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Abstract
Drift rate is a very important parameter in the evolution of stock price, which has
significant impact on the corresponding option pricing. This paper deals with an
inverse problem of recovering the drift function by current market prices of options.
Different from the usual inverse volatility problem, our mathematical model does not
tend to zero at infinity, which may bring great trouble to theoretical analysis and
numerical calculation. To overcome this difficulty, we use an artificial boundary and
homogenization technique to transform the original problem into a homogeneous
initial boundary value problem on a bounded domain. Then, based on the optimal
control framework, we construct the corresponding optimization problem and
strictly prove the well-posedness of the minimizer. Finally, we design an iterative
algorithm to obtain the numerical solution. We give some typical examples to verify
the validity of our method.
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1 Introduction
Motivated by the need of modeling and market forecasting, inverse problems in financial
mathematics have received considerable attention (see [1, 2, 7, 14–16, 19–21, 23, 26, 30]).

In general, the underlying asset St at time t is modeled by the stochastic differential
equation

dSt = μ(t, St)St dt + σ (t, St)St dWt ,

where the process Wt is the standard Brownian motion. The parameters μ and σ are called
the real drift and local volatility of the underlying asset, respectively. The drift term μ in-
dicates the expected return of stock price changes, whereas the volatility is used to mea-
sure the variability of variables. The stock price movement is determined by the drift rate,
volatility, and Brownian motion. The randomness of volatility, drift rate, and Brownian
motion determines the process of stock price, which is full of randomness and uncertainty.
In practice, the drift rate is quite difficult to measure, but it has an important impact on
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the stock price trend. Therefore it is of great financial significance to use some indirect ap-
proaches to estimate the drift rate, which represents people’s prediction of the expected
return rate of stock price.

Black and Scholes [1] first discovered how to construct a dynamic portfolio �t of a
derivative security and the underlying asset. By Itô’s lemma the stochastic behavior of the
derivative security u(t, S) is driven by the stochastic differential equation

du =
(

∂u
∂t

+ μ(t, S)S
∂u
∂S

+
1
2
σ 2(t, S)S2 ∂2u

∂S2

)
dt + σ (t, S)S

∂u
∂S

dW .

In the absence of arbitrage opportunities, the instantaneous return of this portfolio must
be equal to the interest rate r > 0, that is, the return of a riskless asset such as a bank
deposit. Therefore this equality takes the form of the following partial differential equation
(the Black–Scholes equation):

ut +
1
2
σ (t, S)2S2uSS + (r – δ)SuS – ru = 0,

where r and the dividend rate δ are known constants.
However, the theoretical prices of options with different strike prices calculated by the

Black–Scholes model differ from real market prices. Under the noarbitrage property of
the financial market, the real drift μ does not enter the above equation. In [23], taking this
into account, the following new binary option model is derived:

ut +
1
2
σ (t, S)2S2uSS + μ(S)SuS – ru = 0.

This model is a form of arbitrage model. Further, considering the property of binary op-
tion, the final condition at the maturity is specified by

u(T , S) = H(S – K) =

⎧⎨
⎩

1, S ≥ K ,

0, S < K .

We would like to determine the drift function μ using the current market prices

u
(
t∗, S∗; K , T

)
= u∗(K , T), K > 0, (1.1)

of options with different strikes K and fixed maturity T .
Using the Dupire technique, we deduce that the price u(T , K) of the binary option with

maturity T and strike price K satisfies the adjoint equation:

⎧⎨
⎩

uT – 1
2σ 2K2uKK + μ(K)KuK + ru = 0, (K , T) ∈ (0,∞) × (0, t),

u(t, S; T , K)|T=t = H(S – K), K ∈ (0,∞).

Making the changes in variables W̄ (τ , y) = u(T , K), y = ln(K/S∗), τ = T – t, we identify the
drift a(y) := μ(K) satisfying the following:
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Problem P1 The Cauchy problem of second-order parabolic equation

⎧⎨
⎩

W̄τ – 1
2σ 2

0 W̄yy + ( 1
2σ 2

0 + a(y))W̄y + rW̄ = 0, (y, τ ) ∈ R × (0, τ ∗),

W̄ (y, 0) = H(–y), y ∈ R,
(1.2)

where the local volatility σ0 is a constant, a(y) is an unknown coefficient in (1.2). The extra
condition (1.1) is transformed into

W̄
(
y, τ ∗) = W̄ ∗(y), y ∈ R. (1.3)

Determine the functions W̄ and a(y) satisfying (1.2)–(1.3).

In this problem, y ∈ R, so the problem is an unbounded domain problem which is not
conducive to numerical calculations. With this in mind, we translate the problem into an
approximation problem on a larger bounded domain y ∈ [–L, L], where L is a large positive
constant. The problem can be rewritten in the following form.

Problem P2 The initial-boundary value problem of the second-order parabolic equation

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Wτ – 1
2σ 2

0 Wyy + ( 1
2σ 2

0 + a(y))Wy + rW = 0, (y, τ ) ∈ Q = (–L, L) × (0, τ ∗),

W (y, 0) = H(–y), y ∈ [–L, L],

W (–L, τ ) = 1, τ ∈ (0, τ ∗),

W (L, τ ) = 0, τ ∈ (0, τ ∗),

(1.4)

and the extra condition

W
(
y, τ ∗) = W ∗(y), y ∈ [–L, L]. (1.5)

Determine the functions W and a(y) satisfying (1.4)–(1.5).

The boundary conditions in P2 is nonhomogeneous, which is not conductive to integra-
tion by parts. We try to convert the nonhomogeneous equation to a homogeneous one.
Let

W (τ , y) = U(τ , y) +
L – y
2L

, f (y) =
(

1
2
σ 2

0 – rL + ry
)

1
2L

.

Then Problem P2 is transformed into the following form.

Problem P The initial-boundary value problem of second-order parabolic equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uτ – 1
2σ 2

0 (Uyy – Uy) + a(y)(Uy – 1
2L ) + rU

= f (y), (y, τ ) ∈ Q = (–L, L) × (0, τ ∗),

U(y, 0) = H(–y) – L–y
2L , y ∈ [–L, L],

U(–L, τ ) = 0, τ ∈ (0, τ ∗),

U(L, τ ) = 0, τ ∈ (0, τ ∗).

(1.6)
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The additional condition is given by

U
(
y, τ ∗) = U∗(y) := W ∗(y) –

L – y
2L

, y ∈ [–L, L]. (1.7)

Inverse coefficient problems for parabolic equations are well studied in the literature,
and abundant theoretical and numerical results are obtained. The inverse problem of iden-
tifying coefficient q(y) in the parabolic equation

ut – �u + q(y)u = 0, (y, t) ∈ Q,

from final overdetermination data u(y, T) has been investigated by several authors, for ex-
ample, in [5, 6, 17, 18, 25, 27, 29, 31]. The purely time-dependent case, that is, determining
the unknown radiative coefficient in heat conduction equations independent of the spatial
variable, has been extensively studied by several authors (see, e.g., [3, 4, 8–11, 24, 28]). For
the space- and time-dependent case, we refer the readers to [12, 13].

In financial mathematics, there is often a kind of inverse problems of using market ob-
servation data to reconstruct the implied volatility. Using the optimal control theory, the
recovery of volatility in the Black–Scholes equation

∂V
∂t

+
1
2
σ 2(S)S2 ∂2V

∂S2 + (r – q)S
∂V
∂S

– rV = 0

is studied from the current options market in [21]. In [2] the authors reduce the identifica-
tion of volatility to an inverse parabolic problem with terminal observation and establish
uniqueness and stability results by using the Carleman estimates. In [7] the local volatil-
ity surface is recovered by nonlinear Landweber iteration using simulated data. A new
continuous-time model is proposed in [19] to recover the volatility, and the corresponding
numerical results are obtained by solving a couple of fully nonlinear parabolic equations.
In [16] the volatility is parameterized by five special numbers, and (nonlinear) minimiza-
tion of the mismatch functional is implemented.

Compared with the inverse volatility problem, there are few documents on the inverse
problem of drift rate. In [23] the authors consider an inverse problem of recovering the
real drift of binary call options from market prices. By using the linearization method the
inverse problem is transformed to an integral equation, and numerical results are also
obtained.

In this paper, we use the optimal control method to discuss Problem P. Compared with
other papers concerning volatility identification problems, our work has the following un-
usual features. First, the unknown function to be identified is the first-order derivative
coefficient rather than the principal one. Second, our mathematical model does not tend
to zero at infinity, which may bring great trouble to theoretical analysis and numerical
calculation.

The rest of the paper is organized as follows. In Sects. 2 and 3, we transform Problem P
into an optimal control Problem P3 and prove the existence of the minimum for the control
functional. The necessary condition, which must be satisfied by the minimum, is deduced
in Sect. 4. In Sect. 5, we prove that the minimum is locally unique under some assumptions.
In Sect. 6, we design an iterative algorithm to obtain the numerical solution and give some
typical examples. Section 7 ends this paper with a summary.
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2 Optimal control problem
Consider the following optimal control problem.

Problem P3 Find ā(y) ∈A such that

J(ā) = min
a∈A

J(a), (2.1)

where

J(a) =
∫ L

–L

∣∣U(
y, τ ∗; a

)
– U∗(y)

∣∣2 dy + N
∫ L

–L
|∇a|2 dy,

A =
{

a(y)|0 < α0 ≤ a(y) ≤ α1,∇a ∈ L2(–L, L), |∇a| ≤ α2
}

,
(2.2)

U(y, τ ; a) is the solution to problem (1.6) for given a ∈ A, and N is the regularization pa-
rameter.

For given a ∈ A, from Sobolev’s embedding theorem we have a ∈ C1/2(–L, L) and
‖a‖C1/2(–L,L) ≤ C (here C is a constant). The known Schauder theory for parabolic equa-
tions (see [22]) guarantees that there is a unique solution U(y, τ ) ∈ C2+α,1+α/2(Q̄) to the
initial-boundary value problem (1.6).

Lemma 2.1 If U(y, τ ) is a solution to the initial-boundary value problem (1.6), then

max
0≤τ≤τ∗

∫ L

–L
U2 dy dτ +

∫
Qτ

U2
y dy dτ

≤ C
∫ L

–L

(
H(–y) –

L – y
2L

)2

dy + C
∫

Qτ

(
a(y)

1
2L

+ f (y)
)2

dy dτ , (2.3)

where Qτ = (–L, L) × (0, τ ], and C is a constant.

Proof From equation (1.6) we have

∫
Qτ

(
Uτ –

1
2
σ 2

0 (Uyy – Uy) + a(y)
(

Uy –
1

2L

)
+ rU

)
U dy dτ =

∫
Qτ

f (y)U dy dτ .

Integrating by parts, we obtain

∫ L

–L

U2

2

∣∣∣∣
τ

0
dy +

∫
Qτ

(
1
2
σ 2

0 U2
y + rU2

)
dy dτ =

∫
Qτ

(
–aUyU +

(
a

2L
+ f (y)

)
U

)
dy dτ .

From the Cauchy–Schwarz inequality we have

∫ L

–L

U2

2

∣∣∣∣
τ

dy +
∫

Qτ

(
1
2
σ 2

0 U2
y + rU2

)
dy dτ

≤
∫ L

–L

1
2

(
H(–y) –

L – y
2L

)2

dy +
∫

Qτ

(
1
4
σ 2

0 U2
y +

(
a

2L
+ f (y)

)2

+ CU2
)

dy dτ ,
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that is,

∫ L

–L

U2

2

∣∣∣∣
τ

dy +
∫

Qτ

1
4
σ 2

0 U2
y dy dτ

≤
∫ L

–L

1
2

(
H(–y) –

L – y
2L

)2

dy +
∫

Qτ

((
a

2L
+ f (y)

)2

+ CU2
)

dy dτ .

From Gronwall’s inequality we have

∫ L

–L

U2

2

∣∣∣∣
τ

dy +
∫

Qτ

1
4
σ 2

0 U2
y dy dτ

≤ C
∫ L

–L

(
H(–y) –

L – y
2L

)2

dy + C
∫

Qτ

(
a

2L
+ f (y)

)2

dy dτ .

This completes the proof of Lemma 2.1. �

3 Existence
Theorem 3.1 There exists a minimizer ā ∈A of J(a), that is,

J(ā) = min
a∈A

J(a).

Proof Let (Un, an) be a minimizing sequence. Since J(an) ≤ C, thanks to the particular
structure of J , we deduce

‖∇an‖L2(–L,L) ≤ C (C is independent of n).

By the Sobolev imbedding theorem we obtain

‖an‖C1/2(–L,L) ≤ C.

Thus

∥∥Un(y, τ )
∥∥

C2+1/2,1+1/4(Q) ≤ C.

Therefore we can select subsequences of an and Un, again denoted by an and Un, such
that

an(y) → ā(y) ∈ C1/2(–L, L), uniformly in Cα(–L, L)
(

0 ≤ α <
1
2

)
,

Un(y, τ ) → Ū(y, τ ), uniformly in C2+α,1+α/2(Q).

We easily check that (ā(y), Ū(y, τ )) satisfies (1.6). By the Lebesgue control convergence
theorem and the weak semicontinuity of the L2 norm we obtain

J(ā) ≤ lim
n→∞ inf J(an) = min

a∈A
J(a).
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Hence

J(ā) = min
a∈A

J(a).

This completes the proof of Theorem 3.1. �

4 Necessary condition
Theorem 4.1 Let a be the solution of the optimal control problem (2.1). Then there exists
a triple of functions (U , V ; a) satisfying the following system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Uτ – 1
2σ 2

0 (Uyy – Uy) + a(y)(Uy – 1
2L ) + rU = f (y), (y, τ ) ∈ Q,

U(y, 0) = H(–y) – L–y
2L , y ∈ [–L, L],

U(–L, τ ) = 0, τ ∈ (0, τ ∗),

U(L, τ ) = 0, τ ∈ (0, τ ∗),

(4.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–Vτ – 1
2σ 2

0 Vyy – 1
2σ 2

0 Vy – (a(y)V )y + rV = 0, (y, τ ) ∈ Q,

V (y, τ ∗) = U(y, τ ∗) – U∗(y), y ∈ [–L, L],

V (–L, τ ) = 0, τ ∈ (0, τ ∗),

V (L, τ ) = 0, τ ∈ (0, τ ∗),

(4.2)

and

N
∫ L

–L
∇a · ∇(h – a) dy –

∫
Q

V (h – a)
(

Uy –
1

2L

)
dy dτ ≥ 0 (4.3)

for all h ∈A.

Proof For any h ∈A and 0 ≤ δ ≤ 1, we have

aδ ≡ (1 – δ)a + δh ∈A.

Let Uδ be the solution to the initial-boundary value problem (4.1) with given a = aδ . Since
a is an optimal solution, by (2.2) we have

d
dδ

J(aδ)
∣∣∣∣
δ=0

= 2
∫ L

–L

(
U

(
y, τ ∗) – U∗(y)

)∂Uδ

∂δ

∣∣∣∣
δ=0

dy + 2N
∫ L

–L
∇a · ∇(h – a) dy ≥ 0. (4.4)

Denoting U ′
δ ≡ ∂Uδ

∂δ
and using (4.1), by direct calculation we get the following equation:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U ′
δτ = 1

2σ 2
0 U ′

δyy – 1
2σ 2

0 U ′
δy – aδ(y)U ′

δy – (h – a)Uδy + (h – a) 1
2L – rU ′

δ ,

U ′
δ|τ=0 = 0,

U ′
δ|y=–L = 0,

U ′
δ|y=L = 0.

(4.5)



Deng et al. Boundary Value Problems         (2021) 2021:37 Page 8 of 21

Let ξ = U ′
δ|δ=0. Then ξ satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξτ = 1
2σ 2

0 ξyy – 1
2σ 2

0 ξy – a(y)ξy – (h – a) ∂U
∂y + (h – a) 1

2L – rξ ,

ξ |τ=0 = 0,

ξ |y=–L = 0,

ξ |y=L = 0.

(4.6)

From (4.4) we have

∫ L

–L

(
U

(
y, τ ∗) – U∗(y)

)
ξ
(
y, τ ∗)dy + N

∫ L

–L
∇a · ∇(h – a) dy ≥ 0. (4.7)

Suppose V is the generalized solution of the following adjoint problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L∗V = –Vτ – 1
2σ 2

0 Vyy – 1
2σ 2

0 Vy – (a(y)V )y + rV = 0,

V (y, τ ∗) = U(y, τ ∗) – U∗(y),

V (–L, τ ) = 0,

V (L, τ ) = 0.

(4.8)

From (4.6) and (4.8) we have

0 =
∫

Q
L∗V · ξ dy dτ

=
∫

Q

(
–Vτ ξ –

1
2
σ 2

0 Vyyξ –
1
2
σ 2

0 Vyξ –
(
a(y)V

)
yξ + rVξ

)
dy dτ

= –
∫ L

–L
Vξ |τ∗

0 dy +
∫

Q

(
Vξτ –

1
2
σ 2

0 Vξyy +
1
2
σ 2

0 Vξy + a(y)Vξy + rVξ

)
dy dτ

= –
∫ L

–L

(
U

(
y, τ ∗) – U∗(y)

)
ξ
(
y, τ ∗)dy +

∫
Q

V (a – h)
(

Uy –
1

2L

)
dy dτ .

(4.9)

Combining (4.7) and (4.9), we easily obtain that

N
∫ L

–L
∇a · ∇(h – a) dy –

∫
Q

V (h – a)
(

Uy –
1

2L

)
dy dτ ≥ 0.

This completes the proof of Theorem 4.1. �

5 Uniqueness
Lemma 5.1 For any bounded continuous function f (y) ∈ C[–L, L], we have

max
y∈[–L,L]

∣∣f (y)
∣∣ ≤ ∣∣f (y0)

∣∣ + C
(∫ L

–L
|∇f |2 dy

)1/2

,

where y0 is a fixed point.
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Proof

∣∣f (y)
∣∣ ≤ ∣∣f (y0)

∣∣ +
∣∣∣∣
∫ y

y0

f ′ dy
∣∣∣∣

≤ ∣∣f (y0)
∣∣ +

(∫ L

–L
1 dy

)1/2

·
(∫ L

–L
|∇f |2 dy

)1/2

.

This completes the proof of Lemma 5.1. �

Let a1(y) and a2(y) be two minimizers of the control Problem P3, and let {Ui, Vi} (i = 1, 2)
be solutions of system (4.1)–(4.2) in which ā = ai, respectively. Set

a1 – a2 = A, U1 – U2 = U , V1 – V2 = V .

Then U and V satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Uτ – 1
2σ 2

0 Uyy + ( 1
2σ 2

0 + a1(y))Uy + rU = 1
2L A – AU2y,

U(y, 0) = 0,

U(–L, τ ) = 0,

U(L, τ ) = 0,

(5.1)

and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–Vτ – 1
2σ 2

0 Vyy – 1
2σ 2

0 Vy – (a1(y)V )y + rV = (AV2)y,

V (y, τ ∗) = U(y, τ ∗),

V (–L, τ ) = 0,

V (L, τ ) = 0.

(5.2)

Lemma 5.2

‖Vi‖∞ ≤ ∥∥Ui
(
y, τ ∗) – U∗

i (y)
∥∥∞ (i = 1, 2). (5.3)

Proof Set t = τ ∗ – τ . Then from (4.2) we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L1Vi = Vit – 1
2σ 2

0 Viyy – 1
2σ 2

0 Viy – (ai(y)Vi)y + rVi = 0,

Vi(y, 0) = Ui(y, τ ∗) – U∗
i (y),

Vi(–L, τ ) = 0,

Vi(L, τ ) = 0.

Letting W = ‖Ui(y, τ ∗) – U∗
i (y)‖∞ ± Vi, we obtain

L1W = L1
∥∥Ui – U∗

i
∥∥∞ ±L1Vi = r

∥∥Ui – U∗
i
∥∥∞ ≥ 0,

W |t=0 =
∥∥Ui

(
y, τ ∗) – U∗

i (y)
∥∥∞ ± (

Ui
(
y, τ ∗) – U∗

i (y)
) ≥ 0,
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W |y=–L =
∥∥Ui

(
–L, τ ∗) – U∗

i (–L)
∥∥∞ ± 0 ≥ 0,

W |y=L =
∥∥Ui

(
L, τ ∗) – U∗

i (L)
∥∥∞ ± 0 ≥ 0.

Using the maximum principle, we obtain ‖Vi‖∞ ≤ ‖Ui(y, τ ∗) – U∗
i (y)‖∞ (i = 1, 2).

This completes the proof of Lemma 5.2. �

Lemma 5.3 For problem (5.1) we have the estimates

max
0≤τ≤τ∗

∫ L

–L
U2 dy ≤ C

(
max |A|2)

(∫
Q

|U2y|2 dy dτ + 1
)

(5.4)

and

max
0≤τ≤τ∗

∫ L

–L
U2

y dy ≤ C
(
max |A|2)

(∫
Q

|U2y|2 dy dτ + 1
)

, (5.5)

where C is a constant.

Proof The proof of estimate (5.4) is standard. So we only need to prove estimate (5.5).
From equation (5.1) we have, for 0 ≤ τ ≤ τ ∗,

∫
Qτ

(
–a2

1
2L

– AU2y

)
Uτ dy dτ

=
∫

Qτ

(
Uτ –

1
2
σ 2

0 Uyy +
(

1
2
σ 2

0 + a1(y)
)

Uy + rU – a1(y)
1

2L

)
Uτ dy dτ

=
∫

Qτ

U2
τ dy dτ +

∫
Qτ

σ 2
0

2
UyUτy dy dτ +

∫ L

–L
r

U2

2
|τ0 dy

+
∫

Qτ

((
1
2
σ 2

0 + a1(y)
)

UyUτ –
a1

2L
Uτ

)
dy dτ .

Using the boundedness of a1(y), we get the following inequality:

∫
Qτ

U2
τ dy dτ +

∫ L

–L

1
2
σ 2

0
U2

y

2
|τ0 dy +

∫ L

–L
r

U2

2
|τ dy

=
∫

Qτ

((
–

1
2
σ 2

0 – a1(y)
)

UyUτ +
A
2L

Uτ – AU2yUτ

)
dy dτ

≤
∫

Qτ

(
CU2

y +
1
2

U2
τ + C

(
max |A|2) + C

(
max |A|2)U2

2y

)
dy dτ ,

that is,

1
2

∫
Qτ

U2
τ dy dτ +

∫ L

–L

1
2
σ 2

0
U2

y

2
|τ dy

≤ C
∫

Qτ

U2
y dy dτ + C

(
max |A|2)

∫
Qτ

(
U2

2y + 1
)

dy dτ .
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From Gronwall’s inequality we have

∫
Qτ

1
2

U2
τ dy dτ +

∫ L

–L

1
2
σ 2

0
U2

y

2
|τ dy

≤ C
(
max |A|2)

(∫
Qτ

U2
2y dy dτ + 1

)
.

This completes the proof of Lemma 5.3. �

Lemma 5.4 For problem (5.2) we have the estimate

max
0≤τ≤τ∗

∫ L

–L
V 2 dy ≤ C

(
max |A|2)

(∫
Qτ

(
V 2

2 + U2
2y

)
dy dτ + 1

)
, (5.6)

where C is a constant.

Proof From equation (5.2) we have

∫
Qτ

(AV2)yV dy dτ

=
∫

Qτ

(
–Vτ –

1
2
σ 2

0 Vyy –
1
2
σ 2

0 Vy –
(
a1(y)V

)
y + rV

)
V dy dτ

=
∫ L

–L
–

V 2

2
|τ∗
τ dy +

∫
Qτ

1
2
σ 2

0 V 2
y dy dτ +

∫
Qτ

a1(y)VVy dy dτ +
∫

Qτ

rV 2 dy dτ

= –
∫

Qτ

AV2Vy dy dτ .

By Lemma 5.3 this yields

∫ L

–L

V 2

2
|τ dy +

∫
Qτ

1
2
σ 2

0 V 2
y dy dτ +

∫
Qτ

rV 2 dy dτ

=
∫ L

–L

V 2

2
|(y,τ∗) dy –

∫
Qτ

a1(y)VVy dy dτ –
∫

Qτ

AV2Vy dy dτ

≤ C
(
max |A|2)

(∫
Qτ

U2
2y dy dτ + 1

)
+ C

∫
Qτ

V 2 dy dτ +
a1σ

2
0

4α1

∫
Qτ

V 2
y dy dτ

+ C
(
max |A|2)

∫
Qτ

V 2
2 dy dτ .

From Gronwall’s inequality we have

∫ L

–L

V 2

2
|τ dy +

∫
Qτ

(
σ 2

0
2

–
a1σ

2
0

4α1

)
V 2

y dy dτ

≤ C
(
max |A|2)

(∫
Qτ

(
U2

2y + V 2
2
)

dy dτ + 1
)

.

This completes the proof of Lemma 5.4. �



Deng et al. Boundary Value Problems         (2021) 2021:37 Page 12 of 21

Theorem 5.5 Let a1(y) and a2(y) be two minimizers of the optimal control Problem P3. If
there exists a point y0 such that

a1(y0) = a2(y0),

then for τ ∗ 
 1, we have

a1(y) ≡ a2(y) for any y ∈ [–L, L].

Proof Taking h = a2 when ā = a1 and h = a1 when ā = a2 in (4.3), we have

N
∫ L

–L
∇a1 · ∇(a2 – a1) dy +

∫
Q

V1(a1 – a2)
(

U1y –
1

2L

)
dy dτ ≥ 0, (5.7)

N
∫ L

–L
∇a2 · ∇(a1 – a2) dy +

∫
Q

V2(a2 – a1)
(

U2y –
1

2L

)
dy dτ ≥ 0, (5.8)

where {Ui, Vi} (i = 1, 2) are solutions of system (4.1)–(4.2) with ā = ai (i = 1, 2), respectively.
From (5.7) and (5.8) we have

N
∫ L

–L

∣∣∇(a2 – a1)
∣∣2 dy ≤

∫
Q

(a1 – a2)
(

V1

(
U1y –

1
2L

)
– V2

(
U2y –

1
2L

))
dy dτ

=
∫

Q
A

(
V1U1y – V2U1y + V2U1y – V2U2y –

V1

2L
+

V2

2L

)
dy dτ

=
∫

Q
A

(
VU1y + V2Uy –

V
2L

)
dy dτ

≤ C
(
max |A|)

√∫
Q

V 2 dy dτ

(√∫
Q

U2
1y dy dτ + 1

)

+ C
(
max |A|)

√∫
Q

V 2
2 dy dτ

√∫
Q

U2
y dy dτ . (5.9)

By Lemma 5.3, Lemma 5.4, and (5.9) we have

N
∫ L

–L
|∇A|2 dy ≤ C

(
max |A|2)

√
τ ∗

(∫
Q

(
V 2

2 + U2
2y

)
dy dτ + 1

)(√∫
Q

U2
1y dy dτ + 1

)

+ C
(
max |A|2)

√∫
Q

V 2
2 dy dτ

√
τ ∗

(∫
Q

U2
2y dy dτ + 1

)
. (5.10)

From Lemma 2.1 we have

∫
Q

U2
1y dy dτ < ∞, (5.11)

∫
Q

U2
2y dy dτ < ∞. (5.12)
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From Lemma 5.2 we have
∫

Q
V 2

2 dy dτ < ∞. (5.13)

By the assumption of Theorem 5.5 there exists a point y0 ∈ [–L, L] such that

A(y0) = a1(y0) – a2(y0) = 0. (5.14)

From Lemma 5.1 we have

max
y∈[–L,L]

|A| ≤ C
(∫ L

–L
|∇A|2 dy

)1/2

. (5.15)

From (5.9)–(5.15) we have

∫ L

–L
|∇A|2 dy ≤ C

(
max |A|2)√τ ∗ ≤ C

√
τ ∗

∫ L

–L
|∇A|2 dy.

Then choosing τ ∗ 
 1 such that

C2τ ∗ ≤ 1
2

,

we have

∫ L

–L
|∇A|2 dy ≤ 0.

Therefore

∇A = 0.

From the assumption A(y0) = 0 we have

A(y) = a1(y) – a2(y) ≡ 0.

This completes the proof of Theorem 5.5. �

6 Numerical examples
In this section, we give some numerical examples to test the validity of the proposed meth-
ods for reconstruction of the drift. In this paper, we consider the gradient iteration algo-
rithm to obtain the numerical solutions. The key ingredient of this iteration algorithm is
the Gâteaux derivative of J ′(a), which is given as follows.

Theorem 6.1 The Gâteaux derivative of J ′(a) at a point a ∈ A along direction p(y) is de-
termined as

J ′(a)p =
∫

Q
p · w

(
1

2L
– Wy

)
dy dτ + N

∫ L

–L
∇a(y) · ∇p(y) dy,
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where W (y, τ ; a) is the solution of system (1.4) with given coefficient of a(x) ∈ A, and
w(y, τ ; a) satisfies the following equation:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–wτ – 1
2σ 2

0 wyy – 1
2σ 2

0 wy – (a(y)w)y + rw = 0, (y, τ ) ∈ Q = [–L, L] × (0, τ ∗),

w(y, τ ∗) = W (y, τ ∗) – W ∗(y), y ∈ [–L, L],

w(–L, τ ) = 0, τ ∈ (0, τ ∗),

w(L, τ ) = 0, τ ∈ (0, τ ∗).

(6.1)

The proof is similar to that of Theorem 4.1.

Remark 6.1 The main difference between Problems P2 and P is the boundary condition.
Problem P is homogeneous, whereas Problem P2 is nonhomogeneous. Problem P is con-
venient for theoretical analysis, such as integration by parts, but there is no difference be-
tween the two problems in calculation. In this section, we use Eq. (1.4) as a mathematical
model of the forward problem.

Suppose the computational domain Q̄ = [–L, L] × [0, τ ∗] is divided into a 2M × P mesh
with spatial step size h = L

M in y direction and the time step size τ = τ∗
P , respectively. Grid

points (yj, tn) are defined by

yj = (j – M)h, j = 0, 1, 2, . . . , 2M;

tn = nτ , n = 0, 1, 2, . . . , P;

where M and P are two integers.
Based on the above analysis, the detailed procedure of iteration algorithm can be sum-

marized as follows:
Step 1. Choose an initial value of iteration a = a0(y).
Step 2. Solve the initial-boundary value problem (1.4) to get the solution W0(y, τ ), where

a(y) = a0(y).
Step 3. Solve Eq. (6.1) to obtain the solution w0(y, τ ), where w0(y, τ ∗) = W0(y, τ ∗)–W ∗(y).
Step 4. Compute the Gâteaux derivative J ′(a)ψj = cj for j = 0, 1, 2, . . . , 2M,

cj =
∫

Qτ

ψj(y) · w0

(
1

2L
– Wy

)
dy dτ + N

∫ L

–L
∇a0(y) · ∇ψj(y) dy,

where the functions ψj are taken as the base function under current grid:

ψ0(y) =

⎧⎨
⎩

y1–y
h , y0 ≤ y ≤ y1,

0 otherwise;

ψj(y) =

⎧⎪⎪⎨
⎪⎪⎩

y–yj–1
h , yj–1 ≤ y ≤ yj,

yj+1–y
h , yj ≤ y ≤ yj+1,

0 otherwise;

ψ2M(y) =

⎧⎨
⎩

y–y2M–1
h , y2M–1 ≤ y ≤ y2M,

0 otherwise.
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Then the iteration direction from the jth step to the (j + 1)th step is given by

C0(y) =
2M∑
j=0

cjψj(y).

Step 5. Compute the norm of C0(y) at the jth step:

e =

(
h

2M∑
j=0

c2
j (y)

)1/2

,

where h is the spatial step size.
Step 6. Choose an arbitrary small positive constant ε as the stopping parameter. Go on

or stop the iteration is determined by the following steps:
Step 6.1. Let k = 1.
Step 6.2. Compute err := J[a0(y) + kC0(y)] – J(a0(y)) + 1

2 ke2.
Step 6.3. Compare it with 0; if err ≤ 0, then go to Step 6.4; Otherwise, let k .= μk and go

to Step 6.2, where μ is an adjusting parameter.
Step 6.4. Take a1(y) = a0(y) + kC0(y); if ‖kC0(y)‖ ≤ ε, then exit and stop the iteration

scheme. Otherwise, set j = j + 1 and go to Step 2. Let a1(y) be the new initial value of itera-
tion and go on computing by the induction rules until the iterations meet the termination
conditions.

We have performed three numerical experiments to check the stability of our iteration
algorithm. Since real-world data are not available, we would like to use artificial data to test
the stability of the proposed numerical algorithm, that is, the extra condition is obtained
by solving the direct problem. In all experiments, we used the basic parameters

r = 0.5, σ0 = 1, ε = 10–4, N = 10–5.

Equation (1.4) is solved by the classical finite difference method, the Crank–Nicolson
difference scheme:

W n+1
j – W n

j

τ
–

σ 2
0

4

(W n
j+1 – 2W n

j + W n
j–1

h2 +
W n+1

j+1 – 2W n+1
j + W n+1

j–1

h2 –
W n

j+1 – W n
j–1

2h

–
W n+1

j+1 – W n+1
j–1

2h

)
+

aj

2

(W n
j+1 – W n

j–1

2h
+

W n+1
j+1 – W n+1

j–1

2h

)
+

r
2
(
W n

j + W n+1
j

)
= 0.

The discrete equations of the initial boundary value are

W n
0 = W n

2M = 0,

W 0
j = H

(
–(j – M)h

)
, j = 0, 1, 2, . . . , 2M.

The difference scheme is absolutely stable, and its truncation error is O(τ 2 + h2).

Example 1 In the first numerical experiment, we take

L = 10
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Figure 1 Identified drifts for Example 1

and

a(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
√

y2

2M + 1
2 , –L + h ≤ y < –L + h(M – 6),

0.8, –L + h(M – 6) ≤ y < –L + h(M + 5),
1
3√y , –L + h(M + 5) ≤ y ≤ L – h.

The spatial and time step sizes are taken as

h =
2
5

, τ = 0.01.

The exact solution and the reconstruction results for different time (denoted by τ ∗) are
shown in Fig. 1. The initial guess is taken to be 0.5. We can see that the drift coefficient a(y)
is well recovered after 260 iterations. The iterative procedure converges quickly, and the
effect is satisfactory. However, since a(y) is a segmented function, the values on the right
boundary are quite difficult to reconstruct well. The algorithm converges rather slowly
near the right boundary. Also, since the prices near the strike are the most interesting for
practitioners, we investigate the recovered function around y = 0 (S = K ), where we use
three different observation times τ ∗ = 0.5, 0.8, and 1. From the figure we observe that the
reconstruction is numerically good when τ ∗ = 1. For all times τ ∗, the reconstructed a(y)
is near-perfect on interval y ∈ (0, 2), as shown in Fig. 1.

Example 2 In the second numerical experiment, we take

a(y) =
1

5√e|y| ,

where L, h, τ are the same as in the first experiment.
The exact solution and the reconstruction results for different iteration times are given

in Figs. 2 and 3, where the corresponding iteration numbers are 300 and 380, respectively.
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Figure 2 Identified drifts for Example 2 (iterative number 300)

Figure 3 Identified drifts for Example 2 (iterative number 380)

The initial guess is taken to be 0. We only needed 380 iterations to achieve a satisfactory re-
sult. From the figure we observe that the reconstruction is numerically near-perfect when
τ ∗ = 0.5. The iterative procedure converges quickly and the reconstruction solution seems
to be very satisfactory. Since the function a(y) changes drastically around zero, it is quite
difficult to guarantee the convergence at this point. In fact, this form of a function has a
larger fluctuation, which also shows that the drift function changes more violently in the
real market. However, our algorithm still performs well, and the shape reconstruction of
cusp is very good. In the experiment, we find that 400 iterations are not as good as 380
iterations. Since the observation data contains error, which comes from the calculation of
forward problem, to obtain stable numerical results, we will cease the iteration at some
suitable time.
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Figure 4 Noiseless case for Example 3

Example 3 In the third numerical experiment, we take

a(y) = e
–y
10 ,

where L, h, τ are the same as in the first experiment. The numerical results for exact input
data can be seen in Fig. 4.

To investigate the stability of the numerical solution, we employ the following noisy data:

W δ(y, 1) = W (y, 1)
[
1 + δ × random(y)

]

with δ = 0.001 and δ = 0.01. The reconstructed results are shown in Figs. 5 and 6. From
these two figures we can see that the reconstruction of a(y) with the noisy data is also
satisfactory. Like in Fig. 1, for all times τ ∗, the reconstructed a(y) is near-perfect on the
interval y ∈ (0, 2).

From Fig. 5 we observe that the reconstruction of the 0.1% relative random noise data
is almost identical to the reconstruction using noiseless data shown in Fig. 4. From Fig. 6
we observe that the reconstruction of the 1% relative random noise data has a noticeable
gap when compared to the reconstruction of the noiseless data. We can see that the re-
construction of the 1% has an upward trend. Nonetheless, even in this case, the form of
the reconstruction of the noiseless data is maintained, and we think that changes depend
on the size of the error (i.e., noise).

From the above results we conclude that our numerical algorithm for reconstructing
trend coefficients is indeed stable for data containing 0.1% and 1% relative random noise
data.

Remark 6.2 The parameters of numerical examples are taken as r = 0.5 and σ0 = 1. How-
ever, in the real market, the range of volatility is usually [0.2, 0.8], and the risk-free interest
rate r hardly reaches 0.5. So, to better adapt to the real market, we consider the more
suitable parameters r = 0.09 and σ0 = 0.5. Moreover, to observe the effect of τ ∗ on the re-
construction process, we also consider different values of τ ∗. The numerical results are
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Figure 5 Identified drifts with the noisy level 0.001 for Example 3

Figure 6 Identified drifts with the noisy level 0.01 for Example 3

shown in Fig. 7. We can see that our algorithm still performs well for different parameters
r, σ , and τ ∗, and the simulated drift rate is in good agreement with the real one.

7 Concluding remarks
In this paper, we discuss an inverse problem of reconstructing the drift rate coefficient
of stock index options using market observation data. Considering the boundlessness and
nonhomogeneity of the original model, we use the artificial boundary method and homog-
enization technique to transform the original problem into a terminal control problem of
homogeneous initial-boundary value equation on a bounded domain. We strictly prove
the well-posedness of the minimizer of the control problem and give an iterative calcula-
tion scheme. Numerical results show that our algorithm is fast and robust.

This paper focuses on the reconstruction of the drift coefficient. To simplify the prob-
lem, we assume that the volatility is constant. This assumption usually does not hold in
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Figure 7 Noiseless case for Example 3, where r = 0.09 and σ = 0.5

practice. Therefore an interesting question is what conditions need to be imposed to re-
construct the volatility and drift rate simultaneously, which is also the future work for our
research.
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