
Dai and Cheng Boundary Value Problems         (2021) 2021:29 
https://doi.org/10.1186/s13661-021-01505-w

R E S E A R C H Open Access

The first initial-boundary value problem of
parabolic Monge–Ampère equations outside
a bowl-shaped domain
Limei Dai1* and Huihui Cheng2

*Correspondence:
lmdai@wfu.edu.cn
1School of Mathematics and
Information Science, Weifang
University, Weifang, China
Full list of author information is
available at the end of the article

Abstract
In this paper, we study the parabolic Monge–Ampère equations –ut det(D2u) = g
outside a bowl-shaped domain with g being the perturbation of g0(|x|) at infinity.
Under the weaker conditions compared with the problem outside a cylinder, we
obtain the existence and uniqueness of viscosity solutions with asymptotic behavior
for the first initial-boundary value problem by using the Perron method.
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1 Introduction
Monge–Ampère equation is a class of fully nonlinear partial differential equations. The
Dirichlet problem of elliptic Monge–Ampère equations on exterior domains is closely re-
lated to a celebrated result of Jörgens (n = 2 [1]), Calabi (n ≤ 5 [2]), and Pogorelov (n ≥ 2
[3]). It asserts that any classical convex solution of elliptic Monge–Ampère equation

det D2u = 1 in R
n

must be a quadratic polynomial. A simpler and more analytical proof was given by Cheng
and Yau [4]. Caffarelli [5] proved that this result holds true for viscosity solutions. Then the
result was extended to the Dirichlet problem of elliptic Monge–Ampère equation on exte-
rior domains by Caffarelli and Li in [6] where the existence and uniqueness of the viscosity
solutions were proved by the Perron method. Other results for elliptic Monge–Ampère
equations on exterior domains can be referred to [7–11] and the references therein. The
blow-up solutions to the Monge–Ampère equation and convex solutions of the Monge–
Ampère systems can be referred to [12, 13].

The Jörgens–Calabi–Pogorelov theorem for parabolic Monge–Ampère equation

–ut det D2u = 1 in R
n × (–∞, 0] (1.1)

was established by Gutiérrez and Huang [14]. It is stated that if u ∈ C4,2(Rn × (–∞, 0])
is a parabolically convex solution of (1.1) such that, for some positive constants d1, d2,
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–d1 ≤ ut(x, t) ≤ –d2, (x, t) ∈ R
n × (–∞, 0], then u must be the form u(x, t) = Ct + P(x) with

C < 0 and P being a convex quadratic polynomial. Then the Jörgens–Calabi–Pogorelov
parabolic theorem was generalized to the equation ut = ρ(logdet D2u) with ρ = ρ(z) ∈
C2(R) by Xiong and Bao [15], the equation ut – logdet D2u = f by Wang and Bao [16],
and the equation –ut det D2u = f by Zhang, Bao, and Wang [17]. In [18], the author, using
the Perron method, studied the first initial-boundary value problem for parabolic Monge–
Ampère equation outside a cylinder

–ut det D2u = g in
(
R

n\�) × (0, T̃], (1.2)

u = φ(x, t) on ∂� × [0, T̃], (1.3)

u = ψ(x) in
(
R

n\�) × {t = 0}, (1.4)

where u = u(x, t), x ∈ R
n, t ∈ R, ut = ∂u/∂t, D2u is the Hessian matrix of u with respect to

the spatial variables x, T̃ > 0 and � is a smooth, bounded, and strictly convex open subset
in R

n, g = g(x, t) = 1 + O(|x|–α), |x| → ∞ with α > 2, φ(x, t) and ψ(x) are given continuous
functions satisfying the compatibility condition. The existence and uniqueness of viscosity
solutions with asymptotic behavior at infinity to (1.2)–(1.4) were obtained. The first initial-
boundary value problems of parabolic Monge–Ampère equations ut = ρ(logdet D2u) and
ut – logdet D2u = f on exterior domains were also studied in [19–21]. Recently, the author
and Bao [22] obtained the existence of entire solutions of the Cauchy problem for parabolic
Monge–Ampère equations –ut det D2u = g with g = g0(|x|) + O(|x|–α) at infinity.

This kind of first initial-boundary value problem (1.2)–(1.4) on exterior domains is mo-
tivated by the interior problem of parabolic Monge–Ampère equations [23, 24]

⎧
⎨

⎩
–ut det D2u = g(x, t) in � × (0, T̃],

u = φ(x, t) on (∂� × [0, T̃]) ∪ (� × {t = 0}).

In this paper, we study the parabolic Monge–Ampère equations –ut det D2u = g(x, t) with
g = g0(|x|) + O(|x|–α) (see the following details for g0 and α) outside a bowl-shaped domain.

Let D ⊂R
n+1 be a bounded domain and t ∈R, define

D(t) =
{

x : (x, t) ∈ D
}

.

Set t0 = inf{t : D(t) 	= ∅}. The parabolic boundary of D is defined by

∂pD =
(
D(t0) × {t0}

) ∪
⋃

t∈R

(
∂D(t) × {t}),

where D denotes the closure of D and ∂D(t) denotes the boundary of D(t). The side bound-
ary of D is defined by SD =

⋃
t∈R(∂D(t) × {t}). The set D ⊂ R

n+1 is called a bowl-shaped
domain if for each t, D(t) is convex and for t1 ≤ t2, D(t1) ⊂ D(t2). One can also refer to
[14].

Let D be a bowl-shaped domain and T = sup{t : D(t) 	= ∅}, Rn+1
T = R

n × (t0, T]. Then
SD = ∂D(t) × [t0, T]. In the following, we shall abuse the notations SD and ∂D(t) × [t0, T].
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We shall consider the first initial-boundary value problem of parabolic Monge–Ampère
equations

–ut det D2u = g(x, t) in R
n+1
T \D, (1.5)

u = φ(x, t) on ∂D(t) × [t0, T], (1.6)

u = ψ(x) in
(
R

n\D(t0)
) × {t = t0}. (1.7)

Let D̃ ⊂ R
n+1, if for (x, t) ∈ D̃ a function u is 2kth continuous differentiable with spatial

variables x ∈ R
n and kth continuous differentiable with time variable t, we say that u ∈

C2k,k(D̃). Let USC(D̃) and LSC(D̃) be the sets of upper and lower semicontinuous real-
valued functions on D̃, respectively. We say that a function u ∈ USC(D̃) (or LSC(D̃)) is
parabolically convex if u is convex in x and nonincreasing in t. The following definition of
viscosity solutions is referred to [25].

Definition 1.1 Suppose that u ∈ USC(Rn+1
T \D) (LSC(Rn+1

T \D)) is locally parabolically
convex. We say that u is a viscosity subsolution (supersolution) of (1.5) if for any func-
tion ϕ ∈ C2,1(Nr(x̄, t̄)) (with some Nr(x̄, t̄) := {(x, t) : |x – x̄| < r, t̄ – r2 < t ≤ t̄} ⊂ R

n+1
T \D,

whenever

u(x, t) – ϕ(x, t) ≤ (≥) u(x̄, t̄) – ϕ(x̄, t̄) for any (x, t) ∈Nr(x̄, t̄),

we must have

–ϕt(x, t) det D2ϕ(x̄, t̄) ≥ (≤) f (x̄, t̄).

For the supersolution, we also need that D2ϕ(x, t) > 0 in the matrix sense.
u ∈ C0(Rn+1

T \D) is a viscosity solution of (1.5) if it is both a viscosity subsolution and
supersolution of (1.5).

Definition 1.2 We say that u ∈ USC(Rn+1
T \D) (LSC(Rn+1

T \D)) is a viscosity subsolution
(supersolution) of problem (1.5)–(1.7) if u is a viscosity subsolution (supersolution) of
(1.5), u ≤ (≥) φ(x, t) on ∂D(t) × [t0, T], and u ≤ (≥) ψ(x) for (x, t) ∈ (Rn\D(t0)) × {t = t0}.

Then u ∈ C0(Rn+1
T \D) is a viscosity solution of (1.5)–(1.7) if it is a viscosity solution of

(1.5), u = φ(x, t) on ∂D(t) × [t0, T], and u = ψ(x) for (x, t) ∈ (Rn\D(t0)) × {t = t0}.

We assume that g and ψ satisfy the following assumptions:
(G) g ∈ C0(Rn × [t0, T]) is a positive function satisfying

0 < inf
Rn×[t0,T]

g ≤ sup
Rn×[t0,T]

g < ∞,

and for the constant α > 0,

g(x, t) = g0
(|x|) + O

(|x|–α
)
, uniformly for t, |x| → ∞,

where g0 ∈ C0([0, +∞)) is positive,

g0(r) = O
(
rβ

)
, r → +∞,
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and β is a constant, β ≥ –α,

–n(min{α, n} – 2)
n – 1

< β < ∞. (1.8)

(
) Assume that there exists a constant γ > 0 such that ψ ∈ C0(Rn\D(t0)) satisfies in the
viscosity sense

⎧
⎨

⎩
det D2ψ = g(x,t0)

γ
, D2ψ > 0 in R

n\D(t0),

ψ = φ(x, t0) on ∂D(t0),

and for some b ∈R
n and some constant c, ψ(x) satisfies

lim sup
|x|→∞

|x|min{α,n}–2+β– β
n
∣∣ψ(x) –

(
u0

(|x|) + b · x + c
)∣∣ < ∞, if α 	= n, (1.9)

lim sup
|x|→∞

|x|n–2+β– β
n
(
ln |x|)–1∣∣ψ(x) –

(
u0

(|x|) + b · x + c
)∣∣ < ∞, if α = n, (1.10)

where

u0
(|x|) =

(
n
γ

) 1
n
∫ |x|

0

(∫ s

0
zn–1g0(z) dz

) 1
n

ds (1.11)

is the solution of elliptic Monge–Ampère equations

det D2u0 =
g0(|x|)

γ

with u0(0) = 0, u′
0(0) = 0.

Our main result is as follows.

Theorem 1.1 Let D be a bowl-shaped domain inR
n+1, n ≥ 3, and SD be smooth and strictly

convex. Assume that g and ψ satisfy (G) and (
) respectively and φ ∈ C2,1(D),φ is decreas-
ing in t. Then, for the b ∈ R

n and the constant c in (1.9) and (1.10), there exists a unique
viscosity solution u ∈ C0(Rn+1

T \D) of (1.5), (1.6), and (1.7) satisfying, for t ∈ [t0, T],

lim sup
|x|→∞

|x|min{α,n}–2+β– β
n
∣∣u(x, t) –

(
–γ (t – t0) + u0

(|x|) + b · x + c
)∣∣

< ∞, if α 	= n, (1.12)

and

lim sup
|x|→∞

|x|n+β–2– β
n
(
ln |x|)–1∣∣u(x, t) –

(
–γ (t – t0) + u0

(|x|) + b · x + c
)∣∣

< ∞, if α = n. (1.13)

So we extend the previous results [18–20] from g ≡ 1 or g = 1 + O(|x|–α) to g = g0(|x|) +
O(|x|–α). Moreover, in the Dirichlet problem of elliptic Monge–Ampère equations on ex-
terior domains, an important lemma (Lemma 5.1 [6]) is used to construct the viscosity
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subsolutions with asymptotic behavior. Similarly, for the parabolic Monge–Ampère equa-
tions, a viscosity subsolution with asymptotic behavior is needed to be constructed by an
important lemma (Lemma 2.1 [19]) on a cylinder Q = � × (0, T̃] ⊂ R

n+1. To construct
the viscosity subsolutions of parabolic Monge–Ampère equations applying the lemma, we
added the strong condition φxi ,t(x, t) = 0 for any x ∈ ∂�, 0 ≤ t ≤ T̃ [18–20], which is not
natural. In this paper, we establish a lemma on a bowl-shaped domain and then we use this
lemma to construct the viscosity subsolutions without the strong condition φxi ,t(x, t) = 0.

This paper is arranged as follows. In Sect. 2, we give the important lemma on a bowl-
shaped domain with which the viscosity subsolution is constructed. Theorem 1.1 is proved
in Sect. 3.

2 An important lemma
Lemma 2.1 Let D be a bowl-shaped domain inR

n+1. Suppose that SD is smooth and strictly
convex and �(x, t) ∈ C2,1(D). Then there exists some constant C0, depending only on n, �,
D, such that, for any (ξ ,λ) ∈ SD, ξ ∈R

n, λ ∈ R, there exists x̄(ξ ,λ, t) ∈R
n+1 satisfying

∣∣x̄(ξ ,λ, t)
∣∣ ≤ C0

and

vξ ,λ(x, t) < �(x, t) on SD\{(ξ ,λ)
}

, (2.1)

where, for (x, t) ∈R
n × [t0, T],

vξ ,λ(x, t) = �(ξ , t) +
c∗
2

(∣∣(x, t) – x̄(ξ ,λ, t)
∣∣2 –

∣∣(ξ ,λ) – x̄(ξ ,λ, t)
∣∣2),

and c∗ is any bounded positive constant.
In addition, for some positive constant c0 and some bounded domain D1 ⊂ R

n × [t0, T],
we have

∂vξ ,λ

∂t
< –c0 in D1. (2.2)

Proof Let (ξ ,λ) ∈ SD, and � locally has the expansion

�(x, t) = �(ξ , t) + (x – ξ ) · Dx�(ξ , t) +
1
2

(x – ξ )′D2�(ξ , t)(x – ξ )

≥ �(ξ , t) + (x – ξ ) · Dx�(ξ , t) – C|x – ξ |2,

where Dx� is the gradient of � in x, D2� is the Hessian matrix of � in x, (ξ , t) ∈ D, and
C = 1

2 maxD |D2�|.
Let

x̄(ξ ,λ, t) = –
1
c∗

(
�x1 (ξ , t), . . . ,�xn (ξ , t), 0

)
+ ĉν(ξ ,λ) + (ξ ,λ),
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where ν(ξ ,λ) is the unit internal normal vector of SD at (ξ ,λ) and ĉ is sufficiently large but
bounded positive constant to be determined. Then

vξ ,λ(x, t) = �(ξ , t) +
c∗
2

(∣∣(x, t)
∣∣2 –

∣∣(ξ ,λ)
∣∣2) – c∗(x – ξ , t – λ) · x̄(ξ ,λ, t)

= �(ξ , t) +
c∗
2

|x – ξ |2 +
c∗
2

(t – λ)2

+ (x – ξ ) · Dx�(ξ , t) – c∗ĉ(x – ξ , t – λ) · ν(ξ ,λ). (2.3)

So

(vξ ,λ – �)(x, t)

≤ C|x – ξ |2 +
c∗
2

|x – ξ |2 +
c∗
2

(t – λ)2 – c∗ĉ(x – ξ , t – λ) · ν(ξ ,λ).

By a translation, without loss of generality, we can assume that ξ = 0, λ = 0. Then

vξ ,λ(x, t) := ṽ(x, t)

= �(0, t) +
c∗
2

|x|2 +
c∗
2

t2 + x · Dx�(0, t) – c∗ĉ(x, t) · ν(0, 0)

and

(ṽ – �)(x, t) ≤ C|x|2 +
c∗
2

|x|2 +
c∗
2

t2 – c∗ĉ(x, t) · ν(0, 0).

We again rotate the coordinates to have ν(0, 0) as one of the axes. That is, let M be an
orthogonal matrix such that Men+1 = ν(0, 0). Set M(y,γ ) = (x, t), then

(ṽ – �)(x, t) := (v – �)(y,γ ) ≤ C1|y|2 + C2γ
2 – c∗ĉγ (2.4)

and

ṽ(x, t) := v(y,γ ) ≤ C3 – c∗ĉγ , (2.5)

where C1, C2 are bounded and depend on C, c∗ and M, C3 is bounded and depends on
c∗,‖�‖C2,1(D), M and diamD. Since SD is strictly convex, then SD can be locally represented
by

γ = ρ(y) = O
(|y|2). (2.6)

Thus, by (2.4),

(ṽ – �)(x, t) = (v – �)(y,γ ) ≤ C1|y|2 + C2ρ
2(y) – ĉc∗ρ(y).

Again by the fact that SD is strictly convex, there exists a constant δ > 0 depending only
on D such that

ρ(y) ≥ δ|y|2, ∀|y| < δ. (2.7)
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So

(ṽ – �)(x, t) = (v – �)(y,γ )

≤ C1|y|2 + C2ρ
2(y) – ĉc∗δ|y|2, ∀|y| < δ.

Clearly, by (2.6), for sufficiently large but bounded constant ĉ,

(ṽ – �)(x, t) < 0, ∀0 < |y| < δ,γ = ρ(y),

where ĉ depends only on δ, ‖�‖C2,1(D), c∗, and M.
On the other hand, by (2.7), we have

γ ≥ δ3, ∀(y,γ ) ∈ SD\{(y,ρ(y)
)

: |y| < δ
}

.

Then, for any (y,γ ) ∈ SD\{(y,ρ(y)) : |y| < δ}, by (2.5),

ṽ(x, t) = v(y,γ ) ≤ C3 – ĉδ3c∗.

Choosing ĉ large enough (depending only on c∗, δ, diamD,‖�‖C2,1(D), M) but still bounded,
we get

ṽ(x, t) – �(x, t) < 0, ∀(y,γ ) ∈ SD\{(y,ρ(y)
)

: |y| < δ
}

.

From (2.3), we know that

∂vξ ,λ

∂t
= �t(ξ , t) + c∗(t – λ) + (x – ξ ) · Dx,t�(ξ , t) – c∗ĉνn+1(ξ ,λ),

where

Dx,t�(ξ , t) =
(

∂2�

∂x1∂t
, . . . ,

∂2�

∂xn∂t

)′
.

Therefore, for some positive constant c0 and some bounded domain D1 ⊂ R
n × [t0, T],

similar to the above arguments, by translation and rotation of the coordinates, we can
choose ĉ sufficiently large but bounded such that (2.2) holds. The lemma is proved. �

Remark 2.1 By (2.2), it is easy to see that even if �xi ,t(x, t) 	≡ 0, (x, t) ∈ SD, we still have
–(vξ ,λ)t det D2vξ ,λ ≥ g(x, t) in some bounded domain D1. Then we avoid the bad condition
�xi ,t(x, t) = 0 for any (x, t) ∈ SD in [18–20].

3 Proof of Theorem 1.1
For the reader’s convenience, we first give the following lemmas whose proof can be found
in [18, 26].

Lemma 3.1 ([18]) Let � ⊂ �1 be two open strictly convex subsets with smooth boundaries
in R

n and Q = � × (t0, T], Q1 = �1 × (t0, T]. Suppose that v ∈ C0(Q) and u ∈ C0(Q1) are
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parabolically convex and satisfy respectively

–vt det D2v ≥ f in Q

and

–ut det D2u ≥ f in Q1.

Furthermore,

u ≤ v in Q, u = v on ∂� × [t0, T].

Let

w(x, t) =

⎧
⎨

⎩
v(x, t), (x, t) ∈ Q,

u(x, t), (x, t) ∈ Q1.

Then w ∈ C0(Q1) is parabolically convex and satisfies, in the viscosity sense,

–wt det D2w ≥ f on Q1.

Lemma 3.2 ([26]) Let �1 be an open strictly convex subsets with smooth boundary in R
n,

Q1 = �1 × (t0, T], and f ∈ C0(Q1) be nonnegative. Suppose that S0 is a nonempty family of
subsolutions to the equation

–ut det
(
D2u

)
= f in Q1, (3.1)

and

u(x, t) = sup
{
ω(x, t)|ω ∈ S0

}
, (x, t) ∈ Q1,

then u is a viscosity subsolution of (3.1).

Proof of Theorem 1.1 Through an affine transformation in the x-space and by subtracting
a linear function to u, we may assume that b = 0. The proof is divided into six steps.

Step 1. Construct a viscosity subsolution of (1.5), (1.6), (1.7).
Let R > 0, BR(0) = {x ∈ R

n : |x| < R}. Without loss of generality, we may assume that
B2(0) ⊂⊂ D(t0). Let R1 = diam(D(T)), then D(T) ⊂⊂ BR1 (0), choose R2 > 2R1. Then
B2(0) ⊂⊂ D(t0) ⊂⊂ D(T) ⊂⊂ BR1 (0) ⊂⊂ BR2 (0). By Lemma 2.1, for any (ξ ,λ) ∈ ∂D(t) ×
[t0, T], there exists x(ξ ,λ, t) ∈ R

n+1, |x(ξ ,λ, t)| < ∞ such that

vξ ,λ(x, t) < φ(x, t), (x, t) ∈ (
∂D(t) × [t0, T]

)\{(ξ ,λ)
}

,

where

vξ ,λ(x, t)

= φ(ξ , t) +
c∗
2

[∣∣(x, t) – x̄(ξ ,λ, t)
∣∣2 –

∣∣(ξ ,λ) – x̄(ξ ,λ, t)
∣∣2], (x, t) ∈ R

n × [t0, T].
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Then, by (2.2), we can choose c∗ large enough but bounded such that

–(vξ ,λ)t det D2vξ ,λ ≥ max
(x,t)∈BR2 (0)×[t0,T]

g ≥ g(x, t), (x, t) ∈ BR2 (0) × (t0, T],

det D2vξ ,λ(x, t0) ≥ g(x, t0)/γ , x ∈ BR2 (0).

Set

v(x, t) = sup
(ξ ,λ)∈∂D(t)×[t0,T]

vξ ,λ(x, t), (x, t) ∈R
n × [t0, T].

Then, by (2.1),

v(x, t) = φ(x, t), (x, t) ∈ ∂D(t) × [t0, T], (3.2)

and by [27] and Lemma 3.2,

–vt det D2v ≥ g(x, t), (x, t) ∈ BR2 (0) × (t0, T], (3.3)

det D2v(x, t0) ≥ g(x, t0)/γ , x ∈ BR2 (0). (3.4)

So

det D2v(x, t0) ≥ det D2ψ(x), x ∈ BR2 (0)\D(t0).

Choose two positive continuous functions ḡ(|x|), g(|x|) such that

γ ḡ
(|x|) ≥ g(x, t) ≥ γ g

(|x|)

and

γ g
(|x|) = g0

(|x|) – c1|x|–α , |x| → ∞,

γ g
(|x|) = g0

(|x|) + c2|x|–α , |x| → ∞,

where c1 and c2 are positive constants. For a > 0, we define functions

u1(x, t) = –γ (t – t0) + inf
BR1 ×[t0,T]

v

+
∫ |x|

2R1

(∫ s

1
nzn–1ḡ(z) dz + a

) 1
n

ds, (x, t) ∈ R
n × [t0, T],

u2(x, t) = –γ (t – t0) + sup
BR1 ×[t0,T]

v

+
∫ |x|

2

(∫ s

1
nzn–1g(z) dz + a

) 1
n

ds, (x, t) ∈ R
n × [t0, T].

Then u1, u2 are parabolically convex. Moreover,

–(u1)t det D2u1 = γ ḡ
(|x|) ≥ g(x, t), (x, t) ∈ (

R
n\{0}) × (t0, T], (3.5)
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–(u2)t det D2u2 = γ g
(|x|) ≤ g(x, t), (x, t) ∈ (

R
n\{0}) × (t0, T], (3.6)

det D2u1(x, t) = g
(|x|) ≥ g(x, t)/γ , x ∈R

n\{0}, t0 ≤ t ≤ T , (3.7)

det D2u2(x, t) = g
(|x|) ≤ g(x, t)/γ , x ∈R

n\{0}, t0 ≤ t ≤ T . (3.8)

For |x| ≤ R1, t0 ≤ t ≤ T ,

u1(x, t) = –γ (t – t0) + inf
BR1 ×[t0,T]

v +
∫ R1

2R1

(∫ s

1
nzn–1ḡ(z) dz + a

) 1
n

ds

≤ inf
BR1 ×[t0,T]

v ≤ v(x, t). (3.9)

We can choose a0 > 0 such that, for a ≥ a0, the following three inequalities hold simulta-
neously:

u1(x, t) = –γ (t – t0) + inf
BR1 ×[t0,T]

v +
∫ R2

2R1

(∫ s

1
nzn–1ḡ(z) dz + a

) 1
n

ds

≥ v(x, t), for |x| = R2, t0 ≤ t ≤ T , (3.10)

u2(x, t) = –γ (t – t0) + sup
BR1 ×[t0,T]

v +
∫ R2

2

(∫ s

1
nzn–1f (z) dz + a

) 1
n

ds

≥ v(x, t), for |x| = R2, t0 ≤ t ≤ T , (3.11)

u2(x, t) ≥ φ(x, t), (x, t) ∈ ∂D(t) × [t0, T]. (3.12)

In addition, for (x, t) ∈R
n × [t0, T], we have

u1(x, t) = –γ (t – t0) + u0
(|x|) + ν1(a)

–
∫ ∞

|x|

[(∫ s

1
nzn–1ḡ(z) dz + a

) 1
n

–
(∫ s

0

n
γ

zn–1g0(z) dz
) 1

n
]

ds,

where the function u0(|x|) is (1.11), and

ν1(a) =
∫ ∞

2R1

[(∫ s

1
nzn–1ḡ(z) dz + a

) 1
n

–
(∫ s

0

n
γ

zn–1g0(z) dz
) 1

n
]

ds

– u0(2R1) + inf
BR1 ×[t0,T]

v.

Then ν1(a) is strictly increasing in (0, +∞) and

lim
a→+∞ν1(a) = +∞.
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Furthermore, by (1.8), we have β + n > 0. Since ḡ(z) = g0(z)
γ

+ c2
γ

z–α , g0(z) = O(zβ ), z → ∞,
we know that, as s → +∞,

(∫ s

1
nzn–1ḡ(z) dz + a

) 1
n

–
(∫ s

0

n
γ

zn–1g0(z) dz
) 1

n

= O
(
s1–β+ β

n –min{α,n}), if α 	= n,

and

(∫ s

1
nzn–1ḡ(z) dz + a

) 1
n

–
(∫ s

0

n
γ

zn–1g0(z) dz
) 1

n

= O
(
s1–β+ β

n –n ln s
)
, if α = n.

As a result, as |x| → ∞,

∫ ∞

|x|

[(∫ s

1
nzn–1ḡ(z) dz + a

) 1
n

–
(∫ s

0

n
γ

zn–1g0(z) dz
) 1

n
]

ds

=
∫ ∞

|x|
O

(
s1–β+ β

n –min{α,n})ds

= O
(|x|2–β+ β

n –min{α,n}), if α 	= n,

and

∫ ∞

|x|

[(∫ s

1
nzn–1ḡ(z) dz + a

) 1
n

–
(∫ s

0

n
γ

zn–1g0(z) dz
) 1

n
]

ds

= O
(|x|2–β+ β

n –n ln |x|), if α = n,

where 2 – β + β/n – min{α, n} < 0 by (1.8). Thus, as |x| → ∞,

u1(x, t) = –γ (t – t0) + u0
(|x|) + ν1(a) + O

(|x|2–β+ β
n –min{α,n}), if α 	= n,

and

u1(x, t) = –γ (t – t0) + u0
(|x|) + ν1(a) + O

(|x|2–β+ β
n –n ln |x|), if α = n.

Similarly, we can obtain that

u2(x, t) = –γ (t – t0) + u0
(|x|) + ν2(a)

–
∫ ∞

|x|

[(∫ s

1
nzn–1g(z) dz + a

) 1
n

–
(∫ s

0

n
γ

zn–1g0(z) dz
) 1

n
]

ds,

where

ν2(a) =
∫ ∞

2

[(∫ s

1
nzn–1g(z) dz + a

) 1
n

–
(∫ s

0

n
γ

zn–1g0(z) dz
) 1

n
]

ds

– u0(2) + sup
BR1 ×[t0,T]

v.
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It is clear that ν2(a) is also strictly increasing in (0, +∞) and

lim
a→+∞ν2(a) = +∞.

Then, as |x| → ∞, we have

⎧
⎨

⎩
u2(x, t) = –γ (t – t0) + u0(|x|) + ν2(a) + O(|x|2–β+ β

n –min{α,n}), if α 	= n,

u2(x, t) = –γ (t – t0) + u0(|x|) + ν2(a) + O(|x|2–β+ β
n –n ln |x|), if α = n.

For the sufficiently large constant c in (1.9) and (1.10), there exist a1(c) and a2(c) such
that ν1(a1(c)) = ν2(a2(c)) = c. Thus, as |x| → ∞, we have

⎧
⎨

⎩
u1(x, t) = –γ (t – t0) + u0(|x|) + c + O(|x|2–β+ β

n –min{α,n}), if α 	= n,

u1(x, t) = –γ (t – t0) + u0(|x|) + c + O(|x|2–β+ β
n –n ln |x|), if α = n,

and
⎧
⎨

⎩
u2(x, t) = –γ (t – t0) + u0(|x|) + c + O(|x|2–β+ β

n –min{α,n}), if α 	= n,

u2(x, t) = –γ (t – t0) + u0(|x|) + c + O(|x|2–β+ β
n –n ln |x|), if α = n.

(3.13)

So

lim|x|→∞
(
u1(x, t) – u2(x, t)

)
= 0, t0 ≤ t ≤ T . (3.14)

By (3.7), (3.8), (3.14) and the comparison principle, we obtain

u1(x, t0) ≤ u2(x, t0), x ∈R
n\B2(0). (3.15)

By (3.5), (3.6), (3.14), (3.15) and the comparison principle, we obtain

u1(x, t) ≤ u2(x, t), (x, t) ∈ (
R

n\B2(0)
) × [t0, T]. (3.16)

For a ≥ a0, define

ua(x, t) =

⎧
⎨

⎩
max{v(x, t), u1(x, t)}, |x| ≤ R2, t0 ≤ t ≤ T ,

u1(x, t), |x| ≥ R2, t0 ≤ t ≤ T .

By (3.10), we know that ua ∈ C0(Rn × [t0, T]). By Lemma 3.1, ua satisfies in the viscosity
sense

–(ua)t det D2ua ≥ g(x, t), (x, t) ∈ (
R

n\{0}) × (t0, T]

and

det D2ua(x, t0) ≥ g(x, t0)/γ = det D2ψ(x), x ∈R
n\D(t0).
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As |x| → ∞,

⎧
⎨

⎩
ua(x, t) = –γ (t – t0) + u0(|x|) + c + O(|x|2–β+ β

n –min{α,n}), if α 	= n,

ua(x, t) = –γ (t – t0) + u0(|x|) + c + O(|x|2–β+ β
n –n ln |x|), if α = n.

(3.17)

So

lim|x|→∞
(
ua(x, t0) – ψ(x)

)
= 0.

In addition, we have, by (3.9) and (3.2),

ua(x, t0) = v(x, t0) = φ(x, t0) = ψ(x), x ∈ ∂D(t0).

Thus, from the comparison principle, we know that

ua(x, t0) ≤ ψ(x), x ∈R
n\D(t0).

Moreover, thanks to (3.9) and (3.2),

ua(x, t) = v(x, t) = φ(x, t), (x, t) ∈ ∂D(t) × [t0, T]. (3.18)

Then ua is a viscosity subsolution of (1.5), (1.6), and (1.7).
By (3.4), (3.8), (3.11), (3.12) and the comparison principle,

v(x, t0) ≤ u2(x, t0), x ∈ BR2\D(t0). (3.19)

Then, by (3.3), (3.6), (3.11), (3.12), (3.19) and the comparison principle,

v(x, t) ≤ u2(x, t), (x, t) ∈ (
BR2 × [t0, T]

)\D.

So, combining with (3.16), we have

ua(x, t) ≤ u2(x, t), (x, t) ∈R
n+1
T \D.

Step 2. Define the Perron solution of (1.5), (1.6), and (1.7).
Let S denote the set of locally parabolically convex functions ω ∈ C0(Rn+1

T \D) which are
viscosity subsolutions of (1.5), (1.6), and (1.7) satisfying

ω(x, t) ≤ u2(x, t).

Then ua ∈ S . So S 	= ∅. Define

u(x, t) = sup
{
ω(x, t) : ω ∈ S

}
, (x, t) ∈R

n+1
T \D.

Step 3. We prove that u has the asymptotic behavior at infinity.
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On the one hand, by the definition of u, we get

u(x, t) ≤ u2(x, t).

Secondly, since ua ∈ S , we get

u(x, t) ≥ ua(x, t).

By (3.13) and (3.17), we have

lim sup
|x|→∞

|x|min{α,n}+β– β
n –2∣∣u(x, t) –

(
–γ (t – t0) + u0

(|x|) + c
)∣∣ < ∞, if α 	= n,

and

lim sup
|x|→∞

|x|n+β– β
n –2(ln |x|)–1∣∣u(x, t) –

(
–γ (t – t0) + u0

(|x|) + c
)∣∣ < ∞, if α = n.

Step 4. We prove that u(x, t) = φ(x, t), (x, t) ∈ ∂D(t) × [t0, T], and u(x, t0) = ψ(x), x ∈
R

n\D(t0).
We first prove that u(x, t0) = ψ(x), x ∈ R

n\D(t0). Since φ ∈ C2,1(D), there exist some
positive constants q2 ≥ q1 such that –q2 ≤ φt(x, t) ≤ –q1 on D. Choose positive constants
p1, p2,

p1 ≤ min

{
1,

γ

q1

}
, p2 ≥ max

{
1,

γ

q2

}

such that

p1q1g(x, t0)/γ ≤ g(x, t), p2q2g(x, t0)/γ ≥ g(x, t), (x, t) ∈R
n+1
T \D.

Let

U(x, t) = –p2q2(t – t0) + ψ(x), (x, t) ∈R
n+1
T \D,

U(x, t) = –p1q1(t – t0) + ψ(x), (x, t) ∈R
n+1
T \D.

Then, in the viscosity sense,

–Ut det D2U = p2q2 det D2ψ = p2q2g(x, t0)/γ ≥ g(x, t), (x, t) ∈ R
n+1
T \D,

–Ut det D2U = p1q1 det D2ψ = p1q1g(x, t0)/γ ≤ g(x, t), (x, t) ∈ R
n+1
T \D.

In addition, on ∂D(t) × [t0, T],

U(x, t) = –p2q2(t – t0) + ψ(x)

= –p2q2(t – t0) + φ(x, t0)

≤ –q2(t – t0) + φ(x, t0)

≤ φ(x, t),
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U(x, t) = –p1q1(t – t0) + ψ(x)

= –p1q1(t – t0) + φ(x, t0)

≥ –q1(t – t0) + φ(x, t0)

≥ φ(x, t).

As |x| → ∞,

lim|x|→∞
(
U(x, t) – u(x, t)

) ≤ 0

and

lim|x|→∞
(
U(x, t) – u(x, t)

) ≥ 0.

Obviously, for x ∈R
n\D(t0),

U(x, t0) = U(x, t0) = ψ(x).

Then U(x, t) and U(x, t) are viscosity subsolution and supersolution of (1.5), (1.6), and
(1.7) respectively. So, U ∈ S . Moreover, for any ω ∈ S , we obtain ω(x, t) ≤ U(x, t). Thus

U(x, t) ≤ u(x, t) ≤ U(x, t), (x, t) ∈R
n+1
T \D.

Therefore, u(x, t0) = ψ(x), x ∈R
n\D(t0).

Now we prove that u(x, t) = φ(x, t), (x, t) ∈ ∂D(t) × [t0, T]. For any ξ ∈ ∂D(t), t0 ≤ γ ≤ T ,
on the one hand, since ua ∈ S , then by (3.18),

lim inf
(x,t)→(ξ̄ ,γ̄ )

u(x, t) ≥ lim
(x,t)→(ξ̄ ,γ̄ )

ua(x, t) = φ(ξ̄ , γ̄ ).

On the other hand, we have

lim sup
(x,t)→(ξ̄ ,γ̄ )

u(x, t) ≤ φ(ξ̄ , γ̄ ).

Indeed, for every ω ∈ S , we have

⎧
⎪⎪⎨

⎪⎪⎩

–ωt + �ω ≥ 0, (x, t) ∈ (BR1 × (t0, T])\D,

ω ≤ φ, (x, t) ∈ ∂D(t) × [t0, T],

ω ≤ U , (x, t) ∈ ((BR1\D(t0)) × {t = t0}) ∪ (∂BR1 × [t0, T]).

Let v+ satisfy

⎧
⎪⎪⎨

⎪⎪⎩

–v+
t + �v+ = 0, (x, t) ∈ (BR1 × (t0, T])\D,

v+ = φ, (x, t) ∈ ∂D(t) × [t0, T],

v+ = U , (x, t) ∈ ((BR1\D(t0)) × {t = t0}) ∪ (∂BR1 × [t0, T]).
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By the comparison principle, ω ≤ v+, (x, t) ∈ (BR1 × [t0, T])\D. So u ≤ v+, (x, t) ∈
(BR1 × [t0, T])\D and

lim sup
(x,t)→(ξ̄ ,γ̄ )

u(x, t) ≤ lim
(x,t)→(ξ̄ ,γ̄ )

v+(x, t) = φ(ξ̄ , γ̄ ).

Step 5. We prove that u is a viscosity solution of (1.5).
As the proof of Theorem 1.4 in [21], we can prove that u is a viscosity solution of (1.5).
Step 6. We prove the uniqueness.
Suppose that u and v all satisfy (1.5), (1.6), (1.7), and (1.12) or (1.13). Then

lim
x→∞

(
u(x, t) – v(x, t)

)
= 0.

By the comparison principle, u ≡ v, (x, t) ∈R
n+1
T \D.

Theorem 1.1 is proved. �
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