2 in the numerical simulations as
follows.

Example 1 The parameters r1 = 2.0, r2 = –1.0, r3 = –0.5, r4 = –0.1 and h1 = h2 = h3 = h4 = 0
are set. It is assumed that the parameters set for model (1) are as shown below.

Case 1.1. a11 = 1, a22 = 1, a33 = 2, a44 = 0.5, a12 = 2, a21 = 2, a23 = 1, a32 = 2, a34 = 1, a43 =
1, σ1 = 0.5, σ2 = 0.3, σ3 = 0.9 and σ4 = 0.9. We have �33 = 0.8850 > 0, �44 = –5.1750 < 0 and
a22a33H2 – a12a21a23a32 = 2.0000 > 0. Thus, based on the conclusion (7) in Theorem 1, one
shows that xi(t) feature persistence in mean for i = 1, 2, 3 and x4(t) is extinct. Figure 1 shows
the dynamic responses of xi(t), for i = 1, 2, 3, 4.

Case 1.2. a11 = 0.8, a22 = 1, a33 = 2.5, a44 = 1.8, a12 = 1, a21 = 2, a23 = 1, a32 = 2, a34 = 0.3,
a43 = 1, σ1 = 0.1, σ2 = 0.1, σ3 = 0.2 and σ4 = 0.9711. We have �44 = 0 and (a22a33H2 –
a12a21a23a32)a44H3 – a23a32a34a43H2

2 = 3.0360 > 0. Thus, based on the conclusion (8) in
Theorem 1, one shows that xi(t) feature persistence in mean for i = 1, 2, 3 and x4(t) is
extinct in mean. Figure 2 shows the dynamic responses of xi(t), for i = 1, 2, 3, 4.

Case 1.3. a11 = 0.5, a22 = 2, a33 = 2.5, a44 = 1.2, a12 = 1, a21 = 2.5, a23 = 2, a32 = 2,
a34 = 0.6, a43 = 2, σ1 = 0.1, σ2 = 0.2, σ3 = 0.5 and σ4 = 0.5. We have �44 = 11.1163 > 0 and

Figure 1 The time series diagram shows that for
i = 1, 2, 3, xi(t) is persistent in mean, x4(t) is extinct

Figure 2 The time series diagram shows that for
i = 1, 2, 3, xi(t) is persistent in mean, x4(t) is extinct in
mean
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Figure 3 The time series diagram shows that for
i = 1, 2, 3, 4, xi(t) is persistent in mean

Figure 4 The time series diagram shows that for
i = 1, 2, 3, xi(t) is persistent in mean, x4(t) is extinct

Figure 5 The time series diagram shows that for
i = 1, 2, 3, xi(t) is persistent in mean, x4(t) is extinct in
mean

(a22a33H2 – a12a21a23a32)a44H3 – a23a32a34a43H2
2 = 5.7000 > 0. Thus, based on the con-

clusion (9) in Theorem 1, one shows that xi(t) are persistent in mean. Figure 3 shows the
dynamic responses of xi(t). Here, i = 1, 2, 3, 4.

Example 2 In model (1), parameters r1 = 2.0, r2 = –1.0, r3 = –0.5, r4 = –0.1 and h1 = h2 =
h3 = h4 = 0 are fixed. It is assumed that the parameters set for model (1) are shown below.

Case 2.1. a11 = 1, a22 = 1, a33 = 2, a44 = 0.5, a12 = 2, a21 = 2, a23 = 1, a32 = 2, a34 = 1, a43 =
1, σ1 = 0.5, σ2 = 0.3, σ3 = 0.9 and σ4 = 0.9. We have �33 = 0.8850 > 0, �44 = –2.6500 < 0 and
a22a33H2 – a12a21a23a32 = –3 < 0. Clearly, the criterion of conclusion (7) in Theorem 1 is
not met. However, the dynamic responses of xi(t) (i = 1, 2, 3, 4), which are given in Fig. 4,
show that xi(t) feature persistence in mean and x4(t) is extinct, here i = 1, 2, 3.

Case 2.2. a11 = 0.8, a22 = 1, a33 = 2.5, a44 = 1.8, a12 = 1, a21 = 2, a23 = 1, a32 = 2, a34 = 1,
a43 = 1, σ1 = 0.1, σ2 = 0.1, σ3 = 0.2 and σ4 = 0.9711. We have �44 = 0 and (a22a33H2 –
a12a21a23a32)a44H3 – a23a32a34a43H2

2 = –7.9400 < 0. Clearly, the criterion of conclusion
(8) in Theorem 1 is not met. However, the dynamic responses of xi(t)/ (i = 1, 2, 3, 4), which
are given in Fig. 5, show that xi(t) feature persistence in mean and x4(t) is extinct in mean,
here i = 1, 2, 3.

Case 2.3. a11 = 0.5, a22 = 2, a33 = 2.5, a44 = 1, a12 = 1, a21 = 2.5, a23 = 2, a32 = 2, a34 = 0.6,
a43 = 2, σ1 = 0.1, σ2 = 0.2, σ3 = 0.5 and σ4 = 0.5. We have �44 = 11.1163 > 0 and (a22a33H2 –
a12a21a23a32)a44H3 –a23a32a34a43H2

2 = –5.0500 < 0. Clearly, the criterion of conclusion (9)
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Figure 6 The time series diagram shows that for
i = 1, 2, 3, 4, xi(t) is persistent in mean

Figure 7 The time series diagram shows the optimal harvesting strategy

in Theorem 1 is not met. However, the dynamic responses of xi(t), which are given in Fig. 6,
show that xi(t) for (i = 1, 2, 3, 4) feature persistence in mean.

Example 3 In model (1), take parameters r1 = 1.5, r2 = –0.5, r3 = –0.03 and r4 = –0.01,
m1 = 2.5, m2 = 1.3, m3 = 0.8, m4 = 1.4, a11 = 1.6, a12 = 0.2, a22 = 2, a21 = 2.5, a23 = 1, a32 =
2.5, a33 = 2, a34 = 0.2, a43 = 0.1, a44 = 2, σ1 = 0.1, σ2 = 0.2, σ3 = 0.1 and σ4 = 0.1. Then we
have m1a11 – m2a21 = 0.7500 > 0, m2a22 – m1a12 – m3a32 = 0.1000 > 0, m3a33 – m2a23 –
m4a43 = 0.1600 > 0 and m4a44 – m3a34 = 2.6400 > 0. Hence, a condition of Theorem 4 is
satisfied, and by calculating we have h∗

1 = 0.3377 > 0, h∗
2 = 0.4811, h∗

3 = 0.5147, h∗
4 = 0.0083,

and �44 = 0.5424 > 0. Thus, the criterion of conclusion (A1) in Theorem 4 is met. Then,
the optimal harvesting strategy H∗ = (0.3377, 0.4811, 0.5147, 0.0083)T is obtained, we also
have Y (H∗) = 0.4316. The dynamic response is shown in Fig. 7.

6 Conclusion
By investigating the effect of harvesting and distributed delays on the stochastic model
and taking four species into accounts, we extend the main investigation in [28]. Using
the inequality estimation technique, the Lyapunov function method and the stochastic
integrals inequalities, in Theorem 1, the critical values between persistence in mean and
extinction are investigated; as the result shows, environmental randomness can affect the
extinction and persistence of a species in terms of the demographics of species and lower
tropical species. However, the environmental randomness affects the average abundance
of a species at all trophic levels. Global attractiveness and global asymptotic stability in
distribution of model (1) are discussed in Theorem 2 and Theorem 3, respectively. The
existence of the maximum of sustainable yield, the optimal harvesting strategy and the
optimal harvesting effort and are obtained in Theorem 4, the result shows that the optimal
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harvesting strategy has a close relation with environmental fluctuations. Finally, numerical
simulations are provided to support theoretical findings.

There are some issues that may need to be followed up to continue the discussion. First
of all, similar research work (see [28]) for the general n-species random food-chain systems
is not found up to now. From Remarks 1–7, we easily find that, for the general n-species
stochastic food-chain system with distributed delay and harvesting, Theorems 2–4 can be
established. However, the remaining problem is how to extend Theorem 1 to the general
n-species random food-chain model. Secondly, it is supposed at present that the opti-
mal harvesting problem of cooperative systems and competitive systems are less studied.
Therefore, this may also be a breakthrough of the optimal harvesting problem. Further-
more, we can investigate more complex models, such as random models with nonlinear
functional responses (see [22]), Markov switching (see [30]), and Lévy jumps (see [31, 32]).
In the following research, we hope to discuss these issues.
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