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Abstract
By employing critical point theory, we investigate the existence of solutions to a
boundary value problem for a p-Laplacian partial difference equation depending on a
real parameter. To be specific, we give precise estimates of the parameter to
guarantee that the considered problem possesses at least three solutions.
Furthermore, based on a strong maximum principle, we show that two of the
obtained solutions are positive under some suitable assumptions of the nonlinearity.
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1 Introduction
Let Z and R denote the sets of integers and real numbers, respectively. Define Z(a, b) =
{a, a + 1, . . . , b} with a ≤ b for any a, b ∈ Z.

Given positive integers m and n, we consider the following partial discrete problem,
denoted (Sf ,q

λ ):

–�1
[
φp
(
�1x(i – 1, j)

)]
– �2

[
φp
(
�2x(i, j – 1)

)]
+ q(i, j)φp

(
x(i, j)

)
= λf

(
(i, j), x(i, j)

)
,

(i, j) ∈ Z(1, m) ×Z(1, n),

with Dirichlet boundary conditions

x(i, 0) = x(i, n + 1) = 0, i ∈ Z(0, m + 1),

x(0, j) = x(m + 1, j) = 0, j ∈ Z(0, n + 1).

Here �1 and �2 denote the forward difference operators defined by �1x(i, j) = x(i + 1, j) –
x(i, j) and �2x(i, j) = x(i, j + 1) – x(i, j), �2

1x(i, j) = �1(�1x(i, j)) and �2
2x(i, j) = �2(�2x(i, j)),

φp denotes the p-Laplacian operator, that is, φp(s) = |s|p–2s, p > 1, q(i, j) ≥ 0 for all (i, j) ∈
Z(1, m) ×Z(1, n), and f ((i, j), ·) ∈ C(R,R) for each (i, j) ∈ Z(1, m) ×Z(1, n).
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It is well known that the critical point theory has been playing an important role in the
study of differential equations. For example, Ji [1] considered the following problem:

⎧
⎨

⎩
– div(|∇u|p(x)–2∇u) + |u|p(x)–2u = λf (x, u) + μg(x, u) in �,

Bu = 0 on ∂�.
(1.1)

By using Theorem 2 in [2], the author obtained some new results on the existence of three
solutions for problem (1.1) which give information on the localization of the interval of
the parameter. In 2020, Papageorgiou and Scapellato [3] studied the problem

⎧
⎨

⎩
– div(|Du|p–2Du) – div(Du) = λ|u|p–2u + f (z, u) in �,

u|∂� = 0.
(1.2)

By applying critical point theory, the authors showed that when the parameter λ > 0 is
small, problem (1.2) admits at least seven nontrivial solutions including two positive so-
lutions, two negative solutions and three nodal solutions.

As the discrete analogues of differential equations, during the past decades, the theory
of difference equations has been also developed continuously due to its theoretical back-
ground and realistic significance. For instance, difference equations have been used exten-
sively as discrete mathematical models describing real-life scenarios in electrical circuit
analysis, economics, dynamical systems, physics, biology, etc. [4–7]. On the other hand,
the existence and multiplicity of solutions for difference equations have been widely stud-
ied by many scholars. For instance, Stevic [8] investigated the problem

zn+1 = αza
nwb

n, wn+1 = βwc
n–1zd

n , n ∈ N0, (1.3)

and presented closed form formulas for well-defined complex-valued solutions to (1.3)
under some suitable assumptions of the parameters and initial values. Furthermore, it
must be pointed out that Guo and Yu [9] first applied the critical point theory to study the
existence of periodic and subharmonic solutions for a second-order difference equation
in 2003. Since then, the critical point theory has become a powerful tool to deal with
the nonlinear discrete problems, and many excellent results were acquired, concerning
periodic solutions [10–12], homoclinic solutions [13–23], heteroclinic solutions [24, 25],
boundary value problems [26–34] and so on.

Note that the difference equations mentioned above involve only one discrete variable,
while the difference equations with two or more discrete variables, so-called partial differ-
ence equations, are also very meaningful and investigated. Here we focus on the following
several papers.

In 2010, Galewski and Orpel [35] considered the problem (Ef
λ):

⎧
⎪⎪⎨

⎪⎪⎩

–�2
1u(i – 1, j) – �2

2u(i, j – 1) = λf ((i, j), u(i, j)), (i, j) ∈ Z(1, m) ×Z(1, n),

u(i, 0) = u(i, n + 1) = 0, i ∈ Z(1, m),

u(0, j) = u(m + 1, j) = 0, j ∈ Z(1, n).
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Following some ideas from [36], the authors rewrote (Ef
λ) as a nonlinear algebraic system

and obtained the existence of at least one nontrivial solution by applying critical point
theory and some monotonicity results.

Similarly, in 2015, Heidarkhani and Imbesi [37] established some sufficient conditions
to ensure that problem (Ef

λ) possesses at least three distinct solutions, respectively, by em-
ploying two different critical points theorems.

In 2016, by making use of critical point theory and the same techniques as [35, 37],
Imbesi and Bisci [38] further studied the nonlinear algebraic system corresponding to
problem (Ef

λ) and acquired two types of results: the existence of either an unbounded se-
quence of solutions or a sequence of pairwise distinct non-zero solutions that converges
to zero.

Lately, Du and Zhou [39] dealt with a class of partial discrete Dirichlet boundary value
problem involving the p-Laplacian, namely, problem (Sf ,q

λ ) when q(i, j) = 0 for any (i, j) ∈
Z(1, m) ×Z(1, n). By establishing the variational framework associated with (Sf ,0

λ ) and ex-
ploiting critical point theory, a series of results were obtained.

Inspired by the above research results, the aim of this paper is to investigate the exis-
tence of multiple solutions to problem (Sf ,q

λ ). Note that problem (Ef
λ) mentioned above

is a special case of (Sf ,q
λ ) when p = 2 and q(i, j) = 0 for any (i, j) ∈ Z(1, m) × Z(1, n). Be-

sides, different from the skills in [37] and the main tools used in their proof, in this paper
we construct the variational structure for (Sf ,q

λ ) and transform the existence of solutions
for (Sf ,q

λ ) into that of critical points of the corresponding variational functional. Based on
another three critical point theorem, the existence results of at least three solutions are
established. Furthermore, under appropriate hypotheses on the nonlinearity f , we verify
that (Sf ,q

λ ) admits at least two positive solutions by using a strong maximum principle.
First of all, we give the following lemma (see Theorem 2.1 of [40]), which is the main

tool of this paper.

Lemma 1.1 Let X be a separable and reflexive real Banach space. 	 : X →R is a nonneg-
ative continuously Gâteaux differentiable and sequentially weakly lower semicontinuous
functional whose Gâteaux derivative admits a continuous inverse on X∗. J : X → R is a
continuously Gâteaux differentiable functional whose Gâteaux derivative is compact. As-
sume that there exists x0 ∈ X such that 	(x0) = J(x0) = 0 and that

(i) lim‖x‖→+∞[	(x) – λJ(x)] = +∞ for all λ ∈ [0, +∞);
Further, assume that there are r > 0, x1 ∈ X such that

(ii) r < 	(x1);
(iii) supx∈	–1(–∞,r)

w J(x) < r
r+	(x1) J(x1).

Then, for each

λ ∈ 
1 =
(

	(x1)
J(x1) – supx∈	–1(–∞,r)

w J(x)
,

r
supx∈	–1(–∞,r)

w J(x)

)
,

the equation

	′(x) – λJ ′(x) = 0 (1.4)
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has at least three solutions in X and, moreover, for each h > 1, there exist an open interval


2 ⊆
[

0,
hr

rJ(x1)
	(x1) – supx∈	–1(–∞,r)

w J(x)

]

and a positive real number σ such that, for each λ ∈ 
2, the equation (1.4) has at least
three solutions in X whose norms are less than σ .

The rest of this paper is organized as follows. In Sect. 2, we construct the variational
structure for problem (Sf ,q

λ ) and present a strong maximum principle as well as two use-
ful inequalities. In Sect. 3, our main results are established. Furthermore, under suitable
hypotheses on the nonlinearity f , two corollaries are obtained by employing the strong
maximum principle. Finally, a concrete example is provided in Sect. 4 to illustrate our
results.

2 Preliminaries
Consider the mn-dimensional Banach space

X =
{

x : Z(0, m + 1) ×Z(0, n + 1) →R such that x(i, 0) = x(i, n + 1) = 0,

i ∈ Z(0, m + 1) and x(0, j) = x(m + 1, j) = 0, j ∈ Z(0, n + 1)
}

,

endowed by the norm

‖x‖ =

( n∑

j=1

m+1∑

i=1

∣∣�1x(i – 1, j)
∣∣p +

m∑

i=1

n+1∑

j=1

∣∣�2x(i, j – 1)
∣∣p +

n∑

j=1

m∑

i=1

q(i, j)
∣∣x(i, j)

∣∣p
) 1

p

for any x ∈ X.
Moreover, define

	(x) =
‖x‖p

p
and J(x) =

n∑

j=1

m∑

i=1

F
(
(i, j), x(i, j)

)
, ∀x ∈ X, (2.1)

where

F
(
(i, j), ξ

)
=
∫ ξ

0
f
(
(i, j), τ

)
dτ , ∀((i, j), ξ

) ∈ Z(1, m) ×Z(1, n) ×R.

Obviously, 	 and J are two functionals of class C1(X,R) and, for any x, z ∈ X,

	′(x)(z) =
n∑

j=1

m∑

i=1

{
–�1

[
φp
(
�1x(i – 1, j)

)]
– �2

[
φp
(
�2x(i, j – 1)

)]

+ q(i, j)φp
(
x(i, j)

)}
z(i, j),

J ′(x)(z) =
n∑

j=1

m∑

i=1

f
(
(i, j), x(i, j)

)
z(i, j).
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Therefore, for any x, z ∈ X,

(	 – λJ)′(x)(z) =
n∑

j=1

m∑

i=1

{
–�1

[
φp
(
�1x(i – 1, j)

)]
– �2

[
φp
(
�2x(i, j – 1)

)]

+ q(i, j)φp
(
x(i, j)

)
– λf

(
(i, j), x(i, j)

)}
z(i, j).

Remark 2.1 Clearly, x is a critical point of the functional 	 – λJ in X if and only if it is a
solution of the problem (Sf ,q

λ ). Then we transform the problem of seeking the solutions of
(Sf ,q

λ ) into looking for the critical points of 	 – λJ in X.

Put

q∗ = min
i∈Z(1,m)
j∈Z(1,n)

{
q(i, j)

}
, q∗ = max

i∈Z(1,m)
j∈Z(1,n)

{
q(i, j)

}
.

According to Proposition 1 of [39], for any x ∈ X, we have

max
i∈Z(1,m)
j∈Z(1,n)

{∣∣x(i, j)
∣
∣}

≤ (m + n + 2)
p–1

p

4

( n∑

j=1

m+1∑

i=1

∣∣�1x(i – 1, j)
∣∣p +

m∑

i=1

n+1∑

j=1

∣∣�2x(i, j – 1)
∣∣p
) 1

p

. (2.2)

Then we obtain the following result.

Lemma 2.1 For all x ∈ X, the inequality

max
i∈Z(1,m)
j∈Z(1,n)

{∣∣x(i, j)
∣
∣}≤ (m + n + 2)

p–1
p

[4p + q∗(m + n + 2)p–1]
1
p
‖x‖ (2.3)

holds.

Proof Owing to (2.2), we infer

‖x‖p =
n∑

j=1

m+1∑

i=1

∣∣�1x(i – 1, j)
∣∣p +

m∑

i=1

n+1∑

j=1

∣∣�2x(i, j – 1)
∣∣p +

n∑

j=1

m∑

i=1

q(i, j)
∣∣x(i, j)

∣∣p

≥ 4p

(m + n + 2)p–1

(
max

i∈Z(1,m)
j∈Z(1,n)

{∣∣x(i, j)
∣∣}
)p

+ q∗
n∑

j=1

m∑

i=1

∣∣x(i, j)
∣∣p

≥ 4p

(m + n + 2)p–1

(
max

i∈Z(1,m)
j∈Z(1,n)

{∣∣x(i, j)
∣
∣}
)p

+ q∗
(

max
i∈Z(1,m)
j∈Z(1,n)

{∣∣x(i, j)
∣
∣}
)p

=
4p + q∗(m + n + 2)p–1

(m + n + 2)p–1

(
max

i∈Z(1,m)
j∈Z(1,n)

{∣∣x(i, j)
∣∣}
)p

.
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Therefore,

max
i∈Z(1,m)
j∈Z(1,n)

{∣∣x(i, j)
∣
∣}≤ (m + n + 2)

p–1
p

[4p + q∗(m + n + 2)p–1]
1
p
‖x‖.

�

For later convenience, we define another norm:

‖x‖p =

( n∑

j=1

m∑

i=1

∣
∣x(i, j)

∣
∣p
) 1

p

, ∀x ∈ X.

Since X is an mn-dimensional space, the norms ‖·‖ and ‖·‖p are equivalent. To be specific,
we have the following numerical estimation.

Lemma 2.2 For all x ∈ X, one has

[4p + q∗mn(m + n + 2)p–1]
1
p

(mn)
1
p (m + n + 2)

p–1
p

‖x‖p ≤ ‖x‖ ≤ (2p+1 + q∗) 1
p ‖x‖p. (2.4)

Proof On the one hand, from (2.2) we have

‖x‖p =
n∑

j=1

m+1∑

i=1

∣∣�1x(i – 1, j)
∣∣p +

m∑

i=1

n+1∑

j=1

∣∣�2x(i, j – 1)
∣∣p +

n∑

j=1

m∑

i=1

q(i, j)
∣∣x(i, j)

∣∣p

≥ 4p

(m + n + 2)p–1

(
max

i∈Z(1,m)
j∈Z(1,n)

{∣∣x(i, j)
∣
∣}
)p

+ q∗‖x‖p
p

≥ 4p

(m + n + 2)p–1

∣∣x(i, j)
∣∣p + q∗‖x‖p

p

for any (i, j) ∈ Z(1, m) ×Z(1, n). This implies that

∣∣x(i, j)
∣∣p ≤ (m + n + 2)p–1

4p

[‖x‖p – q∗‖x‖p
p
]
, ∀(i, j) ∈ Z(1, m) ×Z(1, n).

Hence,

‖x‖p
p =

n∑

j=1

m∑

i=1

∣∣x(i, j)
∣∣p

≤
n∑

j=1

m∑

i=1

(m + n + 2)p–1

4p

[‖x‖p – q∗‖x‖p
p
]

=
mn(m + n + 2)p–1

4p

[‖x‖p – q∗‖x‖p
p
]

=
mn(m + n + 2)p–1

4p ‖x‖p –
q∗mn(m + n + 2)p–1

4p ‖x‖p
p,

that is,

[
1 +

q∗mn(m + n + 2)p–1

4p

]
‖x‖p

p ≤ mn(m + n + 2)p–1

4p ‖x‖p.
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Therefore,

[4p + q∗mn(m + n + 2)p–1]
1
p

(mn)
1
p (m + n + 2)

p–1
p

‖x‖p ≤ ‖x‖.

On the other hand, for every (i, j) ∈ Z(1, m + 1) ×Z(1, n), we infer

∣∣�1x(i – 1, j)
∣∣p ≤ (∣∣x(i, j)

∣∣ +
∣∣x(i – 1, j)

∣∣)p ≤ 2p–1(∣∣x(i, j)
∣∣p +

∣∣x(i – 1, j)
∣∣p),

where the last inequality is due to the convexity property of the function φ(t) = tp (t ≥ 0).
Thus,

n∑

j=1

m+1∑

i=1

∣∣�1x(i – 1, j)
∣∣p ≤ 2p–1

n∑

j=1

m+1∑

i=1

(∣∣x(i, j)
∣∣p +

∣∣x(i – 1, j)
∣∣p)

= 2p–1

( n∑

j=1

m+1∑

i=1

∣
∣x(i, j)

∣
∣p +

n∑

j=1

m+1∑

i=1

∣
∣x(i – 1, j)

∣
∣p
)

= 2p–1

( n∑

j=1

m∑

i=1

∣
∣x(i, j)

∣
∣p +

n∑

j=1

m∑

i=1

∣
∣x(i, j)

∣
∣p
)

= 2p
n∑

j=1

m∑

i=1

∣∣x(i, j)
∣∣p

= 2p‖x‖p
p.

In the same way we get

m∑

i=1

n+1∑

j=1

∣
∣�2x(i, j – 1)

∣
∣p ≤ 2p‖x‖p

p.

Besides,

n∑

j=1

m∑

i=1

q(i, j)
∣∣x(i, j)

∣∣p ≤ q∗
n∑

j=1

m∑

i=1

∣∣x(i, j)
∣∣p = q∗‖x‖p

p.

Summarizing,

‖x‖p ≤ 2p‖x‖p
p + 2p‖x‖p

p + q∗‖x‖p
p =
(
2p+1 + q∗)‖x‖p

p,

that is,

‖x‖ ≤ (2p+1 + q∗) 1
p ‖x‖p,

which yields our conclusion. �

In order to obtain positive solutions of problem (Sf ,q
λ ), we establish the following strong

maximum principle.
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Lemma 2.3 Fix x ∈ X such that, for any (i, j) ∈ Z(1, m) ×Z(1, n), either

x(i, j) > 0 or

– �1
[
φp
(
�1x(i – 1, j)

)]
– �2

[
φp
(
�2x(i, j – 1)

)]
+ q(i, j)φp

(
x(i, j)

)≥ 0.
(2.5)

Then either x(i, j) > 0 for all (i, j) ∈ Z(1, m) ×Z(1, n) or x ≡ 0.

Proof Fix x ∈ X satisfying (2.5). Let θ ∈ Z(1, m), ω ∈ Z(1, n) such that

x(θ ,ω) = min
{

x(i, j) : i ∈ Z(1, m), j ∈ Z(1, n)
}

.

If x(θ ,ω) > 0, then x(i, j) > 0 for all i ∈ Z(1, m), j ∈ Z(1, n), and the proof is finished.
If x(θ ,ω) ≤ 0, then x(θ ,ω) = min{x(i, j) : i ∈ Z(0, m + 1), j ∈ Z(0, n + 1)}. At this point, it

is easy to see that �1x(θ – 1,ω) = x(θ ,ω) – x(θ – 1,ω) ≤ 0 and �1x(θ ,ω) = x(θ + 1,ω) –
x(θ ,ω) ≥ 0. Since φp(s) is increasing in s, and φp(0) = 0, one has

φp
(
�1x(θ – 1,ω)

)≤ 0 ≤ φp
(
�1x(θ ,ω)

)
,

which implies that

�1
[
φp
(
�1x(θ – 1,ω)

)]≥ 0.

Similarly,

�2
[
φp
(
�2x(θ ,ω – 1)

)]≥ 0.

Thus,

�1
[
φp
(
�1x(θ – 1,ω)

)]
+ �2

[
φp
(
�2x(θ ,ω – 1)

)]≥ 0. (2.6)

On the other hand, in view of (2.5), we infer

�1
[
φp
(
�1x(θ – 1,ω)

)]
+ �2

[
φp
(
�2x(θ ,ω – 1)

)]≤ q(θ ,ω)φp
(
x(θ ,ω)

)≤ 0. (2.7)

Combining (2.6) and (2.7), we have

�1
[
φp
(
�1x(θ – 1,ω)

)]
+ �2

[
φp
(
�2x(θ ,ω – 1)

)]
= 0,

which yields

�1
[
φp
(
�1x(θ – 1,ω)

)]
= �2

[
φp
(
�2x(θ ,ω – 1)

)]
= 0,

namely,

⎧
⎨

⎩
φp(�1x(θ ,ω)) = φp(�1x(θ – 1,ω)) = 0,

φp(�2x(θ ,ω)) = φp(�2x(θ ,ω – 1)) = 0.
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Therefore,

⎧
⎨

⎩
x(θ + 1,ω) = x(θ ,ω) = x(θ – 1,ω),

x(θ ,ω + 1) = x(θ ,ω) = x(θ ,ω – 1).

If θ + 1 = m + 1, we get x(θ ,ω) = 0. Otherwise, θ + 1 ∈ Z(1, m). Replacing θ by θ + 1,
we have x(θ + 2,ω) = x(θ + 1,ω). Continuing this process m + 1 – θ times, we obtain
x(θ ,ω) = x(θ + 1,ω) = x(θ + 2,ω) = · · · = x(m,ω) = x(m + 1,ω) = 0. Analogously, we have
x(θ ,ω) = x(θ – 1,ω) = x(θ – 2,ω) = · · · = x(1,ω) = x(0,ω) = 0. Hence, x(i,ω) = 0 for each
i ∈ Z(1, m). In the same way we can prove that x ≡ 0 and the conclusion of Lemma 2.3
holds. �

3 Main results
Denote

Q =
n∑

j=1

m∑

i=1

q(i, j).

Our main result is the following.

Theorem 3.1 Assume that there exist four positive constants c, d, μ, α satisfying α < p and
dp > [4p+q∗(m+n+2)p–1]cp

(2m+2n+Q)(m+n+2)p–1 such that

(A1) max((i,j),ξ )∈Z(1,m)×Z(1,n)×[–c,c] F((i, j), ξ ) <
[4p+q∗(m+n+2)p–1]cp∑n

j=1
∑m

i=1 F((i,j),d)
mn{[4p+q∗(m+n+2)p–1]cp+(2m+2n+Q)(m+n+2)p–1dp} ;

(A2) F((i, j), ξ ) ≤ μ(1 + |ξ |α), ∀((i, j), ξ ) ∈ Z(1, m) ×Z(1, n) ×R.
Furthermore, put

λ1 =
pmn(m + n + 2)p–1 max((i,j),ξ )∈Z(1,m)×Z(1,n)×[–c,c] F((i, j), ξ )

[4p + q∗(m + n + 2)p–1]cp ,

λ2 =
p[
∑n

j=1
∑m

i=1 F((i, j), d) – mn max((i,j),ξ )∈Z(1,m)×Z(1,n)×[–c,c] F((i, j), ξ )]
(2m + 2n + Q)dp .

Then, for each λ ∈ 
1 = ( 1
λ2

, 1
λ1

), problem (Sf ,q
λ ) possesses at least three solutions in X .

Moreover, put

a = (2m + 2n + Q)
[
4p + q∗(m + n + 2)p–1](cd)p,

b = p
[
4p + q∗(m + n + 2)p–1]cp

n∑

j=1

m∑

i=1

F
(
(i, j), d

)

– pmn(2m + 2n + Q)(m + n + 2)p–1dp max
((i,j),ξ )∈Z(1,m)×Z(1,n)×[–c,c]

F
(
(i, j), ξ

)
.

Then, for any h > 1, there exist an open interval 
2 ⊆ [0, a
b h] and a real number σ > 0 such

that, for each λ ∈ 
2, problem (Sf ,q
λ ) possesses at least three solutions in X and their norms

are all less than σ .



Wang and Zhou Boundary Value Problems         (2021) 2021:39 Page 10 of 17

Remark 3.1 From (A1) it follows that

mn(2m + 2n + Q)(m + n + 2)p–1dp max
((i,j),ξ )∈Z(1,m)×Z(1,n)×[–c,c]

F
(
(i, j), ξ

)

<
[
4p + q∗(m + n + 2)p–1]

× cp

[ n∑

j=1

m∑

i=1

F
(
(i, j), d

)
– mn max

((i,j),ξ )∈Z(1,m)×Z(1,n)×[–c,c]
F
(
(i, j), ξ

)
]

.

Then

pmn(m + n + 2)p–1 max((i,j),ξ )∈Z(1,m)×Z(1,n)×[–c,c] F((i, j), ξ )
[4p + q∗(m + n + 2)p–1]cp

<
p[
∑n

j=1
∑m

i=1 F((i, j), d) – mn max((i,j),ξ )∈Z(1,m)×Z(1,n)×[–c,c] F((i, j), ξ )]
(2m + 2n + Q)dp .

That is, λ1 < λ2, which indicates that the interval ( 1
λ2

, 1
λ1

) is well-defined.

Remark 3.2 In view of assumption (A1), we infer

[
4p + q∗(m + n + 2)p–1]cp

n∑

j=1

m∑

i=1

F
(
(i, j), d

)

> mn(2m + 2n + Q)(m + n + 2)p–1dp max
((i,j),ξ )∈Z(1,m)×Z(1,n)×[–c,c]

F
(
(i, j), ξ

)
,

so b > 0 and [0, a
b h] is a well-defined interval.

Remark 3.3 When f : Z(1, m) × Z(1, n) × R → R is a nonnegative function, Lemma 2.3
guarantees that every solution mentioned in Theorem 3.1 is either positive or zero.

Proof of Theorem 3.1 Since X is a finite-dimensional real Banach space, X is separable and
reflexive. From the definitions in (2.1) of 	 and J , we know that 	 : X → R is a nonneg-
ative continuously Gâteaux differentiable and sequentially weakly lower semicontinuous
functional whose Gâteaux derivative admits a continuous inverse on X∗, and J : X →R is
a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact.
Choose x0(i, j) = 0 for each (i, j) ∈ Z(0, m + 1) × Z(0, n + 1), it is clear that x0 ∈ X and
	(x0) = 0 = J(x0).

According to the assumption (A2) and Lemma 2.2, we deduce

	(x) – λJ(x) =
1
p
‖x‖p – λ

n∑

j=1

m∑

i=1

F
(
(i, j), x(i, j)

)

≥ 4p + q∗mn(m + n + 2)p–1

pmn(m + n + 2)p–1 ‖x‖p
p – λ

n∑

j=1

m∑

i=1

μ
(
1 +
∣
∣x(i, j)

∣
∣α)
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=
4p + q∗mn(m + n + 2)p–1

pmn(m + n + 2)p–1

n∑

j=1

m∑

i=1

∣∣x(i, j)
∣∣p – λμ

n∑

j=1

m∑

i=1

(
1 +
∣∣x(i, j)

∣∣α)

=
n∑

j=1

m∑

i=1

[
4p + q∗mn(m + n + 2)p–1

pmn(m + n + 2)p–1

∣
∣x(i, j)

∣
∣p – λμ

∣
∣x(i, j)

∣
∣α – λμ

]
,

for any x ∈ X and λ ≥ 0. Bearing in mind α < p, one has

lim‖x‖→+∞
[
	(x) – λJ(x)

]
= +∞, ∀λ ∈ [0, +∞),

namely, the condition (i) of Lemma 1.1 is fulfilled.
For the condition (ii), we put

r =
[4p + q∗(m + n + 2)p–1]cp

p(m + n + 2)p–1 ,

x1(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if i = 0, j ∈ Z(0, n + 1) or i = m + 1, j ∈ Z(0, n + 1),

d, if (i, j) ∈ Z(1, m) ×Z(1, n),

0, if j = 0, i ∈ Z(0, m + 1) or j = n + 1, i ∈ Z(0, m + 1).

It follows that x1 ∈ X and

	(x1) =
‖x1‖p

p
=

2m + 2n + Q
p

dp,

J(x1) =
n∑

j=1

m∑

i=1

F
(
(i, j), x1(i, j)

)
=

n∑

j=1

m∑

i=1

F
(
(i, j), d

)
.

In view of dp > [4p+q∗(m+n+2)p–1]cp

(2m+2n+Q)(m+n+2)p–1 , we have

	(x1) =
2m + 2n + Q

p
dp >

[4p + q∗(m + n + 2)p–1]cp

p(m + n + 2)p–1 = r,

which means that the condition (ii) of Lemma 1.1 is satisfied.
Next, we verify the condition (iii) of Lemma 1.1. By direct computation, we get

r
r + 	(x1)

J(x1) =
[4p + q∗(m + n + 2)p–1]cp∑n

j=1
∑m

i=1 F((i, j), d)
[4p + q∗(m + n + 2)p–1]cp + (2m + 2n + Q)(m + n + 2)p–1dp .

On the other hand, for any x ∈ 	–1(–∞, r], i.e., 	(x) ≤ r, we infer

∣∣x(i, j)
∣∣ ≤ max

i∈Z(1,m)
j∈Z(1,n)

{∣∣x(i, j)
∣∣}

≤ (m + n + 2)
p–1

p

[4p + q∗(m + n + 2)p–1]
1
p
‖x‖ ≤ (m + n + 2)

p–1
p (pr)

1
p

[4p + q∗(m + n + 2)p–1]
1
p

= c

for every (i, j) ∈ Z(1, m) ×Z(1, n). This leads to

	–1(–∞, r] ⊆ {x ∈ X :
∣∣x(i, j)

∣∣≤ c,∀(i, j) ∈ Z(1, m) ×Z(1, n)
}

.
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Hence, this along with assumption (A1) yields

sup
x∈	–1(–∞,r)

w
J(x) ≤ sup

x∈{x∈X:|x(i,j)|≤c,∀(i,j)∈Z(1,m)×Z(1,n)}

n∑

j=1

m∑

i=1

F
(
(i, j), x(i, j)

)

≤ mn max
((i,j),ξ )∈Z(1,m)×Z(1,n)×[–c,c]

F
(
(i, j), ξ

)

<
[4p + q∗(m + n + 2)p–1]cp∑n

j=1
∑m

i=1 F((i, j), d)
[4p + q∗(m + n + 2)p–1]cp + (2m + 2n + Q)(m + n + 2)p–1dp

=
r

r + 	(x1)
J(x1)

for any x ∈ X. The condition (iii) of Lemma 1.1 is verified.
Note that

	(x1)
J(x1) – supx∈	–1(–∞,r)

w J(x)

≤ (2m + 2n + Q)dp

p[
∑n

j=1
∑m

i=1 F((i, j), d) – mn max((i,j),ξ )∈Z(1,m)×Z(1,n)×[–c,c] F((i, j), ξ )]
=

1
λ2

,

r
supx∈	–1(–∞,r)

w J(x)
≥ [4p + q∗(m + n + 2)p–1]cp

pmn(m + n + 2)p–1 max((i,j),ξ )∈Z(1,m)×Z(1,n)×[–c,c] F((i, j), ξ )
=

1
λ1

.

According to Lemma 1.1 and Remark 2.1, for any λ ∈ 
1 = ( 1
λ2

, 1
λ1

), problem (Sf ,q
λ ) pos-

sesses at least three solutions in X.
Moreover, for any h > 1, it follows from the expressions of a and b that

hr
rJ(x1)
	(x1) – supx∈	–1(–∞,r)

w J(x)
≤ a

b
h.

By Lemma 1.1 and Remark 2.1, for any h > 1, there exist an open interval 
2 ⊆ [0, a
b h] and

a real number σ > 0 such that, for each λ ∈ 
2, (Sf ,q
λ ) possesses at least three solutions in

X and their norms all are less than σ . This completes the proof of Theorem 3.1. �

The following result, as a direct consequence of Theorem 3.1, ensures the existence of
at least two positive solutions for problem (Sf ,q

λ ).

Corollary 3.2 If f ((i, j), 0) ≥ 0 for all (i, j) ∈ Z(1, m) × Z(1, n), and there exist four positive
constants c, d, μ, α with α < p and dp > [4p+q∗(m+n+2)p–1]cp

(2m+2n+Q)(m+n+2)p–1 such that
(A∗

1)

max
((i,j),ξ )∈Z(1,m)×Z(1,n)×[0,c]

∫ ξ

0
f
(
(i, j), τ

)
dτ

<
[4p + q∗(m + n + 2)p–1]cp∑n

j=1
∑m

i=1
∫ d

0 f ((i, j), τ ) dτ

mn{[4p + q∗(m + n + 2)p–1]cp + (2m + 2n + Q)(m + n + 2)p–1dp} ;

(A∗
2)
∫ ξ

0 f ((i, j), τ ) dτ ≤ μ(1 + |ξ |α), ∀((i, j), ξ ) ∈ Z(1, m) ×Z(1, n) × (0, +∞).
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Furthermore, denote

λ1 =
pmn(m + n + 2)p–1 max((i,j),ξ )∈Z(1,m)×Z(1,n)×[0,c]

∫ ξ

0 f ((i, j), τ ) dτ

[4p + q∗(m + n + 2)p–1]cp ,

λ2 =
p[
∑n

j=1
∑m

i=1
∫ d

0 f ((i, j), τ ) dτ – mn max((i,j),ξ )∈Z(1,m)×Z(1,n)×[0,c]
∫ ξ

0 f ((i, j), τ ) dτ ]
(2m + 2n + Q)dp .

Then, for any λ ∈ 
1 = ( 1
λ2

, 1
λ1

), problem (Sf ,q
λ ) has at least two positive solutions in X.

Moreover, denote

a = (2m + 2n + Q)
[
4p + q∗(m + n + 2)p–1](cd)p,

b = p
[
4p + q∗(m + n + 2)p–1]cp

n∑

j=1

m∑

i=1

∫ d

0
f
(
(i, j), τ

)
dτ

– pmn(2m + 2n + Q)(m + n + 2)p–1dp max
((i,j),ξ )∈Z(1,m)×Z(1,n)×[0,c]

∫ ξ

0
f
(
(i, j), τ

)
dτ .

Then, for any h > 1, there exist an open interval 
2 ⊆ [0, a
b h] and a positive real number σ

such that, for each λ ∈ 
2, problem (Sf ,q
λ ) has at least two positive solutions in X and their

norms are all less than σ .

Proof For any (i, j) ∈ Z(1, m) ×Z(1, n) and t ∈R, we put

f ∗((i, j), t
)

=

⎧
⎨

⎩
f ((i, j), t), t > 0,

f ((i, j), 0), t ≤ 0,

F∗((i, j), t
)

=
∫ t

0
f ∗((i, j), τ

)
dτ .

Therefore,

max
((i,j),ξ )∈Z(1,m)×Z(1,n)×[–c,c]

F∗((i, j), ξ
)

= max
((i,j),ξ )∈Z(1,m)×Z(1,n)×[0,c]

∫ ξ

0
f
(
(i, j), τ

)
dτ ,

n∑

j=1

m∑

i=1

F∗((i, j), d
)

=
n∑

j=1

m∑

i=1

∫ d

0
f
(
(i, j), τ

)
dτ .

In view of hypotheses (A∗
1) and (A∗

2), the conclusion of Theorem 3.1 holds for problem
(Sf ∗ ,q

λ ). Further, by applying Lemma 2.3, we find that problem (Sf ∗ ,q
λ ) admits at least two

positive solutions when λ belongs to intervals 
1 and 
2, respectively, which are exactly
positive solutions of problem (Sf ,q

λ ). The proof of Corollary 3.2 is complete. �

Next, we study a special case in which f has separated variables. Specifically, we consider
the following problem, namely (Sωg,q

λ ):

–�1
[
φp
(
�1x(i – 1, j)

)]
– �2

[
φp
(
�2x(i, j – 1)

)]
+ q(i, j)φp

(
x(i, j)

)
= λω(i, j)g

(
x(i, j)

)
,

(i, j) ∈ Z(1, m) ×Z(1, n),
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with Dirichlet boundary conditions

x(i, 0) = x(i, n + 1) = 0, i ∈ Z(0, m + 1),

x(0, j) = x(m + 1, j) = 0, j ∈ Z(0, n + 1),

where ω : Z(1, m) × Z(1, n) → R is nonnegative and non-zero, and g : [0, +∞) → R is a
nonnegative continuous function.

Define

W =
n∑

j=1

m∑

i=1

ω(i, j), G(ξ ) =
∫ ξ

0
g(s) ds.

Then we have the following result.

Corollary 3.3 Assume that there exist four positive constants c, d, η, α satisfying α < p and
dp > [4p+q∗(m+n+2)p–1]cp

(2m+2n+Q)(m+n+2)p–1 such that

(A′
1) max(i,j)∈Z(1,m)×Z(1,n) ω(i, j) < [4p+q∗(m+n+2)p–1]cpWG(d)

mn{[4p+q∗(m+n+2)p–1]cp+(2m+2n+Q)(m+n+2)p–1dp}G(c) ;
(A′

2) G(ξ ) ≤ η(1 + |ξ |α), ∀ξ > 0.
Furthermore, denote

λ1 =
pmn(m + n + 2)p–1G(c) max(i,j)∈Z(1,m)×Z(1,n) ω(i, j)

[4p + q∗(m + n + 2)p–1]cp ,

λ2 =
p[WG(d) – mnG(c) max(i,j)∈Z(1,m)×Z(1,n) ω(i, j)]

(2m + 2n + Q)dp .

Then, for any λ ∈ 
1 = ( 1
λ2

, 1
λ1

), problem (Sωg,q
λ ) has at least two positive solutions in X.

Moreover, denote

a = (2m + 2n + Q)
[
4p + q∗(m + n + 2)p–1](cd)p,

b = p
[
4p + q∗(m + n + 2)p–1]cpWG(d)

– pmn(2m + 2n + Q)(m + n + 2)p–1dpG(c) max
(i,j)∈Z(1,m)×Z(1,n)

ω(i, j).

Then, for any h > 1, there exist an open interval 
2 ⊆ [0, a
b h] and a positive real number σ

such that, for each λ ∈ 
2, problem (Sωg,q
λ ) has at least two positive solutions in X and their

norms are all less than σ .

Proof Set

f
(
(i, j), s

)
=

⎧
⎨

⎩
ω(i, j)g(s), s ≥ 0,

ω(i, j)g(0), s < 0,
(3.1)

for any (i, j) ∈ Z(1, m) ×Z(1, n) and s ∈R. It is easy to verify that

f
(
(i, j), 0

)
= ω(i, j)g(0) ≥ 0, ∀(i, j) ∈ Z(1, m) ×Z(1, n),
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max
((i,j),ξ )∈Z(1,m)×Z(1,n)×[0,c]

∫ ξ

0
f
(
(i, j), τ

)
dτ = G(c) max

(i,j)∈Z(1,m)×Z(1,n)
ω(i, j),

n∑

j=1

m∑

i=1

∫ d

0
f
(
(i, j), τ

)
dτ = WG(d).

Besides, we take μ = η max(i,j)∈Z(1,m)×Z(1,n) ω(i, j). The conclusion follows from Corollary 3.2
and taking into account (3.1). �

4 An example
To illustrate our results, we present a concrete example.

Example 4.1 Consider the problem (Sωg,q
λ ) and take p = 4, m = 2, n = 2, c = 1, d = 10, η =

e12, α = 1 and

q(i, j) = ij, ∀(i, j) ∈ Z(1, 2) ×Z(1, 2),

ω(i, j) = i + j, ∀(i, j) ∈ Z(1, 2) ×Z(1, 2),

g(s) =

⎧
⎨

⎩
ses, 0 ≤ s ≤ 9,

9e9, s > 9.

Then we get Q = 9, W = 12, q∗ = 1, max(i,j)∈Z(1,2)×Z(1,2) ω(i, j) = 4, and

G(ξ ) =

⎧
⎨

⎩
(ξ – 1)eξ + 1, 0 ≤ ξ ≤ 9,

9e9ξ – 73e9 + 1, ξ > 9.
(4.1)

So G(c) = 1, G(d) = 17e9 + 1. Furthermore,

[4p + q∗(m + n + 2)p–1]cp

(2m + 2n + Q)(m + n + 2)p–1 =
472

3672
< 104 = dp

and

[4p + q∗(m + n + 2)p–1]cpWG(d)
mn{[4p + q∗(m + n + 2)p–1]cp + (2m + 2n + Q)(m + n + 2)p–1dp}G(c)

=
177(17e9 + 1)

4,590,059
.

Then the condition (A′
1) of Corollary 3.3 holds.

Due to (4.1), we have

G(ξ ) = (ξ – 1)eξ + 1 ≤ 8e9 + 1 < e12(1 + |ξ |) = η
(
1 + |ξ |α), ∀0 < ξ ≤ 9;

G(ξ ) = 9e9ξ – 73e9 + 1 < e12ξ + e12 = e12(1 + |ξ |) = η
(
1 + |ξ |α), ∀ξ > 9,

which indicate

G(ξ ) ≤ η
(
1 + |ξ |α), ∀ξ > 0,

that is, the condition (A′
2) of Corollary 3.3 is fulfilled.
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Moreover,

λ1 =
pmn(m + n + 2)p–1G(c) max(i,j)∈Z(1,m)×Z(1,n) ω(i, j)

[4p + q∗(m + n + 2)p–1]cp =
1728

59
,

λ2 =
p[WG(d) – mnG(c) max(i,j)∈Z(1,m)×Z(1,n) ω(i, j)]

(2m + 2n + Q)dp =
51e9 – 1
10,625

.

By Corollary 3.3, for any λ ∈ 
1 = ( 10,625
51e9–1 , 59

1728 ), the considered problem possesses at least
two positive solutions in X.

Besides, a and b in Corollary 3.3 are

a = 80,240,000, b = 385,152e9 – 2,350,057,344,

respectively. Therefore, for any h > 1, there exist an open interval 
2 ⊆ [0, 626,875
3009e9–18,359,823 h]

and a positive real number σ such that, for each λ ∈ 
2, the considered problem has at
least two positive solutions in X and their norms are all less than σ .

In particular, we take λ = 0.03 ∈ 
1. By a careful computation, we find that the con-
sidered problem admits at least two positive solutions x1 = {x1(i, j)}i∈Z(0,3)

j∈Z(0,3)
∈ X and x2 =

{x2(i, j)}i∈Z(0,3)
j∈Z(0,3)

∈ X, where

⎛

⎜
⎜⎜
⎝

x1(1, 1)
x1(1, 2)
x1(2, 1)
x1(2, 2)

⎞

⎟
⎟⎟
⎠

=

⎛

⎜
⎜⎜
⎜
⎝

1
1
1

3
√

27e9+6e–275
150

⎞

⎟
⎟⎟
⎟
⎠

,

⎛

⎜
⎜⎜
⎝

x2(1, 1)
x2(1, 2)
x2(2, 1)
x2(2, 2)

⎞

⎟
⎟⎟
⎠

=

⎛

⎜
⎜⎜
⎜
⎝

1
1
9

3
√

189e9+15e–292,300
600

⎞

⎟
⎟⎟
⎟
⎠

.
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