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Abstract
The aim of this paper is to investigate the optimal harvesting strategies of a stochastic
competitive Lotka–Volterra model with S-type distributed time delays and Lévy
jumps by using ergodic method. Firstly, the sufficient conditions for extinction and
stable in the time average of each species are established under some suitable
assumptions. Secondly, under a technical assumption, the stability in distribution of
this model is proved. Then the sufficient and necessary criteria for the existence of
optimal harvesting policy are established under the condition that all species are
persistent. Moreover, the explicit expression of the optimal harvesting effort and the
maximum of sustainable yield are given.
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1 Introduction
As is well known, over-harvesting and unreasonable harvesting policies could cause a
number of adverse effects, such as ecological destruction, species extinction, and deserti-
fication. Therefore, the optimal harvesting problem is a meaningful and significant topic
in biology and mathematics (Zou and Wang [1]). In addition, several scholars have paid
attention to investigating competitive systems and obtained a lot of successful results (see,
e.g., [2–4]) in recent years. Wang et al. [5] have studied stability for the distribution of a
stochastic competitive Lotka–Volterra system with S-type distributed time delays. Hence,
it is very interesting to study the optimal harvesting of a competitive model. The typical
competitive model with harvesting can be described as follows:

⎧
⎨

⎩

dx1(t) = x1(t)[r1 – h1 – c11x1(t) – c12x2(t)] dt,

dx2(t) = x2(t)[r2 – h2 – c21x1(t) – c22x2(t)] dt,

with initial data

xi(0) = φi(0), i = 1, 2,
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where x1 and x2 stand for the population size of two species, respectively, ri > 0 is the
growth rate of xi, i = 1, 2. hi > 0 represents the harvesting effort of xi, i = 1, 2. cii > 0 is
for the intraspecific competition coefficients of xi, i = 1, 2; cij (i �= j; i, j = 1, 2) denotes the
interspecific competition rate.

In fact, the dynamics and optimal harvesting of population are inevitably affected by
some environmental perturbations in virtually all ecosystems, which mainly include two
types: white noise and jumping noise. White noise describes the continuous noise, such
as light, drought, cold wave and so on (see, e.g., [6–9]). Jumping noise describes sudden
environment shocks, such as earthquakes, floods, and epidemics (see, e.g., [10, 11]). In re-
cent years, several authors have studied some systems both with white noise and jumping
noise and published a number of successful articles (see, e.g., [12–17]).

On the other hand, Gopalsamy [18] have pointed out that “the current growth of a popu-
lation should also be influenced by the past history of the species”. So it is necessary to take
time delay into consideration. To the best of our knowledge to date, “systems with discrete
time delays and those with continuously distributed time delays do not contain each other.
However, systems with S-type distributed time delays contain both.”(see Wang, Wang and
Wei [19, 20]). And stochastic systems with distributed delays were considered in several
publications (see e.g. [21–23]). Qiu and Deng [24] have discussed the optimal harvesting
problem of a stochastic delay competitive model with Lévy jumps, which is about discrete
time delays, and obtained the result that discrete time delays have no impact on the op-
timal harvesting policy in some cases. Therefore, an interesting and significant problem
arises: how does the S-type distributed time delays affect the population dynamics and
the optimal harvesting policy? It is more natural and practical for us to consider. In this
paper, we consider the following model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx1(t) = x1(t–)[r1 – h1 – c11x1(t–) –
∫ 0

–τ12
x2(t + θ ) dF12(θ )] dt

+ α1x1(t–) dB1(t) + x1(t–)
∫

Z
γ1(v)Ñ(dt, dv),

dx2(t) = x2(t–)[r2 – h2 –
∫ 0

–τ21
x1(t + θ ) dF21(θ ) – c22x2(t–)] dt

+ α2x2(t–) dB2(t) + x2(t–)
∫

Z
γ2(v)Ñ(dt, dv),

(1)

with initial data

xi(θ ) = φi(θ ), θ ∈ [–τ , 0], τ = max{τ12, τ21}, i = 1, 2,

xi(t–) is the left limit of xi(t), i = 1, 2. τi ≥ 0, i = 1, 2 are time delays. φi(θ ) > 0, i = 1, 2 are
continuous functions defined on [–τ , 0].

∫ 0
–τ12

x2(t +θ ) dF12(θ ) and
∫ 0

–τ21
x1(t +θ ) dF21(θ ) are

Lebesgue–Stieltjes integrals. F12(θ ) and F21(θ ) are nondecreasing bounded variation func-
tions defined on [–τ , 0]. Ñ(dt, dv) = N(dt, dv) – μ(dv)dt, N is a Poisson counting measure,
μ is the characteristic measure of N on a measurable subset Z of (0, +∞) with μ(Z) < +∞.
γi is the effect of Lévy noises on species i, if γi(v) > 0, the jumps represent the increasing
of the species; if γi(v) < 0, the jumps represent the decreasing of the species; Therefore, it
is reasonable to assume that 1 + γi(v) > 0, v ∈ Z, i = 1, 2.

We wish to solve the problem above and get the optimal harvesting effort (OHE) H∗ =
(h∗

1, h∗
2) such that the expectation of sustainable yield (ESY) Y (H) = limt→+∞

∑2
i=1 E(hixi(t))

is maximum (all species are persistent). Firstly, we establish the sufficient criteria for the
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extinction and persistence of each species in Sect. 2. Then in Sect. 3, we prove the stability
in distribution of this model. Finally, we establish the sufficient and necessary conditions
for the existence of the optimal harvesting policy and obtain the explicit expression of
OHE and the maximum of ESY (MESY) in Sect. 4.

2 Extinction and persistence
At first, we define some notations for the sake of convenience,

βi = hi +
α2

i
2

+
∫

Z

[
γi(v) – ln

(
1 + γi(v)

)]
μ(dv), bi = ri – βi, i = 1, 2;

R2
+ =

{
a = (a1, a2) ∈ R2|ai > 0, i = 1, 2

}
;

〈
f (t)

〉
= t–1

∫ t

0
f (s) ds, 〈f 〉∗ = lim sup

t→+∞
t–1

∫ t

0
f (s) ds;

〈f 〉∗ = lim inf
t→+∞ t–1

∫ t

0
f (s) ds.

Before we state our results, we make some assumptions.

Assumption 1 c11c22 –
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ ) > 0. This is a standard weak competitive
assumption which allows the system not to blow up.

Assumption 2 There exists a constant K1 such that
∫

Z
[ln(1 + γi(v))]2μ(dv) < K1, i = 1, 2,

which means that the jump noise is not too strong.

Lemma 2.1 For any given initial data (φ1(θ ),φ2(θ )) ∈ C([–τ , 0], R2
+), model (1) has a

unique global solution x(t) = (x1(t), x2(t))T ∈ R2
+ almost surely (a.s.). In particular,

lim sup
t→+∞

ln xi(t)
ln t

≤ 1, a.s., i = 1, 2. (2)

Remark 2.1 The proof of Lemma 2.1 is a special case of Theorem 5.1 and Theorem 5.2 in
Liu and Wang [25] and hence is omitted.

Lemma 2.2 (Liu, Wang and Wu [26]) Let z(t) ∈ C[� × [0, +∞), R+].
(A) If there exist some constants T > 0, λ0 > 0, λ, σi and λi such that, for all t ≥ T ,

ln z(t) ≤ λt – λ0

∫ t

0
z(s) ds +

n∑

i=1

σiBi(t) +
n∑

i=1

λi

∫ t

0

∫

Z

ln
(
1 + γi(v)

)
Ñ(ds, dv), a.s.,

then
⎧
⎨

⎩

〈z〉∗ = lim supt→+∞ t–1 ∫ t
0 z(s) ds ≤ λ/λ0 a.s., if λ ≥ 0,

limt→+∞ z(t) = 0 a.s., if λ < 0.

(B) If there exist some constants T > 0, λ0 > 0, λ > 0, σi and λi such that, for all t ≥ T ,

ln z(t) ≥ λt – λ0

∫ t

0
z(s) ds +

n∑

i=1

σiBi(t) +
n∑

i=1

λi

∫ t

0

∫

Z

ln
(
1 + γi(v)

)
Ñ(ds, dv), a.s.,
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then

〈z〉∗ = lim inf
t→+∞ t–1

∫ t

0
z(s) ds ≥ λ/λ0, a.s.

Lemma 2.3 Suppose that Assumption 1 and Assumption 2 hold, for model (1),
(I) if b1 < 0 and b2 < 0, then both x1 and x2 tend to extinction a.s., i.e.,

limt→+∞ xi(t) = 0, a.s., i = 1, 2;
(II) if b1 > 0 and b2 < 0, then x2 tends to extinction a.s., and

lim
t→+∞

〈
x1(t)

〉
=

b1

c11
, a.s.

(III) if b1 < 0 and b2 > 0, then x1 tends to extinction a.s., and

lim
t→+∞

〈
x2(t)

〉
=

b2

c22
, a.s.;

(IV) if b1 > 0 and b2 > 0, then
(i) if b1c22 – b2

∫ 0
–τ12

dF12(θ ) > 0 and b2c11 – b1
∫ 0

–τ21
dF21(θ ) < 0, then x2 tends to

extinction a.s., and

lim
t→+∞

〈
x1(t)

〉
=

b1

c11
, a.s.;

(ii) if b1c22 – b2
∫ 0

–τ12
dF12(θ ) < 0 and b2c11 – b1

∫ 0
–τ21

dF21(θ ) > 0, then x1 tends to
extinction a.s., and

lim
t→+∞

〈
x2(t)

〉
=

b2

c22
, a.s.;

(iii) if b1c22 – b2
∫ 0

–τ12
dF12(θ ) > 0 and b2c11 – b1

∫ 0
–τ21

dF21(θ ) > 0, then both x1 and
x2 are stable in time average a.s.:

lim
t→+∞

〈
x1(t)

〉
=

b1c22 – b2
∫ 0

–τ12
dF12(θ )

c11c22 –
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
, a.s.;

lim
t→+∞

〈
x2(t)

〉
=

b2c11 – b1
∫ 0

–τ21
dF21(θ )

c11c22 –
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
, a.s.

(3)

Remark 2.2 It is necessary to point out that if b1 > 0, b2 > 0 and c11c22 –
∫ 0

–τ12
dF12(θ ) ×

∫ 0
–τ21

dF21(θ ) > 0, then b1c22 – b2
∫ 0

–τ12
dF12(θ ) < 0 and b2c11 – b1

∫ 0
–τ21

dF21(θ ) < 0 cannot
hold simultaneously.

Proof of Lemma 2.3 Applying the generalized Itô formula to model (1) yields

ln x1(t) – ln x1(0)

= r1t – h1t – 0.5α2
1t – c11

∫ t

0
x1(s) ds –

∫ t

0

∫ 0

–τ12

x2(s + θ ) dF12(θ ) ds + α1B1(t)
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+
∫ t

0

∫

Z

[
ln

(
x1

(
s–)

+ x1
(
s–)

γ1(v)
)

– ln
(
x1

(
s–))

– γ1(v)
]
μ(dv) ds

+
∫ t

0

∫

Z

[
ln

(
x1

(
s–)

+ x1
(
s–)

γ1(v)
)

– ln
(
x1

(
s–))]

Ñ(ds, dv)

= r1t – h1t – 0.5α2
1t + t

∫

Z

[
ln

(
1 + γ1(v)

)
– γ1(v)

]
μ(dv)

– c11

∫ t

0
x1(s) ds –

∫ 0

–τ12

dF12(θ )
∫ t

0
x2(s) ds –

∫ 0

–τ12

∫ 0

θ

x2(s) ds dF12(θ )

+
∫ 0

–τ12

∫ t

t+θ

x2(s) ds dF12(θ ) + α1B1(t) +
∫ t

0

∫

Z

[
ln

(
1 + γ1(v)

)]
Ñ(ds, dv)

= b1t – c11

∫ t

0
x1(s) ds –

∫ 0

–τ12

dF12(θ )
∫ t

0
x2(s) ds

–
∫ 0

–τ12

∫ 0

θ

x2(s) ds dF12(θ ) +
∫ 0

–τ12

∫ t

t+θ

x2(s) ds dF12(θ )

+ α1B1(t) +
∫ t

0

∫

Z

[
ln

(
1 + γ1(v)

)]
Ñ(ds, dv).

This implies that

t–1 ln
x1(t)
x1(0)

= b1 – c11
〈
x1(t)

〉
–

1
t

∫ t

0

∫ 0

–τ12

x2(s + θ ) dF12(θ ) ds +
α1B1(t)

t

+
1
t

∫ t

0

∫

Z

[
ln

(
1 + γ1(v)

)]
Ñ(ds, dv)

= b1 – c11
〈
x1(t)

〉
–

∫ 0

–τ12

dF12(θ )
〈
x2(t)

〉
+

α1B1(t)
t

+
1
t

∫ t

0

∫

Z

[
ln

(
1 + γ1(v)

)]
Ñ(ds, dv)

–
∫ 0

–τ12

∫ 0

θ

x2(s) ds dF12(θ ) +
∫ 0

–τ12

∫ t

t+θ

x2(s) ds dF12(θ ).

(4)

Similarly, one can also derive that

t–1 ln
x2(t)
x2(0)

= b2 –
1
t

∫ t

0

∫ 0

–τ21

x1(s + θ ) dF21(θ ) ds – c22
〈
x2(t)

〉
+

α2B2(t)
t

+
1
t

∫ t

0

∫

Z

[
ln

(
1 + γ2(v)

)]
Ñ(ds, dv)

= b2 – c22
〈
x2(t)

〉
–

∫ 0

–τ21

dF21(θ )
〈
x1(t)

〉
+

α2B2(t)
t

(5)

+
1
t

∫ t

0

∫

Z

[
ln

(
1 + γ2(v)

)]
Ñ(ds, dv)
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–
∫ 0

–τ21

∫ 0

θ

x1(s) ds dF21(θ ) +
∫ 0

–τ21

∫ t

t+θ

x1(s) ds dF21(θ ).

First, we prove (I). From the first equality in (4), we can get

t–1 ln
x1(t)
x1(0)

≤ b1 – c11
〈
x1(t)

〉
+

α1B1(t)
t

+ t–1
∫ t

0

∫

Z

[
ln

(
1 + γ1(v)

)]
Ñ(ds, dv).

Since b1 < 0, according to (A) of Lemma 2.2, we have

lim
t→+∞ x1(t) = 0, a.s.

In the same way, we can derive that if b2 < 0, then limt→+∞ x2(t) = 0, a.s. by (5).
Second, we prove (II). Since b2 < 0, from (I), we can note that limt→+∞ x2(t) = 0, a.s. Thus,

for arbitrary ε > 0, there is a random time T1 > 0 such that, for t ≥ T1,

–ε ≤ 1
t

∫ t

0

∫ 0

–τ12

x2(s + θ ) dF12(θ ) ds ≤ ε.

The above inequality can be applied to the first equality in (4), we can get

t–1 ln
x1(t)
x1(0)

≤ b1 + ε – c11
〈
x1(t)

〉
+ t–1α1B1(t)

+ t–1
∫ t

0

∫

Z

[
ln

(
1 + γ1(v)

)]
Ñ(ds, dv),

(6)

t–1 ln
x1(t)
x1(0)

≥ b1 – ε – c11
〈
x1(t)

〉
+ t–1α1B1(t)

+ t–1
∫ t

0

∫

Z

[
ln

(
1 + γ1(v)

)]
Ñ(ds, dv),

(7)

Because of the arbitrariness of ε, we can choose ε sufficiently small such that b1 – ε > 0
(b1 > 0). Applying Lemma 2.2 to (6) and (7), respectively, we can obtain

b1 – ε

c11
≤ 〈x1〉∗ ≤ 〈x1〉∗ ≤ b1 + ε

c11
.

Letting ε → 0, we get limt→+∞〈x1(t)〉 = b1/c11, a.s.
Third, we prove (III). The proof of (III) is similar to that of (II) by symmetry and hence

is omitted.
Fourth, we prove (IV). Firstly, we consider the following equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dy1(t) = y1(t–)[r1 – h1 – c11y1(t–)] dt + α1y1(t–) dB1(t)

+ y1(t–)
∫

Z
γ1(v)Ñ(dt, dv),

dy2(t) = y2(t–)[r2 – h2 – c22y2(t–)] dt + α2y2(t–) dB2(t)

+ y2(t–)
∫

Z
γ2(v)Ñ(dt, dv),

where yi(θ ) = xi(θ ), θ ∈ [–τ , 0]. On the basis of the stochastic comparison theorem in
Huang [27], one can obtain

x1(t) ≤ y1(t), x2(t) ≤ y2(t). (8)
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Note that b1 > 0 and b2 > 0, using a proof like (II), we can get

lim
t→+∞

〈
yi(t)

〉
=

bi

cii
, a.s., i = 1, 2.

Hence, for arbitrary τ̃ ≥ 0, we have

lim
t→+∞ t–1

∫ t

t–τ̃

yi(s) ds = lim
t→+∞ t–1

[∫ t

0
yi(s) ds –

∫ t–τ̃

0
yi(s) ds

]

= 0, a.s.,

according to (8), so we can see that

lim
t→+∞ t–1

∫ t

t–τ̃

xi(s) ds = 0, a.s., i = 1, 2, τ̃ ≥ 0. (9)

Computing (5) × c11 – (4) × ∫ 0
–τ21

dF21(θ ), we have

c11

t
ln

x2(t)
x2(0)

=
1
t

∫ 0

–τ21

dF21(θ ) ln
x1(t)
x1(0)

+ b2c11 – b1

∫ 0

–τ21

dF21(θ )

–
(

c11c22 –
∫ 0

–τ12

dF12(θ )
∫ 0

–τ21

dF21(θ )
)

〈
x2(t)

〉

+
∫ t

0

∫

Z

[
c11

t
ln

(
1 + γ2(v)

)
–

1
t

∫ 0

–τ21

dF21(θ ) ln
(
1 + γ1(v)

)
]

Ñ(ds, dv)

+
1
t

(

c11α2B2(t) –
∫ 0

–τ21

dF21(θ )α1B1(t)
)

+ �(t),

(10)

where

�(t) =
1
t

(

c11

∫ 0

–τ21

∫ t

t+θ

x1(s) ds dF21(θ ) – c11

∫ 0

–τ21

∫ 0

θ

x1(s) ds dF21(θ )

+
∫ 0

–τ21

dF21(θ )
∫ 0

–τ12

∫ 0

θ

x2(s) ds dF12(θ )

–
∫ 0

–τ21

dF21(θ )
∫ 0

–τ12

∫ t

t+θ

x2(s) ds dF12(θ )
)

.

Thanks to (2) and (9), for arbitrary ε > 0, there is a random time T2 > 0 such that, for
t ≥ T2,

1
t

∫ 0

–τ21

dF21(θ ) ln
x1(t)
x1(0)

<
ε

2
,
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∣
∣�(t)

∣
∣

≤ 1
t

(

c11

∫ 0

–τ21

dF21(θ )
∫ t

t–τ21

x1(s) ds – c11

∫ 0

–τ21

dF21(θ )
∫ 0

–τ21

x1(s) ds

+
∫ 0

–τ21

dF21(θ )
∫ 0

–τ12

dF12(θ )
∫ 0

–τ12

x2(s) ds

–
∫ 0

–τ21

dF21(θ )
∫ 0

–τ12

dF12(θ )
∫ t

t–τ12

x2(s) ds
)

<
ε

2
.

Applying the above inequalities to (10), we have

c11

t
ln

x2(t)
x2(0)

≤ b2c11 – b1

∫ 0

–τ21

dF21(θ ) + ε

–
(

c11c22 –
∫ 0

–τ12

dF12(θ )
∫ 0

–τ21

dF21(θ )
)

〈
x2(t)

〉

+
1
t

(

c11α2B2(t) –
∫ 0

–τ21

dF21(θ )α1B1(t)
)

+
c11

t

∫ t

0

∫

Z

[
ln

(
1 + γ2(v)

)]
Ñ(ds, dv)

–
1
t

∫ 0

–τ21

dF21(θ )
∫ t

0

∫

Z

[
ln

(
1 + γ1(v)

)]
Ñ(ds, dv).

(11)

Similarly, computing (4) × c22 – (5) × ∫ 0
–τ12

dF12(θ ) and by (2) and (9), we can show that

c22

t
ln

x1(t)
x1(0)

≤ b1c22 – b2

∫ 0

–τ12

dF12(θ ) + ε

–
(

c11c22 –
∫ 0

–τ12

dF12(θ )
∫ 0

–τ21

dF21(θ )
)

〈
x1(t)

〉

+
1
t

(

c22α1B1(t) –
∫ 0

–τ12

dF12(θ )α2B2(t)
)

+
c22

t

∫ t

0

∫

Z

[
ln

(
1 + γ1(v)

)]
Ñ(ds, dv)

–
1
t

∫ 0

–τ12

dF12(θ )
∫ t

0

∫

Z

[
ln

(
1 + γ2(v)

)]
Ñ(ds, dv),

(12)

for t > T and arbitrary ε > 0.
(i): Note that b2c11 – b1

∫ 0
–τ21

dF21(θ ) < 0, and then let ε → 0 such that b2c11 – b1 ×
∫ 0

–τ21
dF21(θ ) + ε < 0. Applying (A) in Lemma 2.2 to (11), one can get limt→+∞ x2(t) = 0,

a.s. The proof of limt→+∞〈x1(t)〉 = b1/c11, a.s. is similar to that of (II) and hence is omitted.
(ii): The proof of (ii) is similar to that of (i) by symmetry and hence is omitted.



Qiu et al. Boundary Value Problems         (2021) 2021:31 Page 9 of 17

(iii): Since b2c11 – b1
∫ 0

–τ21
dF21(θ ) > 0, by (11), (A) in Lemma 2.2 we note that

〈x2〉∗ ≤ b2c11 – b1
∫ 0

–τ21
dF21(θ ) + ε

c11c22 –
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
, a.s.

We let ε → 0 so that

〈x2〉∗ ≤ b2c11 – b1
∫ 0

–τ21
dF21(θ )

c11c22 –
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
, a.s. (13)

In the same way, using (12), (A) in Lemma 2.2 and the arbitrariness of ε we see that

〈x1〉∗ ≤ b1c22 – b2
∫ 0

–τ12
dF12(θ )

c11c22 –
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
, a.s. (14)

Let ε be sufficiently small such that c11
b1c22–b2

∫ 0
–τ12

dF12(θ )

c11c22–
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
– ε > 0. Equations (9)

and (13) can be applied to (4), we get

t–1 ln
x1(t)
x1(0)

≥ b1 – ε – c11
〈
x1(t)

〉
–

∫ 0

–τ12

dF12(θ )〈x2〉∗ +
α1B1(t)

t

+
1
t

∫ t

0

∫

Z

[
ln

(
1 + γ1(v)

)]
Ñ(ds, dv)

≥ b1 – ε – c11
〈
x1(t)

〉

–
∫ 0

–τ12

dF12(θ )
b2c11 – b1

∫ 0
–τ21

dF21(θ )

c11c22 –
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )

+
α1B1(t)

t
+

1
t

∫ t

0

∫

Z

[
ln

(
1 + γ1(v)

)]
Ñ(ds, dv)

= c11
b1c22 – b2

∫ 0
–τ12

dF12(θ )

c11c22 –
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
– ε – c11

〈
x1(t)

〉

+
α1B1(t)

t
+

1
t

∫ t

0

∫

Z

[
ln

(
1 + γ1(v)

)]
Ñ(ds, dv),

for sufficiently large t. Due to (B) in Lemma 2.2 and the arbitrariness of ε we see that

〈x1〉∗ ≥ b1c22 – b2
∫ 0

–τ12
dF12(θ )

c11c22 –
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
, a.s. (15)

Similarly, when (9) and (14) are used in (5), we get

〈x2〉∗ ≥ b2c11 – b1
∫ 0

–τ21
dF21(θ )

c11c22 –
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
, a.s.
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This, together with (13)–(15), means that limt→+∞〈x1(t)〉 =
b1c22–b2

∫ 0
–τ12

dF12(θ )

c11c22–
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
, a.s.

and limt→+∞〈x2(t)〉 =
b2c11–b1

∫ 0
–τ21

dF21(θ )

c11c22–
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
, a.s.

The proof is complete. �

3 Stability in distribution
In this section, we study the stability in distribution of model (1). Firstly, we state an as-
sumption and a lemma.

Assumption 3 c11 >
∫ 0

–τ21
dF21(θ ) and c22 >

∫ 0
–τ12

dF12(θ ).

Lemma 3.1 There exists a positive K2 such that

lim sup
t→∞

E
(
xi(t)

) ≤ K2, i = 1, 2.

Remark 3.1 We omit the proof for Lemma 3.1. For details, please refer to Bao and Yuan
[28].

Lemma 3.2 If Assumption 3 holds, then model (1) is said to be stable in distribution,
i.e., there is a unique probability measure ϕ(·) such that, for every initial data x(θ ) ∈
C([–τ , 0], R2

+), the transition probability p(t, x(θ ), ·) of x(t) converges weakly to ϕ(·) as
t → +∞.

Proof of Lemma 3.2 Suppose that x(t; x(θ )) and x(t; x̃(θ )) are two solutions of model (1)
with initial data x(θ ) ∈ C([–τ , 0]; R2

+) and x̃(θ ) ∈ C([–τ , 0]; R2
+), respectively. Set

V1(t) =
∣
∣ln x1

(
t; x(θ )

)
– ln x1

(
t; x̃(θ )

)∣
∣ +

∣
∣ln x2

(
t; x(θ )

)
– ln x2

(
t; x̃(θ )

)∣
∣.

In view of the above equality, by Itô’s formula, one can deduce that

d+V1(t)

= sgn
(
x1

(
t; x(θ )

)
– x1

(
t; x̃(θ )

))
[

–c11
(
x1

(
t; x(θ )

)
– x1

(
t; x̃(θ )

))

–
∫ 0

–τ12

[
x2

(
t + θ ; x(θ )

)
– x2

(
t + θ ; x̃(θ )

)]
dF12(θ )

]

dt

+ sgn
(
x2

(
t; x(θ )

)
– x2

(
t; x̃(θ )

))
[

–c22
(
x2

(
t; x(θ )

)
– x2

(
t; x̃(θ )

))

–
∫ 0

–τ21

[
x1

(
t + θ ; x(θ )

)
– x1

(
t + θ ; x̃(θ )

)]
dF21(θ )

]

dt

≤ –
2∑

i=1

cii
∣
∣xi

(
t; x(θ )

)
– xi

(
t; x̃(θ )

)∣
∣dt

+
∫ 0

–τ12

∣
∣x2

(
t + θ ; x(θ )

)
– x2

(
t + θ ; x̃(θ )

)∣
∣dF12(θ ) dt

+
∫ 0

–τ21

∣
∣x1

(
t + θ ; x(θ )

)
– x1

(
t + θ ; x̃(θ )

)∣
∣dF21(θ ) dt.
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Define

V (t) = V1(t) + V2(t),

where

V2(t) =
∫ 0

–τ12

∫ t

t+θ

∣
∣x2

(
s; x(θ )

)
– x2

(
s; x̃(θ )

)∣
∣ds dF12(θ )

+
∫ 0

–τ21

∫ t

t+θ

∣
∣x1

(
s; x(θ )

)
– x1

(
s; x̃(θ )

)∣
∣ds dF21(θ ).

From Itô’s formula, we have

d+V (t) = d+V1(t) + d+V2(t)

≤ –
2∑

i=1

cii
∣
∣xi

(
t; x(θ )

)
– xi

(
t; x̃(θ )

)∣
∣dt

+
∫ 0

–τ12

∣
∣x2

(
t; x(θ )

)
– x2

(
t; x̃(θ )

)∣
∣dF12(θ ) dt

+
∫ 0

–τ21

∣
∣x1

(
t; x(θ )

)
– x1

(
t; x̃(θ )

)∣
∣dF21(θ ) dt

= –
(

c11 –
∫ 0

–τ21

dF21(θ )
)

∣
∣x1

(
t; x(θ )

)
– x1

(
t; x̃(θ )

)∣
∣dt

–
(

c22 –
∫ 0

–τ12

dF12(θ )
)

∣
∣x2

(
t; x(θ )

)
– x2

(
t; x̃(θ )

)∣
∣dt.

Consequently,

0 ≤ E
(
V (t)

) ≤ V (0) –
(

c11 –
∫ 0

–τ21

dF21(θ )
)∫ t

0
E

∣
∣x1

(
s; x(θ )

)
– x1

(
s; x̃(θ )

)∣
∣ds

–
(

c22 –
∫ 0

–τ12

dF12(θ )
)∫ t

0
E

∣
∣x2

(
s; x(θ )

)
– x2

(
s; x̃(θ )

)∣
∣ds,

which implies that

(

c11 –
∫ 0

–τ21

dF21(θ )
)∫ t

0
E

∣
∣x1

(
s; x(θ )

)
– x1

(
s; x̃(θ )

)∣
∣ds ≤ V (0) < +∞,

(

c22 –
∫ 0

–τ12

dF12(θ )
)∫ t

0
E

∣
∣x2

(
s; x(θ )

)
– x2

(
s; x̃(θ )

)∣
∣ds ≤ V (0) < +∞.

Therefore,

E
∣
∣xi

(
t; x(θ )

)
– xi

(
t; x̃(θ )

)∣
∣ ∈ L1[0, +∞), i = 1, 2. (16)

From model (1), we note that

E
(
x1(t)

)
= x1(0) +

∫ t

0

[

(r1 – h1)E
(
x1(s)

)
– c11E

(
x1(s)

)2
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–
∫ 0

–τ12

E
(
x1(s)x2(s + θ )

)
dF12(θ )

]

ds.

This implies the differentiability of E(x1(t)). According to Lemma 3.1,

dE(x1(t))
dt

= (r1 – h1)E
(
x1(t)

)
– c11E

(
x1(t)

)2 –
∫ 0

–τ12

E
(
x1(s)x2(s + θ )

)
dF12(θ )

≤ r1E
(
x1(t)

)

≤ r1D1,

where D1 > 0 is a constant. ThusE(x1(t)) is uniformly continuous. Similarly,E(x2(t)) is also
uniformly continuous. According to Barbalat’s lemma (Barbalat [29]) and (16), we can get

lim
t→+∞E

∣
∣xi(t) – x̃i(t)

∣
∣ = 0, i = 1, 2. (17)

Let P(t, x(θ ), Q) denotes the probability of x(t; x(θ )) ∈ Q. From Lemma 3.1 and the Cheby-
shev inequality, we note that {p(t, x(θ ), dy) : t ≥ 0} is tight. P(R2

+) denotes all probability
measures defined on R2

+. For any P1, P2 ∈ P , we define the metric

dU (P1, P2) = sup
g∈U

∣
∣
∣
∣

∫

R2
+

g(x)P1(dx) –
∫

R2
+

g(x)P2(dx)
∣
∣
∣
∣,

where

U =
{

g : R2 → R|∣∣g(x) – g(y)
∣
∣ ≤ ‖x – y‖,

∣
∣g(·)∣∣ ≤ 1

}
.

For any g ∈ U and t, s > 0, we have

∣
∣E(g

(
x
(
t + s; x(θ )

))
– E

(
g
(
x
(
t; x(θ )

)))∣
∣

=
∣
∣E

[
E

(
g
(
x
(
t + s; x(θ )

))|Fs
)]

– Eg
(
x
(
t; x(θ )

))∣
∣

=
∣
∣
∣
∣

∫

R2
+

Eg
(
x
(
t; x̃(θ )

))
p
(
s, x(θ ), d̃x(θ )

)
– Eg

(
x
(
t; x(θ )

))
∣
∣
∣
∣

≤
∫

R2
+

∣
∣Eg

(
x
(
t; x̃(θ )

))
– Eg

(
x
(
t; x(θ )

))∣
∣p

(
s, x(θ ), d̃x(θ )

)

≤
∫

ḠK

∣
∣Eg

(
x
(
t; x̃(θ )

))
– Eg

(
x
(
t; x(θ )

))∣
∣p

(
s, x(θ ), d̃x(θ )

)

+ 2p
(
s, x(θ ), Gc

K
)
,

(18)

where ḠK = {x ∈ R2
+ : |x| ≤ K} and Gc

K = R2
+ – ḠK . Note that {p(t, x(θ ), dy)} is tight, thus

there exists a sufficiently large K such that p(s, x(θ ), Gc
K ) < ε, ∀s ≥ 0. According to (17), for

arbitrarily ε > 0, there exists a T > 0 such that

sup
g∈U

|E(g
(
x
(
t; x̃(θ )

))
– E

(
g
(
x
(
t; x(θ )

)))| ≤ ε, t ≥ T .

This inequality can be applied to (18), we can get

|E(g
(
x
(
t + s; x(θ )

))
– E

(
g
(
x
(
t; x(θ )

)))| ≤ 3ε, t ≥ T .



Qiu et al. Boundary Value Problems         (2021) 2021:31 Page 13 of 17

By the arbitrariness of g , we obtain

sup
g∈U

∣
∣E(g

(
x
(
t + s; x(θ )

))
– E

(
g
(
x
(
t; x(θ )

)))∣
∣ ≤ 3ε, t ≥ T .

That is to say, for arbitrarily t ≥ T , s > 0,

dU
(
p
(
t + s, x(θ ), ·), p

(
t, x(θ ), ·)) ≤ 3ε.

This implies that p(t, x(θ ), ·) is Cauchy in P(R2
+) for any initial data x(θ ) ∈ C([–τ , 0]; R2

+).
Therefore, there is a unique ϕ ∈ P(R2

+) such that

lim
t→+∞ dU

(
p
(
t,ψ(θ ), ·),ϕ(·)) = 0, (19)

where ψ(θ ) = (ψ1(θ ),ψ2(θ ))T , ψi(θ ) ≡ 0.1, θ ∈ [–τ , 0]. From (17), we have

lim
t→+∞ dU

(
p
(
t, x(θ ), ·), p

(
t,ψ(θ ), ·)) = 0,

combining with (19) this implies

lim
t→+∞ dU

(
p
(
t, x(θ ), ·),ϕ(·))

≤ lim
t→+∞ dU

(
p
(
t, x(θ ), ·), p

(
t,ψ(θ ), ·)) + lim

t→+∞ dU
(
p
(
t,ψ(θ ), ·),ϕ(·))

= 0.

The proof is completed. �

4 Optimal harvesting
In this section, we will state and prove our main results. For the sake of making the proof
work, we introduce the following technical assumption.

Assumption 4 4c11c22 – (c11c22 –
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ ))2 < 0.

Theorem 4.1 For model (1), suppose that Assumptions 1–4 hold. Define

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h∗
1 = 2c11ℵ1

4c11c22–(
∫ 0

–τ12
dF12(θ )+

∫ 0
–τ21

dF21(θ ))2

+
(
∫ 0

–τ12
dF12(θ )+

∫ 0
–τ21

dF21(θ ))ℵ2

4c11c22–(
∫ 0

–τ12
dF12(θ )+

∫ 0
–τ21

dF21(θ ))2 ,

h∗
2 = 2c22ℵ2

4c11c22–(
∫ 0

–τ12
dF12(θ )+

∫ 0
–τ21

dF21(θ ))2

+
(
∫ 0

–τ12
dF12(θ )+

∫ 0
–τ21

dF21(θ ))ℵ1

4c11c22–(
∫ 0

–τ12
dF12(θ )+

∫ 0
–τ21

dF21(θ ))2 ,

where ℵ1 = (r1 – α2
1

2 – κ1) – (r2 – α2
2

2 – κ2)
∫ 0

–τ12
dF12(θ ), ℵ2 = (r2 – α2

2
2 – κ2) – (r1 – α2

1
2 –

κ1)
∫ 0

–τ21
dF21(θ ), κi =

∫

Z
[γi(v) – ln(1 + γi(v))]μ(dv), i = 1, 2.
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(A) If b1|h1=h∗
1,h2=h∗

2
> 0, b2|h1=h∗

1,h2=h∗
2

> 0, b1c22 –b2
∫ 0

–τ12
dF12(θ )|h1=h∗

1,h2=h∗
2

> 0 and b2c11 –
b1

∫ 0
–τ21

dF21(θ )|h1=h∗
1,h2=h∗

2
> 0, then OHE is H∗ = (h∗

1, h∗
2) and MESY is

Y ∗ = h∗
1

b1c22 – b2
∫ 0

–τ12
dF12(θ )

c11c22 –
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )

+ h∗
2

b2c11 – b1
∫ 0

–τ21
dF21(θ )

c11c22 –
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
.

(B) If the conditions (A) do not hold, then the optimal harvesting policy does not exist.

Proof of Theorem 4.1 Let G = {H = (h1, h2)T ∈ R2|bi > 0,�i > 0, hi ≥ 0, i = 1, 2}, where �1 =
b1c22 – b2

∫ 0
–τ12

dF12(θ )|h1=h∗
1,h2=h∗

2
, �2 = b2c11 – b1

∫ 0
–τ21

dF21(θ )|h1=h∗
1,h2=h∗

2
. By Lemma 2.3,

we can note that if H ∈ G, then (3) holds; if H∗ exists, then H∗ ∈ G.
Firstly, we prove (A). Clearly, A = (h∗

1, h∗
2) ∈ G, hence G is not empty. For any H ∈ G,

lim
t→+∞ t–1

∫ t

0
HT x(s) ds =

2∑

i=1

hi lim
t→+∞ t–1

∫ t

0
xi(s) ds, a.s. (20)

From Lemma 3.2, model (1) has a unique invariant measure ϕ(·). It is according to Corol-
lary 3.4.3 in Prato and Zabczyk [30] that ϕ(·) is strong mixing. Then, as follows from The-
orem 3.2.6 in [30], ϕ(·) is ergodic. By (3.3.2) in [30], we have

lim
t→+∞ t–1

∫ t

0
HT x(s) ds =

∫

R2
+

HT xϕ(dx). (21)

Let ρ(x) express- the stationary probability density of (1). Therefore,

Y (H) = lim
t→+∞

2∑

i=1

E
(
hixi(t)

)
= lim

t→+∞E
(
HT x(t)

)
=

∫

R2
+

HT xρ(x) dx. (22)

Due to the invariant measure of model (1) is unique, it then follows from the one-to-one
correspondence between ρ(x) and its invariant measure (see e.g. [30], p.105) that

∫

R2
+

HT xρ(x) dx =
∫

R2
+

HT xϕ(dx). (23)

From (20)–(23) and (3), we obtain

Y (H) = h1
b1c22 – b2

∫ 0
–τ12

dF12(θ )

c11c22 –
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )

+ h2
b2c11 – b1

∫ 0
–τ21

dF21(θ )

c11c22 –
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
.

(24)
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A direct calculation yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Y (H)
∂h1

=
–2c22h1+(

∫ 0
–τ12

dF12(θ )+
∫ 0

–τ21
dF21(θ ))h2+ℵ1

c11c22–
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )

∂Y (H)
∂h2

=
–2c11h2+(

∫ 0
–τ21

dF21(θ )+
∫ 0

–τ12
dF12(θ ))h1+ℵ2

c11c22–
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )

∂Y 2(H)
∂h2

1
= –2c22

c11c22–
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
,

∂Y 2(H)
∂h1 ∂h2

=
∫ 0

–τ12
dF12(θ )+

∫ 0
–τ21

dF21(θ )

c11c22–
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
,

∂Y 2(H)
∂h2 ∂h1

=
∫ 0

–τ12
dF12(θ )+

∫ 0
–τ21

dF21(θ )

c11c22–
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
,

∂Y 2(H)
∂h2

2
= –2c11

c11c22–
∫ 0

–τ12
dF12(θ )

∫ 0
–τ21

dF21(θ )
.

(25)

Let ∂Y (H)
∂h1

= 0 and ∂Y (H)
∂h2

= 0. By (25), we have h1 = h∗
1, h2 = h∗

2. From Assumption 3, we
observe that

⎛

⎝

∂Y 2(H)
∂h2

1

∂Y 2(H)
∂h1 ∂h2

∂Y 2(H)
∂h2 ∂h1

∂Y 2(H)
∂h2

2

⎞

⎠

is negative definite. Therefore, (h∗
1, h∗

2) is the unique maximum point of Y (H), and the
MESY is Y (H∗).

Now we prove (B). Suppose that OHE H̃∗ = (̃h∗
1, h̃∗

2)T exists, then H̃∗ ∈ G, i.e.,

b1|hk =̃h∗
k

> 0, b1c22 – b2

∫ 0

–τ12

dF12(θ )|hk =̃h∗
k

> 0,

b2|hk =̃h∗
k

> 0, b2c11 – b1

∫ 0

–τ21

dF21(θ )|hk =̃h∗
k

> 0, k = 1, 2.

On the other hand, thanks to H̃∗ being OHE, then H̃∗ is the solution of (24). Note
that the solution of (24) is unique and H∗ is also the solution of (24). Hence, H̃∗ = H∗,
i.e., b1|h1=h∗

1,h2=h∗
2

> 0, b2|h1=h∗
1,h2=h∗

2
> 0, b1c22 – b2

∫ 0
–τ12

dF12(θ )|h1=h∗
1,h2=h∗

2
> 0 and b2c11 –

b1
∫ 0

–τ21
dF21(θ )|h1=h∗

1,h2=h∗
2

> 0. The contradiction arises.
The proof is completed. �

Remark 4.1 From Theorem 4.1 we can note that the existence of an optimal harvesting
policy has a close relationship with S-type distributed time delays, white noises and Lévy
jumps.

5 Conclusions
In this paper, we considered the optimal harvesting of a stochastic competitive Lotka–
Volterra model with S-type distributed time delays and Lévy jumps. We established the
sufficient and necessary conditions for the existence of optimal harvesting policy, and we
also obtained the explicit expression of the optimal harvesting effort and maximum yield
by using the ergodic method. Theorem 4.1 indicates that the existence of an optimal har-
vesting policy has a close relationship with S-type distributed time delays, white noises
and Lévy jumps.
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Some interesting problems can be further investigated, such as the optimal harvesting
problem for N-dimensional stochastic competitive Lotka–Volterra model with S-type dis-
tributed time delays and Lévy jumps. We can also study the optimal harvesting problem
for some stochastic model with infinite time delays and Lévy jumps. It is necessary for us
to work hard on these investigations.
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