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Abstract
By using variational methods, we obtain the existence of homoclinic orbits for
perturbed Hamiltonian systems with sub-linear terms. To the best of our knowledge,
there is no published result focusing on the perturbed and sub-linear Hamiltonian
systems.
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1 Introduction and the main result
In this paper, we study the existence of homoclinic orbits for the following second order
Hamiltonian systems with perturbed terms:

–ü(t) + A(t)u(t) – λu(t) = χ (t)∇F
(
u(t)

)
+ h(t), t ∈R, (1.1)

where u ∈ R
N , A(t) is continuous T-periodic N × N symmetric matrix valued function,

λ ∈ R, h ∈ R
N , F(u) ∈ C1(RN ,R) and ∇F(u) denotes its gradient with respect to the u

variable.
As usual, we say that u(t) is a homoclinic orbit of (1.1) if u(t) is a solution of (1.1) and

u(t) ∈ C2(R,RN ) such that u(t) → 0 as |t| → ∞.
If λ = 0 and h(t) ≡ 0, then the system (1.1) becomes to the second order Hamiltonian

system

–ü(t) + A(t)u(t) = χ (t)∇F
(
u(t)

)
, t ∈R. (1.2)

Since homoclinic orbits play a key role in the research of fluid mechanics and gas dy-
namics. Therefore, homoclinic orbits of Hamiltonian systems have been studied by many
authors [1–12, 14–21]. If the matrix A(t) is positive definite uniformly in t, the authors
[7–9, 18, 19] have obtained the existence of homoclinic orbits for (1.2). However, we shall
consider the cases of (1.1) where A(t) is not uniformly positively definite for t ∈R and the
nonlinearities ∇F(u) is sub-linear as at infinity.

In this paper, we are interested in the strongly indefinite case for (1.1).
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(L1) A(t) is T-periodic, λ /∈ σ (– d2

dt2 + A(t)), the spectrum of – d2

dt2 + A(t).
Let (·, ·) be the inner product in R

N , and the associated norm is denoted by | · |. Assume
that

(X1) h ∈ L2(R,RN ), χ ∈ L2(R,R) ∩ L∞(R,R) and χ (t) ≥ 0 for all t ∈R.
(F1) F(u) ∈ C1(RN ,R), F(u) ≥ 0 for all u ∈R

N , F(0) = 0 and

lim|u|→∞
|∇F(u)|

|u| = 0. (1.3)

By F(0) = 0 and the differential mean value theorem, we have

F(u) = F(u) – F(0) =
(∇F(su), u

)
for some s ∈ (0, 1).

It follows from (1.3) that

lim|u|→∞
|F(u)|
|u|2 = lim|u|→∞

|(∇F(su), u)|
|u|2 ≤ lim|u|→∞

|∇F(su)|
|su| |s| = 0,

so we get lim|u|→∞ F(u)
|u|2 = 0, i.e., the nonlinearity F(u) shows sub-quadratic growth at in-

finity. Now, our main result reads as follows.

Theorem 1.1
(1) If F(0) = 0 and h(t) ≡ 0, then (1.1) has at least one homoclinic orbit.
(2) If (L1), (X1) and (F1) hold, and h(t) 
≡ 0, then (1.1) has at least one nontrivial

homoclinic orbit.

Remark 1.1 To the best of our knowledge, there is no published result focusing on the per-
turbed Hamiltonian systems (1.1). The main novelties of this paper are as follows: (1) We
extend the existing results of (1.2) to the more general Hamiltonian systems (1.1). (2) Most
existing results of the systems (1.2) are based on the following superlinear conditions at 0:

∣∣∇F(u)
∣∣ = o

(|u|) as |u| → 0, i.e., lim|u|→0

|∇F(u)|
|u| = 0. (1.4)

However, we remove the conditions (1.4); (3) When the nonlinearity ∇F(u) is sub-linear
as |u| → ∞, as far as we know, the results on homoclinic orbits of (1.2) obtained in the
literature are very scarce. Moreover, we obtain the existence of homoclinic orbits of the
more general Hamiltonian systems (1.1) with ∇F(u) being sub-linear as |u| → ∞.

2 Variational frameworks and proof of the main result
Let E– be a separable closed subspace of a Hilbert space E with inner product 〈·, ·〉 and
norm ‖ · ‖, and E+ = (E–)⊥. For some R > 0, set

M :=
{

u ∈ E– : ‖u‖ ≤ R
}

. (2.1)

Then M is a submanifold of E– with boundary ∂M. On E we will also use a topology τ

generated by the norm

‖u‖τ := max

(

‖P+u‖,
∞∑

k=1

1
2k+1

∣∣〈P–u, ek〉
∣∣
)

,
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where P± : E → E± is the orthogonal projection of E onto E± and {ek} is a total orthonor-
mal sequence in E–. Obviously,

uj τ→ u implies that P+uj → P+u and P–uj ⇀ P–u. (2.2)

Notations We shall denote by ‖ · ‖Lq and ‖ · ‖q the usual Lq(R,RN )-norm and Lq(R,R)-
norm (1 ≤ q ≤ ∞), respectively. We denote by C different positive constants. Let � ∈
C1(E,R). We say that � is τ -upper semicontinuous if uj τ→ u implies �(u) ≥ limj→∞ �(uj),
and �′ is weakly sequentially continuous if uj ⇀ u implies �′(uj) ⇀ �′(u).

Next, we shall use the following generalized saddle point theorem to prove our main
result.

Lemma 2.1 ([13]) Suppose that � ∈ C1(E,R) is τ -upper semicontinuous and �′ is weakly
sequentially continuous. If

b := inf
E+

� > sup
∂M

�, d := sup
M

� < ∞, (2.3)

then, for some c ∈ [b, d], there is a (PS)c sequence {uj} ⊂ E, i.e., �(uj) → c and �′(uj) → 0.

Under assumption (L1), B := – d2

dt2 + A(t) – λ is a selfadjoint operator acting on L2 :=
L2(R,RN ) with domain D(B) = H2(R,RN ) and we have the orthogonal decomposition L2 =
L– ⊕ L+, u = u– + u+ such that B is negative (resp., positive) in L– (resp., in L+). Let E :=
D(|B|1/2) be equipped, respectively, with the inner product and norm

〈u, v〉 :=
(|B|1/2u, |B|1/2v

)
L2 , ‖u‖ :=

∥∥|B|1/2u
∥∥

L2 ,

where (·, ·)L2 denotes the inner product of L2(R,RN ). Then we have the decomposition

E = E– ⊕ E+

and

E± = E ∩ L±,

orthogonal with respect to both (·, ·)L2 and 〈·, ·〉. By (L1), E = H1(R,RN ) with equivalent
norms. Then E is a Hilbert space and it is not difficult to show that E ⊂ C0(R,RN ), the
space of continuous functions u on R such that u(t) → 0 as |t| → ∞ (see, e.g., [18]).

Therefore, the corresponding functional of (1.1) can be written as

�(u) =
1
2

∫

R

[|u̇|2 +
(
A(t)u, u

)
– λu2]dt – 	(u)

=
1
2
(∥∥u+∥∥2 –

∥∥u–∥∥2) – 	(u), u ∈ E,

where 	(u) :=
∫
R

[χ (t)F(u) + h(t)u] dt. By assumptions (L1), (X1) and (F1), it is easy to
verify that �,	 ∈ C1(E,R) and the derivatives are given by

�′(u)v =
〈
u+, v+〉

–
〈
u–, v–〉

– 	 ′(u)v, 	 ′(u)v =
∫

R

[
χ (t)

(∇F(u), v
)

+ h(t)v
]

dt, (2.4)



Lv and Chen Boundary Value Problems         (2021) 2021:32 Page 4 of 7

where u = u– + u+, v = v– + v+ ∈ E = E– ⊕ E+. Equation (2.4) implies that (1.1) is the cor-
responding Euler–Lagrange equation for �. Therefore, we have reduced the problem of
finding homoclinic orbits of (1.1) to that of seeking critical points of the functional � on E.

In order to apply Lemma 2.1 to prove our result, we need the following two lemmas.

Lemma 2.2 Under conditions of Theorem 1.1, the functional � is τ -upper semicontinuous
and �′ is weakly sequentially continuous.

Proof First, we show that the functional � is τ -upper semicontinuous. Let uj τ→ u and
�(uj) ≥ C0 for some constant C0. By (2.2), we have

(
uj)+ → u+,

(
uj)–

⇀ u– and uj ⇀ u in E, uj → u a.e. on R
N , (2.5)

going to a subsequence if necessary. Clearly, (X1) and (F1) imply χ (t)F(u) ≥ 0 for all (t, u) ∈
R×R

N , which together with (2.5) and Fatou’s lemma implies

lim
j→∞

∫

R

χ (t)F
(
uj)dt ≥

∫

R

χ (t)F(u) dt. (2.6)

By (2.5), we have uj ⇀ u in L2(R,RN ), it follows from h ∈ L2(R,RN ) (see (X1)) that

lim
j→∞

∫

R

h(t)uj dt = lim
j→∞

(
h, uj) = (h, u) =

∫

R

h(t)u dt. (2.7)

By (2.6), (2.7), �(uj) ≥ C0, the definition of � and the weak lower semicontinuity of the
norm, we get

–C0 ≥ lim
j→∞

(
–�

(
uj))

= lim
j→∞

1
2
(∥∥(

uj)–∥∥2 –
∥∥(

uj)+∥∥2) +
∫

R

(
χ (t)F

(
uj) + h(t)uj)dt

≥ 1
2
(∥∥u–∥∥2 –

∥∥u+∥∥2) +
∫

R

(
χ (t)F(u) + h(t)u

)
dt = –�(u).

It implies that �(u) ≥ C0. Therefore, � is τ -upper semicontinuous.
Now, we prove �′ is weakly sequentially continuous on E. By (2.5) and the definition of

�′, we have

lim
j→∞�′(uj)ϕ

= lim
j→∞

{
〈(

uj)+,ϕ
〉
–

〈(
uj)–,ϕ

〉
–

∫

R

[
χ (t)

(∇F
(
uj),ϕ

)
+ h(t)ϕ

]
dt

}

=
〈
u+,ϕ

〉
–

〈
u–,ϕ

〉
– lim

j→∞

∫

R

[
χ (t)

(∇F
(
uj),ϕ

)
+ h(t)ϕ

]
dt, ∀ϕ ∈ C∞

0
(
R,RN)

.

It follows from F ∈ C1, ϕ ∈ C∞
0 (R,RN ) and uj → u in L2

loc(R,RN ) (by (2.5)) that

lim
j→∞�′(uj)ϕ =

〈
u+,ϕ

〉
–

〈
u–,ϕ

〉
–

∫

R

[
χ (t)

(∇F(u),ϕ
)

+ h(t)ϕ
]

dt = �′(u)ϕ,

i.e., �′ is weakly sequentially continuous on E. The proof is finished. �
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Lemma 2.3 Under conditions of Theorem 1.1, the geometric assumption (2.3) in Lemma
2.1 is true, i.e.,

b := inf
E+

� > sup
∂M

�, d := sup
M

� < ∞.

Proof Obviously, if χ (t) ≡ 0 (t ∈R), then assumption (L1) implies that (1.1) becomes to a
linear equation and it is easy to see that it has a solution. Therefore, we may assume that
‖χ‖∞ 
= 0. By the Sobolev inequality, there is a constant C0 > 0 such that

C0‖u‖2
L2 ≤ ‖u‖2, ∀u ∈ E. (2.8)

Clearly, (F1) implies that

∣
∣∇F(u)

∣
∣ ≤ C0

3‖χ‖∞
|u| + C,

∣
∣F(u)

∣
∣ ≤ C0

3‖χ‖∞
|u|2 + C|u|, u ∈ R

N . (2.9)

For u ∈ E+, by (2.8), (2.9), the definition of � and the Hölder inequality, we have

�(u) =
1
2
‖u‖2 –

∫

R

(
χ (t)F(u) + h(t)u

)
dt

≥ 1
2
‖u‖2 –

∫

R

∣∣χ (t)
∣∣
(

C0

3‖χ‖∞
|u|2 + C|u|

)
dt –

∫

R

∣∣h(t)
∣∣|u|dt

≥ 1
2
‖u‖2 –

C0

3
‖u‖2

L2 –
(
C‖χ‖2 + ‖h‖L2

)‖u‖L2

≥ 1
6
‖u‖2 –

1
C1/2

0

(
C‖χ‖2 + ‖h‖L2

)‖u‖.

It follows from ‖χ‖2 + ‖h‖L2 < ∞ (see (X1)) that b := infE+ � > –∞
For u ∈ E–, by (2.8) and χ (t)F(u) ≥ 0 for all (t, u) ∈R×R

N (see (X1) and (F1)), we have

�(u) = –
1
2
‖u‖2 –

∫

R

(
χnFn(un) + hnun

)
dt

≤ –
1
2
‖u‖2 + ‖h‖L2‖u‖L2

≤ –
1
2
‖u‖2 +

1
C1/2

0
‖h‖L2‖u‖.

It follows from ‖h‖L2 < ∞ (see (X1)) that for R large enough we have

b := inf
E+

� > sup
∂M

�, d := sup
M

� < ∞,

where M is defined in (2.1). The proof is finished. �

Now, Lemmas 2.2 and 2.3 imply that Lemma 2.1 holds. Next, we give a detailed proof of
Theorem 1.1.

Proofs of Theorem 1.1(1) and (2) (1) Obviously, 0 is a trivial homoclinic orbit of (1.1) if
F(0) = 0 and h(t) ≡ 0.
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(2) By Lemma 2.1, for some c ∈ [b, d], there is a sequence {uj} ⊂ E such that

�
(
uj) → c, �′(uj) → 0. (2.10)

Let ûj = (uj)+ – (uj)–, then ‖ûj‖ = ‖uj‖. Therefore, by (2.8)–(2.10), the Hölder inequality
and the fact E = E– ⊕ E+ orthogonal with respect to (·, ·)L2 , we have

C
∥
∥uj∥∥ = C

∥
∥ûj∥∥ ≥ �′(uj)ûj

=
∥∥(

uj)+∥∥2 +
∥∥(

uj)–∥∥2 –
∫

R

[
χ (t)

(∇F
(
uj), ûj) + h(t)ûj]dt

≥ ∥∥uj∥∥2 –
∫

R

[∣∣χ (t)
∣∣
(

C0

3‖χ‖∞

∣∣uj∣∣ + C
)

+
∣∣h(t)

∣∣
]
(∣∣(uj)+∣∣ +

∣∣(uj)–∣∣)dt

≥ ∥∥uj∥∥2 –
(

C0

3
∥∥uj∥∥

L2 + C‖χ‖2 + ‖h‖L2

)(∥∥(
uj)+∥∥

L2 +
∥∥(

uj)–∥∥
L2

)

≥ ∥
∥uj∥∥2 – 2

∥
∥uj∥∥

L2

(
C0

3
∥
∥uj∥∥

L2 + C‖χ‖2 + ‖h‖L2

)

≥ 1
3
∥∥uj∥∥2 –

2
C1/2

0

(
C‖χ‖2 + ‖h‖L2

)∥∥uj∥∥.

It follows from ‖χ‖2 + ‖h‖L2 < ∞ (see (X1)) that {uj} is bounded in E.
Consequently, up to a subsequence, we may assume that uj ⇀ u in E. By (2.10) and the

fact that �′ is weakly sequentially continuous (see Lemma 2.2), we have

0 = lim
j→∞�′(uj)v = �′(u)v, ∀v ∈ E.

Therefore, u is a homoclinic orbit of (1.1). The fact h(t) 
≡ 0 implies the system (1.1) has
no trivial solution, i.e., 0 is not a solution of (1.1), thus u is a nontrivial homoclinic orbit
of (1.1). The proof is finished. �

3 Conclusion
We obtain the existence of homoclinic orbits for a class of perturbed Hamiltonian systems
with sub-linear terms. To the best of our knowledge, there is no published result focusing
on the perturbed and sub-linear Hamiltonian systems.
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