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1 Introduction and main results

In this paper, we investigate the following Kirchhof-type problem with Soblev…Hardy crit-

ical exponent:

�
���

���

{a + b[
�

� (|� u|2 …µ u2

|x|2
) dx]

2…s
2 }(…� u…µ u

|x|2
)

= |u|2
� (s)…2u
|x|s + f (x,u) in � ,

u = 0, on�� ,

(1.1)

where� is a smooth bounded domain inR3, 0� � , a,b > 0, 0� s < 2,µ � [0, 1/4), 2� (s) =

6 … 2s is the Sobolev…Hardy critical exponent, andf (x,t) : � × R is a continuous real

function.

Equation (1.1) is called a Schrödinger equation of Kirchho� type due to the presence of

the term b[
�

� (|� u|2 …µu2|x|…2)dx](2…s)/2. Whenµ = 0 ands = 1, it appears in the following

classical Kirchho� type equation:

�
�

�
…(a + b

�
� |� u|2 dx)� u = k(x,u) in � ,

u = 0 on �� ,
(1.2)
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related to the stationary analogue of the equation

utt …
�
a + b

�

�
|� u|2 dx

	
� u = f (x,t),

which was “rst proposed by Kirchho� [1] as an extension of the classical D•Alembert wave

equation for free vibrations of elastic strings. Equation (1.2) has aroused widespread con-

cern after the work of Lions [2], which proposes a function analysis framework. After that,

many interesting results have been obtained such as [3…9]. For instance, Xu and Chen

[10] studied Kirchho�-type equations with a general nonlinearity in the critical growth.

Under certain conditions, the existence of ground state solutions were proved by using
variational methods. In particular, they do not use the classical Ambrosetti…Rabinowitz

condition. Fiscella et al. [11] dealt with the existence of nontrivial solutions for critical

Hardy…Schr̈dinger…Kirchho� systems driven by the fractionalp-Laplacian operator. The

existence was derived as an application of the mountain pass theorem and the Ekeland

variational principle. The authors extend the existence results recently obtained for frac-

tional systems to entire solutions with critical nonlinear terms and generalized the systems

driven by thep-Laplacian operator to the fractional Hardy…Schrödinger…Kirchho� case.
Xiang and Vicentiu [12] investigated the existence of solutions for critical Schrödinger…

Kirchhof-type systems driven by nonlocal integro-di�erential operators. By applying the

mountain pass theorem and Ekeland•s variational principle, the existence and asymptotic

behavior of solutions for the problem under some suitable assumptions were obtained.

A distinguished feature of their paper is that the systems are degenerate, that is, the Kirch-

ho� function could vanish at zero. This is the “rst time of exploiting the existence of solu-

tions for fractional Schrödinger…Kirchho� systems involving critical nonlinearities inRN .

In the casek(x,u) = f (x,u) + u5, Xie et al. [6] studied the nondegenerate and degener-
ate cases and proved the existence and multiplicity of solutions by using the Brezis…Lieb

lemma and mountain pass theorem. Naimen [8] further discussed this problem in the case

of k(x,u) = µ g(x,u) + u5 under di�erent conditions of g(x,u) andµ � R. In the meantime,

the results were expanded in [6] by establishing the existence and nonexistence of posi-

tive solutions by using the second concentration compactness lemma and mountain pass

theorem.

Problem (1.1) in the case ofa = 1 andb = 0 can be reduced to the classic semilinear ellip-
tic problem with critical exponents, for which the existence and multiplicity of solutions

was proved by Ding and Tang [9].

Inspired by the results of the above paper, the purpose of this paper is to consider the

existence and multiplicity of solutions to problem (1.1). The main di�culty in this paper

is that it contains the Sobolev…Hardy critical exponent term, which leads to the energy

functional not satisfying the Palais…Smale condition.

In order to state our main results, letF(x,u) =
� u

0 f (x,t) dt. We introduce the following

assumptions:
(f1) f � C(� × R+,R), and limt� 0+

f (x,t)
t = 0, limt� +�

f (x,t)
t5…2s = 0 uniformly for a.e. x � � .

(f2) There exists a constant � > max{ 6
1+

�
1…4µ , 6…

�
1 … 4µ} such that 0 <� F(x,t) � f (x,t)t

for all x � � , t � R+ \ { 0}.
(f3) f � C(� × R,R), and limt� 0

f (x,t)
t = 0, limt� +�

f (x,t)
t5…2s = 0 uniformly for a.e. x � � .

(f4) There exists a constant � > max{ 6
1+

�
1…4µ , 6…

�
1 … 4µ} such that 0 <� F(x,t) � f (x,t)t

for all x � � , t � R \ { 0}.



Fan and DengBoundary Value Problems        (2021) 2021:49 Page 3 of 11

Now our main results are as follows.

Theorem 1.1 Let f (x,t) satisfy (f1) and (f2). Then problem (1.1) has at least one positive
solution.

Theorem 1.2 Let f (x,t) satisfy (f3) and (f4). Then problem (1.1) has at least two distinct
nontrivial solutions.

Remark 1.1 We added the Hardy and Sobolev…Hardy terms in equation (1.1) on the basis
of [6]. We overcome the compactness problem with concentration compactness principle.
Lei [7] studied another special case of problem (1.1) with f (x,u) = � f (x)|u|q…2u|x|…� for a
suitable functionf (x) and 1 <q < 2. By using the Nehari manifold and “bering maps, they
obtained two positive solutions. We observe that the term� f (x)|u|q…2u|x|…� has to be a
homogeneous function; however, it does not satisfy the assumptions we give in this paper.

The rest of this paper is organized as follows. In Sect.2, we give some preliminary results.
In Sect.3, we establish the proofs of our main results.

2 Preliminaries
In this part, we give some information to support this paper. Otherwise stated,C,C0,C1, . . .
represent positive constants, and •� Ž and •� Ž represent the strong convergence and
weak convergence in the corresponding space, respectively. LetH1

0(� ) be the usual Hilbert
space endowed with the usual inner product and norm

(u,v)H1
0(� ) =

�

�
� u� vdx and 	 u	 H1

0(� ) =
� �

�
|� u|2 dx

	 1
2

.

By the well-known Hardy inequality [13]

�

�

u2

|x|2
dx � 4

�

�
|� u|2 dx,

we deduce that

(u,v) =
�

�

�
� u� v …µ

uv
|x|2

	
dx and 	 u	 =


 �

�

�
|� u|2 …µ

u2

|x|2

	
dx

� 1
2

,

respectively, which are equivalent to the usual inner product and norm onH1
0(� ) for any

µ � [0, 1/4).
We also de“ne the best Sobolev…Hardy constant

S� inf
u� H1

0(� )\{ 0}

�
� (|� u|2 …µ u2

|x|2
) dx

(
�

�
|u|2� (s)

|x|s dx)
2

2� (s)
. (2.1)

From Lemma 2.2 in [14] we “nd that S is independent of� , and when� = R3, it is obtained
by the functions

y	 (x) =



2	 (3 …s)(µ̄ …µ)
�

µ̄

� �
µ̄

2…s � 
|x|

�
µ̄…

�
µ̄…µ �

	 + |x|
(2…s)

�
µ̄…µ�

µ̄
� 3…s

2…s
�



Fan and DengBoundary Value Problems        (2021) 2021:49 Page 4 of 11

for all 	 > 0 andµ̄ = 1/4. In addition, the function y	 (x) is the solution to the equation

…� u …µ
u

|x|2
=

|u|2
� (s)…2u
|x|s

in R3 \ { 0}.

Since 0� � , letR0 be a positive constant such thatB2R0(0) 
 � . We take a cut-o� function


 (x) � C�
0 (� ) such that
 (x) = 1 for |x| � R0, 
 (x) = 0 for |x| > 2R0, and 0� 
 (x) � 1 oth-

erwise. LetC	 = [ 2	 (3…s)
�

µ̄…µ�
µ̄

]
�

µ̄
2…s , � 1 =

�
µ̄ …

�
µ̄ …µ , � 2 =

�
µ̄ +

�
µ̄ …µ , andU	 (x) = y	 (x)

C	
.

Suppose

U	 (x) =
1

[|x|
2…s
2

� 1�
µ̄ + |x|

2…s
2

� 2�
µ̄ ]

2
�

µ̄
2…s

,

u	 (x) = 
 (x)U	 (x) =

 (x)

[	 |x|
2…s
2

� 1�
µ̄ + |x|

2…s
2

� 2�
µ̄ ]

2
�

µ̄
2…s

,

v	 (x) =
u	 (x)

(
�

�
|u	 (x)|2� (s)

|x|s dx)
1

2� (s)
,

so that 	 v	 (x)	 2� (s)
L2� (s)(� ,|x|…s)

=
�

� |v	 (x)|2
� (s)|x|…s dx = 1. Then we have the following results

[14]:

�
� v	 (x)

�
� 2

= S + O
�
	

1
2…s

�
, (2.2)

�

�
|v	 |q dx =

�
����

����

O(	
q
�

µ̄
2…s ), 1� q < 3�

µ̄+
�

µ̄…µ
,

O(	
q
�

µ̄
2…s | ln 	 |), q = 3�

µ̄+
�

µ̄…µ
,

O(	
�

µ̄ (3…q
�

µ̄ )
(2…s)

�
µ̄…µ ), 3�

µ̄+
�

µ̄…µ
< q < 6.

(2.3)

Now we de“ne the functionalI on H1
0(� ) by

I(u) =
a
2

	 u	 2 +
b

4 …s
	 u	 4…s …

1
2� (s)

�

�

u2� (s)

|x|s
dx …

�

�
F(x,u) dx. (2.4)

Obviously, the functionalI belongs to the classC1(H1
0(� ),R). Furthermore,

�
I �(u),v

�
= a

�

�

�
� u� v…µ

uv
|x|2

	
dx + b	 u	 2…s

�

�

�
� u� v …µ

uv
|x|2

	
dx

…
�

�

u2� (s)…1v
|x|s

dx…
�

�
f (x,u)vdx, � v � H1

0(� ).

3 Proofs of our main results

In this section, we consider the existence and multiplicity of solutions to problem (1.1).

We “rst verify that the functional I(u) satis“es the local (PS) condition.
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Lemma 3.1 Let f (x,t) satisfy (f1) and (f2). Suppose c � (0,� 0),where

� 0 =
a(2 …s)
2(3 …s)

S


bS

4…s
2 +

�
b2S4…s + 4aS
2

� 2
2…s

+
b(2 …s)

2(3 …s)(4 …s)
S


bS

4…s
2 +

�
b2S4…s + 4aS
2

� 4…s
2…s

.

Then I(u) satis�es the local (PS)c condition.

Proof Suppose that{un} is a (PS)c sequence. Then, forc � (0,� 0),

I(un) � c, I �(un) � 0 asn � � . (3.1)

First, we prove that{un} is a bounded sequence. From (3.1) we have

1 + c + o(1)	 un	  I(un) …
1


�
I �(un),un

�

=
�

1
2

…
1


	
a	 un	 2 +

�
1

4 …s
…

1


	
b	 un	 4…s

+
�

1


…
1

2� (s)

	 �

�

|u|2
� (s)

|x|s
dx +

�

�

�
1

f (x,un)un …F(x,un)

	
dx


�

1
2

…
1


	
a	 un	 2,

where = min{� , 2� (s)}. Thus we conclude that{un} is a bounded sequence inH1
0(� ). By

the continuity of embedding we have|un|
2� (s)
2� (s) � C1 < � (denoting the usualLp(� ) norm

by | · |p). Up to subsequences if necessary, there existsu � H1
0(� ) such that

un � u weakly inH1
0(� ),

un � u in Lq(� ) for q �

1, 2� (s)

�
,

un � u a.e. in� .

Then we prove thatun � u in H1
0(� ).

By (f1), for any	 > 0, there existsa(	 ) such that

f (x,t) �
1

2C1
	 t5…2s + a(	 ).

Let � 1 = 	
2a(	 ) . WhenE 
 � and mesE < � 1, we have

�
�
�
�

�

E
f (x,un)un dx

�
�
�
� �

�

E

�
�f (x,un)un

�
� dx

�
�

E
a(	 ) dx +

1
2C1

	
�

E
|un|2

� (s) dx

� a(	 )mesE +
1

2C1
	 C1

� 	 .

(3.2)
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Hence{
�

� f (x,un)un dx,n � N} is equiabsolutely continuous. It is easy to get the following

from the Vitali convergence theorem:

�

�
f (x,un)un dx �

�

�
f (x,u)udx asn � � . (3.3)

Similarly, we can prove that

�

�
F(x,un) dx �

�

�
F(x,u) dx asn � � .

Further, by the concentration compactness principle [15] there exist a countable set� ,

a set of di�erent points {xj} 
 � \ { 0}, nonnegative real numbersµ xj , � xj for j � � , and

nonnegative real numbersµ 0, � 0, � 0 such that

|� un|2 � d�µ  |� u|2 +
�

j� �

µ xj � xj + µ 0� 0,

u2
n|x|…2� d� = u2|x|…2+ � 0� 0,

|un|2
� (s)|x|…s � d� = |u|2

� (s)|x|…s +
�

j� �

� xj � xj + � 0� 0,

where� x is the Dirac mass atx � � . For any	 > 0, we letxj /� B	 (0) for all j � � and choose

� to be s smooth cut-o� function such that 0� � � 1, � � 0 for x � Bc
	 (0), � � 1 for

x � B	 /2(0), and|� � | � 4/	 . Then

lim
	 � 0

lim
n��

�

�
|� un|2� dx = lim

	 � 0

�

�
� d�µ  µ 0,

lim
	 � 0

lim
n��

�

�
u2
n|x|…2� dx = lim

	 � 0

�

�
� d� = � 0,

lim
	 � 0

lim
n��

�

�
|un|2

� (s)|x|…s� dx = lim
	 � 0

�

�
� d� = � 0,

lim
	 � 0

lim
n��

�

�
(� un� � )un dx = 0, (3.4)

lim
	 � 0

lim
n��

�

�
f (x,un)un� dx = 0. (3.5)

The proofs of (3.4) and (3.5) are similar to that of Theorem 2.3 in [8] and are omitted here.

Since{un} is bounded, by (3.1) we have

0 = lim
	 � 0

lim
n��

�
I �(un),un�

�

= lim
	 � 0

lim
n��

�
�
a + b	 un	 2…s�


 �

�

�
|� un|2� + (� un� � )un …µ

u2
n

|x|2
�

	
dx

�

…
�

�

|un|2
� (s)

|x|s
� dx…

�

�
f (x,un)un� dx

�

 a(µ 0 …µ� 0) + b(µ 0 …µ� 0)(4…s)/2 …� 0.
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Combining this with (2.1), we have thatS2� (s)/2� 0 � (µ 0 …µ� 0)2� (s)/2, and we deduce that

S…3+s(µ 0 …µ� 0)2…s …b(µ 0 …µ� 0)(2…s)/2 …a  0,

which implies

(µ 0 …µ� 0)  S


bS

4…s
2 +

�
b2S4…s + 4aS
2

� 2
2…s

.

Therefore we get

c + o(1) = I(un) …
1

4 …s
�
I �(un),un

�

=
a(2 …s)
2(4 …s)

	 un	 2 +
2 …s

2(3 …s)(4 …s)

�

�

|un|2
� (s)

|x|s
dx

+
1

4 …s

�

�
f (x,un)un dx …

�

�
F(x,un) dx


a(2 …s)
2(4 …s)

(µ 0 …µ� 0) +
2 …s

2(3 …s)(4 …s)
� 0


a(2 …s)
2(4 …s)

(µ 0 …µ� 0) +
2 …s

2(3 …s)(4 …s)

a(µ 0 …µ� 0) + b(µ 0 …µ� 0)(4…s)/2�

 � ,

a contradiction. Thus we obtain

�

�

|un|2
� (s)

|x|s
dx �

�

�

|u|2
� (s)

|x|s
dx.

Combining this with (3.2), we “nd

o(1) =
�
I �(un) …I �(u),un …u

�

=
�
a + b	 un	 2…s� (un,un …u) …

�
a + b	 u	 2…s� (u,un …u) + o(1)

=
�
a + b	 un	 2…s� (un …u,un …u) + b

�
	 un	 2…s …	 u	 2…s� (u,un …u) + o(1)

 a	 un …u	 2 + o(1),

which shows thatun � u in H1
0(� ). The proof is completed. �

Lemma 3.2 If f (x,t) satis�es (f1) and (f2), then there exists u0 � H1
0(� ) such that

sup
t 0

I(tu0) < � .

Proof We consider the functions

g(t) =
at2

2
	 v	 	 2 +

bt4…s

4 …s
	 v	 	 4…s …

t2� (s)

2� (s)
…

�

�
F(x,tv	 ) dx,

g0(t) =
at2

2
	 v	 	 2 +

bt4…s

4 …s
	 v	 	 4…s …

t2� (s)

2� (s)
.
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From

0 = g �(t	 ) = at	 	 v	 	 2 + bt3…s
	 	 v	 	 4…s …t2

� (s)…1
	 …

�

�
f (x,t	 v	 )v	 dx

we derive

a	 v	 	 2 + bt2…s
	 	 v	 	 4…s = t4…2s

	 +
1
t	

�

�
f (x,t	 v	 )v	 dx  t4…2s

	 . (3.6)

Since 4 … 2s = 2(2 …s), we have

t	 �


b	 v	 	 4…s +

�
b2	 v	 	 2(4…s) + 4a	 v	 	 2

2

� 1
2…s

� t0.

By (f1), obviously,

f (x,t) � 	 t5…2s + d(	 )t, d(	 ) > 0.

Therefore we obtain

a	 v	 	 2 + bt2…s
	 	 v	 	 4…s � t4…2s

	 + 	
�

�
|t	 |4…2s|v	 |2

� (s) dx + d(	 )
�

�
|v	 |2 dx (3.7)

and

t4…2s
	 + 	

�

�
|t	 |4…2s|v	 |2

� (s) dx = t4…2s
	

�
1 + 	

�

�
|v	 |2

� (s) dx
	

�
3
2
t4…2s
	 . (3.8)

Thanks to (2.3), when	 is small enough, we conclude fromd(	 )
�

� |v	 |2 dx � 0 as	 � 0

that

d(	 )
�

�
|v	 |2 dx � a	 v	 	 2. (3.9)

From (3.7)…(3.9) we get

a	 v	 	 2 + bt2…s
	 	 v	 	 4…s �

3
2
t4…2s
	 + a	 v	 	 2.

Combining this with (2.2), we obtain

bS
4…s
2 � b	 v	 	 4…s �

3
2
t2…s
	 ,

which implies

t	 
�

2bS
4…s
2

3

	 1
2…s

.

Consequently, the functiong0(t) attains its maximum att0 and continuously increases in

the interval [0,t0]. From this, together with (2.2) and the inequalityF(x,t)  C2|t|� , which
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is directly obtained from (f2), we derive that

g(t) � g0(t0) …
�

�
F(x,t	 v	 ) dx

=
a(2 …s)
2(3 …s)

t20	 v	 	 2 +
b(2 …s)

2(3 …s)(4 …s)
t4…s
0 	 v	 	 4…s …

�

�
F(x,t0v	 ) dx

�
a(2 …s)
2(3 …s)

	 v	 	 2


b	 v	 	 4…s +

�
b2	 v	 	 2(4…s) + 4a	 v	 	 2

2

� 2
2…s

+
b(2 …s)

2(3 …s)(4 …s)
	 v	 	 4…s



b	 v	 	 4…s +

�
b2	 v	 	 2(4…s) + 4a	 v	 	 2

2

� 4…s
2…s

…C2

�

�
t�	 |v	 |� dx

� � + O
�

1
2(2 …s)

	
…C2

�
2bS

4…s
2

3

	 �
2…s

�

�
|v	 |� dx.

In addition, from (2.3) it follows that

�

�
|v	 |� dx = O

�
	

�
µ̄ (3…�

�
µ̄ )

(2…s)
�

µ̄…µ
�
.

Thanks to (f2), we have

1
2(2 …s)

>

�
µ̄ (3 …�

�
µ̄ )

(2 …s)
�

µ̄ …µ
.

Choosing	 small enough, we conclude

sup
t 0

I(tv	 ) = g(t	 ) < � .

This completes the proof of Lemma3.2. �

Next, we prove that the functionalI(u) satis“es the mountain pass geometry.

Lemma 3.3 Suppose that (f1) and (f2) hold.Then we have:
(i) there exist r, � > 0 such that inf	 u	 =r I(u)  � > 0,

(ii) there exists a nonnegative function e � H1
0(� ) such that 	 e	 > r and I(e) < 0.

Proof (i) By (f1), for any	 > 0, there existsC3 such that

�
�f (x,t)

�
� � 	 t + C3t5…2s

for all t � R+ andx � � . By the de“nition of F(x,u) we get

�
�F(x,t)

�
� �

1
2

	 t2 + C4t2
� (s)
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for all t � R+ andx � � , whereC5 = 1
2� (s)C3. Then by (2.1),we get

I(u) =
a
2

	 u	 2 +
b

4 …s
	 u	 4…s …

1
2� (s)

�

�

|u|2
� (s)

|x|s
dx…

�

�
F(x,u) dx


a
2

	 u	 2 …
1

2� (s)
S…2� (s)

2 	 u	 2� (s) …
1
2

	 |u|22 …C5|u|2
� (s)

2� (s)


a
2

	 u	 2 …
1

2� (s)
S…2� (s)

2 	 u	 2� (s) …
C
2

	 	 u	 2
2 …CC5	 u	 2� (s)

2� (s)

for 	 small enough. Hence there exists� > 0 such thatI(u)  � for all 	 u	 = r, wherer > 0
is small enough.

By Lemma3.2, there existsu0 � H1
0(� ), u0 �� 0 such that

sup
t 0

I(tu0) < � .

It follows from the nonnegativity ofF(x,t) that

I(tu0) =
at2

2
	 u0	 2 +

bt4…s

4 …s
	 u0	 4…s …

t2� (s)

2� (s)

�

�

|u0|2
� (s)

|x|s
dx …

�

�
F(x,tu0) dx

�
at2

2
	 u0	 2 +

bt4…s

4 …s
	 u0	 4…s …

t2� (s)

2� (s)

�

�

|u0|2
� (s)

|x|s
dx,

which shows thatlimt� +� I(tu0) � …� . Therefore we can chooset0 such that	 t0u0	 > r
and I(t0u0) � 0. The proof of Lemma3.3is completed. �

Proof of Theorem 1.1 By the mountain pass theorem in [16] there is a sequence{un} 

H1

0(� ) satisfying

I(un) � c  � and I �(un) � 0,

where

c = inf
� � �

max
t� [0,1]

I
�
� (t)

�
,

� =
�
� � C

�
[0, 1],H1

0(� )
�
|� (0) = 0,� (1) = t0u0

�
.

Therefore

0 <� � c = inf
� � �

max
t� [0,1]

I
�
� (t)

�
� max

t� [0,1]
I(tt0u0) � sup

t 0
I(tu0) < � .

Applying this inequality and Lemma3.1, we can obtain a critical pointu1 of the func-
tional I. From the continuity of I � we deduce thatu1 is a weak solution of problem (1.1).
Then � I �(u1),u…

1� = 0, whereu…
1 = min{u, 0}. Thusu1  0 andu1 �� 0. By the strong maxi-

mum principle there isu1 > 0 that is a positive solution of problem (1.1). Thus Theorem1.1
holds. �

Proof of Theorem 1.2 Theorem1.2can be proved similarly. �



Fan and DengBoundary Value Problems        (2021) 2021:49 Page 11 of 11

Acknowledgements
The authors thank the anonymous referee for his/her positive and useful comments, which helped him improve further
the exposition of the paper.

Funding
This paper is supported by the National Natural Science Foundation of China (grant No. 11971339), the Chongqing
research and innovation project of graduate students (grant No. CYS20271), and Science and Technology Research
Project of Chongqing Education Commission (No. KJQN201800636).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The main idea of this paper was proposed by HF and ZD. HF prepared the manuscript initially and performed all the steps
of the proofs in this research. All authors read and approved the “nal manuscript.

Publisher•s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional a�liations.

Received: 27 July 2020 Accepted: 15 April 2021

References
1. Kirchho�, G.: Mechanik. Leipzig, Teuhner (1883)
2. Lions, J.L.: On some questions in boundary value problems of mathematical physics. North-Holl. Math. Stud.30,

284…346 (1978)
3. Jin, J.H., Wu, X.: In“nitely many radial solutions for Kirchho� type problem inR

N. J. Math. Anal. Appl.369(2), 564…574
(2010)

4. Shao, L.Y., Chen, H.B.: Existence of solutions for the Schrödinger…Kirchho�…Poisson systems with a critical
nonlinearity. Bound. Value Probl.2016, 210 (2016)

5. Chen, C.Y., Kuo, Y.C., Wu, T.F.: The Nehari manifold for a Kirchho� type problem involving sign-changing weight
functions. Int. J. Di�er. Equ.250, 1876…1908 (2011)

6. Xie, Q.L., Wu, X.P., Tang, C.L.: Existence and multiplicity of solutions for Kirchho� type problem with critical exponent.
Commun. Pure Appl. Anal.12(6), 2773…2786 (2013)

7. Lei, J.S.: Multiplicity and asymptotic behavior of solutions for Kirchho� type equations involving the Hardy…Sobolev
exponent and singular nonlinearity. J. Inequal. Appl.2018, 213 (2018)

8. Naimen, D.: Positive solutions of Kirchho� type elliptic equations involving a critical Sobolev exponent. Nonlinear
Di�er. Equ. Appl.21(6), 885…914 (2014)

9. Ding, L., Tang, C.L.: Existence and multiplicity of solutions for semilinear elliptic equations with Hardy terms and
Hardy…Sobolev critical exponents. Appl. Math. Lett.20, 1175…1183 (2007)

10. Xu, L.P., Chen, H.B.: Ground state solutions for Kirchho�-type equations with a general nonlinearity in the critical
growth. Adv. Nonlinear Anal.7(4), 535…546 (2018)

11. Fiscella, A., Pucci, P., Zhang, B.L.:p-fractional Hardy…Schrödinger…Kirchho� systems with critical nonlinearities. Adv.
Nonlinear Anal.8, 1111…1131 (2019)

12. Qi, X.M., Radulescu, V.D., Zhang, B.L.: Combined e�ects for fractional Schrödinger Kirchho� systems with critical
nonlinearities. ESAIM Control Optim. Calc. Var.24, 1249…1273 (2018)

13. Kufner, A., Persson, L.: Weighted Inequalities of Hardy Type. World Scienti“c, Singapore (2003)
14. Kang, D.S., Peng, S.: Positive solutions for singular critical elliptic problems. Appl. Math. Lett.17, 411…416 (2004)
15. Lions, P.L.: The concentration-compactness principle in the calculus of variation. The locally compact case, Part I. Ann.

Inst. Henri Poincaré, Anal. Non Linéaire1(2), 109…145 (1984)
16. Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical point theory and applications. J. Appl. Funct. Anal.

14(4), 349…381 (1973)


