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Abstract
The aim of this paper is to study the oscillation of solutions of the nonlinear
degenerate elliptic equation in the Heisenberg group Hn. We first derive a critical
inequality in Hn. Based on it, we establish a Picone-type differential inequality and a
Sturm-type comparison principle. Then we obtain an oscillation theorem. Our result
generalizes the related conclusions for the nonlinear elliptic equations in Rn.
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1 Introduction
In this paper, we give an oscillation theorem for the nonlinear degenerate elliptic equation
in the Heisenberg group Hn

∇H · (A(z, t)∇H v(z, t)
)

+ BT (z, t)∇H v(z, t) + C(z, t)f
(
v(z, t)

)
= 0 (1.1)

and the corresponding homogeneous ordinary differential equation

(
p(r)u′(r)

)′ + b(r)u′(r) + c(r)u(r) = 0, (1.2)

where (z, t) ∈ �, � is the outer region in Hn, ∇H denotes the Heisenberg gradient (see
(2.1)), r = |(z, t)|H , |(z, t)|H denotes the norm in Hn (see (2.4)), and A(z, t), B(z, t), C(z, t),
f (v), p(r), b(r), and c(r) are to be specified later.

The oscillation result obtained in this paper implies that if Eq. (1.2) is oscillatory. Then
the judgement of oscillation for Eq. (1.1) can be transformed into comparing the relation-
ship between the corresponding coefficients in Eqs. (1.1) and (1.2).

The oscillation properties for ordinary differential equations in the real line R have been
investigated by many authors with different methods (see [1, 5, 6, 11, 12, 16] and references
therein). A well-known result was shown by Picone [11], in which an identity (now it is
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called the Picone identity) between

(
p(t)y′(t)

)′ + q(t)y(t) = 0 (1.3)

and

(
P(t)x′(t)

)′ + Q(t)x(t) = 0 (1.4)

was established, where p(t), P(t) ∈ C1([a,∞), R), q(t), Q(t) ∈ C([a,∞), R), and a is a positive
constant. Then the Sturm comparison principle for Eqs. (1.3) and (1.4) was derived. Finally,
the oscillation theorem for Eq. (1.4) followed.

The oscillation criteria for linear or nonlinear partial differential equations have also
been concerned extensively. Noussair [10] concluded some oscillation criteria for semi-
linear elliptic inequalities by the Riccati transformation. Xu [14] formulated oscillation
theorems for elliptic equations with damping by using the way similar to [10]. For more
results, we refer the readers to [8, 9, 13] and references therein. Recently, Zhuang [15]
obtained oscillation criteria for second-order nonlinear elliptic differential equations.

Motivated by the ideas in [10, 11], and [15], in this paper, we deduce an oscillation cri-
terion for (1.1) in Hn. The difficulty is that there is no good divergence formula in Hn as
in Rn. Fortunately, we find a good estimate (see Lemma 2.3) to help us build the criterion.

Before stating our main result, we introduce some notations and notions. For positive
constants a, a1, a2, we denote

G[a1, a2] =
{

(z, t) ∈ Hn : a1 ≤ ∣∣(z, t)
∣∣
H ≤ a2

}
,

G[a, +∞) =
{

(z, t) ∈ Hn :
∣∣(z, t)

∣∣
H ≥ a

}
.

We say that � is an outer region in Hn if there exists a positive constant a0 such that
G[a0, +∞) ⊂ �. Let us restrict our attention to the nontrivial solutions v(z, t) of Eq. (1.1),
that is, to the solutions v(z, t) of (1.1) satisfying

sup
{∣∣v(z, t)

∣∣ : (z, t) ∈ �
}

> 0.

A nontrivial solution to Eq. (1.1) is called oscillatory if it has arbitrarily large zeros; oth-
erwise, it is called nonoscillatory. Equation (1.1) is called oscillatory if all its solutions are
oscillatory.

Hereafter, we always assume that the following conditions are satisfied:
(C1) the coefficient matrix A(z, t) = (aij(z, t))2n×2n is real symmetric positive definite with

aij ∈ C2
loc(�, R), the largest (necessarily positive) eigenvalue of A(z, t) is denoted by

λmax(z, t), and there exists a function λ(r) ∈ C1(R+, R+) such that

λ(r) ≥ max
|(z,t)|H =r

λmax(z, t), r > a0;

(C2) BT (z, t) = (bi(z, t))1×2n, bi(z, t) ∈ C2
loc(�, R);

(C3) C(z, t) ∈ C1
loc(�, R);

(C4) f ∈ C1(R, R), vf (v) > 0 and f ′(v) ≥ k > 0 for v 	= 0 and a constant k;
(C5) p(r) ∈ C1([a0,∞), (0,∞)), b(r), c(r) ∈ C([a0,∞), R).
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We denote

Q(r) =
∫

SH (o,r)

(
C(z, t) –

1
4k

(
BT A–1B

)
(z, t) –

1
2k

∇H · B(z, t)
)

dH , (1.5)

where SH (o, r) denotes the sphere in Hn with center o = (0, 0) and radius r, and dH denotes
the 2n-dimensional Hausdorff measure in R2n+1 (see [3]);

g(r) =
℘α℘λ(r)
kr–2n–1 , (1.6)

where ℘ = 2n + 2 is the homogeneous dimension of Hn, and ℘α℘ (α℘ is a constant) is the
area of unit sphere SH (o, 1) in Hn.

Now we state our main result.

Theorem 1.1 Assume that there exists a > 0 such that for any r ∈ [a, +∞),

p(r) >
(
4r2 + 1

)
g(r),

Q(r) ≥ b2(r)
4(p(r) – (4r2 + 1)c(r))

+ c(r),

and the equality is not true everywhere in any subinterval of [a, +∞). Then Eq. (1.1) is
oscillatory when Eq. (1.2) is oscillatory.

The paper is organized as follows. In Sect. 2, we collect some well-known results for
the Heisenberg group and prove a good estimate. Section 3 is devoted to proofs of the
Picone-type differential inequality and the Sturm-type comparison principle. The proof
of Theorem 1.1 is presented in Sect. 4.

2 Preliminaries
The Heisenberg group Hn is R2n+1 (or Cn × R) endowed with the group law ◦ defined by

ξ̄ ◦ ξ =

(

x + x̄, y + ȳ, t + t̄ + 2
n∑

i=1

(xiȳi – yix̄i)

)

,

where ξ = (x1, x2, . . . , xn, y1, y2, . . . , yn, t) := (x, y, t) := (z, t) ∈ R2n × R, ξ̄ = (z̄, t̄). The group
Hn plays important roles as Rn in conformal geometry, several complex geometry, and
harmonic analysis (e.g., see Folland and Stein [2]).

The left-invariant vector fields on Hn are of the form

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
– 2xj

∂

∂t
, j = 1, 2, . . . , n, T =

∂

∂t
.

The family {X1, . . . , Xn, Y1, . . . , Yn} satisfies Hörmander’s rank condition (see [4]). The
Heisenberg gradient of a smooth function u is defined by

∇Hu = (X1u, . . . , Xnu, Y1u, . . . , Ynu). (2.1)
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The divergence of a smooth vector value function F = (F1, . . . , F2n) on Hn is defined by

∇H · F = X1F1 + · · · + XnFn + Y1Fn+1 + · · · + YnF2n. (2.2)

For F = (F1, . . . , F2n+1), the usual divergence div F on R2n+1 is

div F =
∂F1

∂x1
+ · · · +

∂Fn

∂xn
+

∂Fn+1

∂y1
+ · · · +

∂F2n

∂yn
+

∂F2n+1

∂t
. (2.3)

The norm |ξ |H for ξ ∈ Hn is

|ξ |H =
((

x2 + y2)2 + t2) 1
4 . (2.4)

With this norm, the distance between two points ξ and η in Hn is defined by

dH (ξ ,η) =
∣∣η–1 ◦ ξ

∣∣
H ,

where η–1 denotes the inverse of η with respect to ◦, that is η–1 = –η.
The sphere of radius r > 0 centered at the origin o = (0, 0) of Hn is the set

SH (o, r) =
{
ξ ∈ Hn : dH (ξ , o) = r

}
,

and the open ball of radius r > 0 centered at o is the set

BH (o, r) =
{
ξ ∈ Hn : dH (ξ , o) < r

}
.

From [3] we know that the area of SH(o, r) is

∣
∣SH (o, r)

∣
∣ = ℘α℘r2n+1,

where α℘ is the volume of BH (o, 1).
For simplicity, we denote BH (o, r) and SH (o, r) by Br and Sr , respectively.
The value of α℘ can be concretely computed. In fact, let

z = ρz′ for
∣∣z′∣∣ = 1.

Then

α℘ =
∣∣BH (0, 1)

∣∣ =
∫

|z|4+t2<1
dz dt =

2πn

�(n)

∫

|ρ|4+t2<1
ρ2n–1 dρ dt

=
πn

�(n)

∫

r2+t2<1,r>0
rn–1 dr dt =

2πn

�(n)

∫ 1

0

∫ π
2

0
snsinn–1θ ds dθ

=
2πn

(n + 1)�(n)

∫ π
2

0
sinn–1θ dθ =

πn

(n + 1)�(n)
B
(

n
2

,
1
2

)

=
πn+ 1

2

(n + 1)�(n)
�( n

2 )
�( n

2 + 1)
.

Now we first introduce two well-known lemmas.
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Lemma 2.1 (Lagrange’s identity [7]) For any two sequences {ai} and {bi}, we have

( n∑

i=1

ai
2

)( n∑

i=1

bi
2

)

=

( n∑

i=1

aibi

)2

+
∑

1≤i<j≤n

(aibj – ajbi)2. (2.5)

Lemma 2.2 (The divergence formula in Hn [2]) Let �0 be a bounded domain in Hn with
C1 boundary ∂�0, and let ν denote the unit outward normal to ∂�0. For any C1(�0) vector
field V = (V1, . . . , V2n), we have

∫

�0

∇H · V dz dt =
∫

∂�0

MV · ν dH , (2.6)

where

M =

⎛

⎜
⎝

In 0
0 In

2y –2x

⎞

⎟
⎠

(2n+1)×2n

,

and In is the identity matrix of Rn.

Based on these lemmas, we get the following critical estimate.

Lemma 2.3 For any C1(Br) vector field V = (V1, . . . , V2n), we have

‖MV · ν‖2
L1(Sr ) ≤ ℘α℘r2n+1(4r2 + 1

)‖V‖2
L2(Sr ). (2.7)

Proof A direct calculation shows that

MV =
(
V1, V2, . . . , V2n, 2(y1V1 + · · · + ynVn) – 2(x1Vn+1 + · · · + xnV2n)

)
.

Then by (2.5) we have

|MV |2 – |V |2 = 4
(
(y1V1 + · · · + ynVn) – (x1Vn+1 + · · · + xnV2n)

)2

≤ 4
(
y1

2 + · · · + yn
2 + (–x1)2 + · · · + (–xn)2)(V1

2 + · · · + Vn
2)

≤ 4|ξ |2H |V |2,

that is,

|MV |2 ≤ (
4|ξ |2H + 1

)|V |2. (2.8)

By (2.6) and Hölder’s inequality we have

‖MV · ν‖2
L1(Sr ) ≤ ℘α℘r2n+1‖MV‖2

L2(Sr ).

Combining (2.8), we obtain (2.7). �
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3 Picone-type differential inequality and Sturm-type comparison principle
In this section, we derive a Picone-type differential inequality (Lemma 3.1), and then we
prove a Sturm-type comparison principle (Lemma 3.2).

Lemma 3.1 (Picone-type differential inequality) Let v(z, t) and u(r) be the solutions of
Eqs. (1.1) and (1.2) respectively, and denote

W (z, t) =
1

f (v)
(A∇H v)(z, t) +

1
2k

B(z, t).

If there exists a > 0 such that

v(z, t) 	= 0 for (z, t) ∈ G[a, +∞)

and

p(r) 	= (
4r2 + 1

)
g(r) for r ∈ [a, +∞),

then
(

p(r)u′(r)u(r) – u2(r)
∫

Sr

MW (z, t) · ν dH
)′

≥
(

u(r)
√

(4r2 + 1)g(r)

∫

Sr

MW (z, t) · ν dH – u′(r)
√(

4r2 + 1
)
g(r)

)2

+
(
p(r) –

(
4r2 + 1

)
g(r)

)
(

u′(r) –
b(r)u(r)

2(p(r) – (4r2 + 1)g(r))

)2

+
(

Q(r) –
b2(r)

4(p(r) – (4r2 + 1)g(r))
– c(r)

)
u2(r).

(3.1)

Proof Without loss of generality, we assume that

v(z, t) > 0 for (z, t) ∈ G[a, +∞).

In view of Eq. (1.1), we get

∇H · W (z, t)

= ∇H ·
(

1
f (v)

(A∇Hv)(z, t) +
1

2k
B(z, t)

)

= ∇H

(
1

f (v)

)
· A∇Hv +

1
f (v)

∇H · (A∇Hv) +
1

2k
∇H · B

=
(

1
f (v)

)′
∇Hv · A∇Hv –

1
f (v)

(
BT∇Hv + Cf (v)

)
+

1
2k

∇H · B

= –
f ′(v)
f 2(v)

∇Hv · A∇Hv –
1

f (v)
BT∇H v – C +

1
2k

∇H · B

≤ –k
(

W –
1

2k
B
)T

A–1
(

W –
1

2k
B
)

– BT A–1
(

W –
1

2k
B
)

– C +
1

2k
∇H · B

= –kW T A–1W +
1

4k
BT A–1B – C +

1
2k

∇H · B.

(3.2)
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Now we calculate the left-hand side of (3.1). By combining (3.2) and (2.6) it follows that

(
p(r)u′(r)u(r) – u2(r)

∫

Sr

MW (z, t) · ν dH
)′

= pu′2 +
(
pu′)′u – 2uu′

∫

Sr

MW · ν dH – u2
∫

∂Sr

MW · ν ds

= pu′2 – buu′ – cu2 – 2uu′
∫

Sr

MW · ν dH – u2
∫

Sr

∇H · W dH

≥ pu′2 – buu′ – cu2 – 2uu′
∫

Sr

MW · ν dH

– u2
∫

Sr

(
–kW T A–1W +

1
4k

BT A–1B – C +
1

2k
∇H · B

)
dH

= pu′2 – buu′ – cu2 – 2uu′
∫

Sr

MW · ν dH + ku2
∫

Sr

W T A–1W dH + u2Q(r).

By (C1) and (2.7) this implies that

∫

Sr

W T A–1W dH ≥ λ–1
∫

Sr

W 2 dH ≥ 1
λ℘α℘r2n+1(4r2 + 1)

(∫

Sr

MW · ν dH
)2

. (3.3)

Recalling g(r) in (1.6), we have

(
p(r)u′(r)u(r) – u2(r)

∫

Sr

MW · ν dH
)′

≥ pu′2 – buu′ – cu2 – 2uu′
∫

Sr

MW · ν dH +
u2

(4r2 + 1)g

(∫

Sr

MW · ν dH
)2

+ u2Q

=
(
p –

(
4r2 + 1

)
g
)
(

u′ –
bu

2(p – (4r2 + 1)g)

)2

+
(

Q –
b2

4(p – (4r2 + 1)g)
– c

)
u2

+
(

u
√

(4r2 + 1)g

∫

Sr

MW · ν dH – u′
√(

4r2 + 1
)
g
)2

. �

Lemma 3.2 (Sturm-type comparison principle) Let u(r) be a nontrivial solution of
Eq. (1.2), and let a1 and a2 be two adjacent zeros of u(r). If

p(r) 	= (
4r2 + 1

)
g(r)

and

∫ a2

a1

(
Q(r) –

b2(r)
4(p(r) – (4r2 + 1)g(r))

– c(r)
)

u2(r) dr

+
∫ a2

a1

(
p(r) –

(
4r2 + 1

)
g(r)

)
(

u′(r) –
b(r)u(r)

2(p(r) – (4r2 + 1)g(r))

)2

dr > 0,

(3.4)

then any solution v(z, t) of Eq. (1.1) has at least one zero on G[a1, a2].
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Proof We use the contradiction and suppose that there exists a nontrivial solution v(z, t)
of Eq. (1.1) such that

v(z, t) > 0 on G[a1, a2].

Integrating (3.1) in Lemma 3.1 from a1 to a2 gives

∫ a2

a1

(
pu′u – u2

∫

Sr

MW · ν dH
)′

dr

≥
∫ a2

a1

(
u

√
(4r2 + 1)g

∫

Sr

MW · ν dH – u′
√(

4r2 + 1
)
g
)2

+
∫ a2

a1

(
Q –

b2

4(p – (4r2 + 1)g)
– c

)
u2

+
(
p –

(
4r2 + 1

)
g
)
(

u′ –
bu

2(p – (4r2 + 1)g)

)2

.

Noting that the left-hand side is 0, this yields

∫ a2

a1

(
Q –

b2

4(p – (4r2 + 1)g)
– c

)
u2 +

(
p –

(
4r2 + 1

)
g
)(

u′ –
bu

2(p – (4r2 + 1)g)

)2

≤ 0,

which contradicts to (3.4). The proof is completed. �

An immediate consequence of Lemma 3.2 is the following:

Corollary 3.3 Let u(r) be a nontrivial solution of Eq. (1.2), and let a1 and a2 be two adja-
cent zeros of u(r). If there exists a > 0 such that for any r ∈ [a, +∞),

p(r) >
(
4r2 + 1

)
g(r),

Q(r) ≥ b2(r)
4(p(r) – (4r2 + 1)g(r))

+ c(r),

and the equality is not always true in any subinterval of [a, +∞), then any solution v(z, t)
of Eq. (1.1) has at least one zero on G[a1, a2].

4 Proof of Theorem 1.1

Proof of Theorem 1.1 Let u(r) be an oscillatory solution of Eq. (1.2), and let ri be the se-
quence of zeros of u(r) satisfying

r0 ≤ r1 < r2 < · · · < ri · · · , lim
i→∞ ri = ∞.

For every Gi = {(z, t) ∈ Hn : ri < |(z, t)|H < ri+1}, by Corollary 3.3 it follows that every solu-
tion v(z, t) of Eq. (1.1) has at least one zero on Ḡi, which shows that v(z, t) is oscillatory.
From the arbitrariness of v(z, t) we claim that Eq. (1.1) is oscillatory. �
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