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Abstract
The topological sensitivity method is an optimization technique used in different
inverse problem solutions. In this work, we adapt this method to the identification of
plasma domain in a Tokamak. An asymptotic expansion of a considered shape
function is established and used to solve this inverse problem. Finally, a numerical
algorithm is developed and tested in different configurations.
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1 Introduction
The Tokamak is a type of fusion reactor and a method for building these reactors. It is
a station that uses a strong magnetic field to confine the hot plasma in the shape of a
torus (see Fig. 1). This method works by raising the temperature of the plasma to the
point of nuclear fusion. Since the plasma has a very high temperature, it must be sepa-
rated and removed and made not to touch the components of the reactor, otherwise it will
be destroyed and this will cause it to cool and interrupt the fusion reaction. In reactors
based on the Tokamak method, the plasma is made to float in the middle of the reactor
without touching any of its parts by means of magnets that keep the plasma in a circular
path.

This method is still being researched and experimented and has not reached the stage
of economic exploitation, yet. In the future, the goal is to produce energy using this tech-
nique. The main problem to reach high performance is to construct the plasma magnetic
equilibrium domain. This problem has been investigated in [2–4] using parametric opti-
mization or control theory. A new idea using the topological gradient technique is consid-
ered in [5–13]. This technique consists in reconstructing the plasma domain by inserting
some holes inside a fixed initial one. The position and form of these holes are characterized
by an asymptotic expansion of a considered cost function.
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Figure 1 Tokamak [1]

The paper is organized as follows. In the next section, we present the model describ-
ing the plasma equilibrium and the formulation of the studied problem. Section 3 is de-
voted to the plasma reconstruction technique using the topological gradient method. In
Sect. 4, the plasma reconstruction algorithm is described and some numerical results are
presented.

2 Formulation of the problem
Consider the two-dimensional domain � representing the vacuum vessel containing a
plasma domain �p and �v = �\�p. The plasma equilibrium solves in �v the equation
Gφ = 0, where G = – ∂

∂r ( 1
r

∂
∂r )– ∂

∂z ( 1
r

∂
∂z ) is the Grad–Shafranov operator and φ is the poloidal

flux (see [14]).
We aim to determine the location of �p, the boundary of �p, from over-specified bound-

ary data on � = ∂�. In this inverse problem, φ satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Gφ = 0 in �v,
1
r

∂φ

∂n = � on �,

φ = φm on �,

φ = 0 on �p.

(1)

We remark that since �p is unknown also �v is unknown, which makes the problem ill
posed in the sense of Hadamard.

In order to determine the location of the unknown plasma boundary �p, we propose the
following formulation for the considered inverse problem:

Knowing the magnetic field � and the poloidal flux φm on the boundary �, the idea con-
sists in identifying the unknown plasma boundary �p = ∂�p where �P ⊂ � is the optimal
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solution of the topological optimization problem

min
D⊂�

T(�\D). (2)

Here T is the boundary tracking function defined by

T(�\D) =
∫

�

|φD – φm|2 ds (3)

with φD being the solution to

⎧
⎪⎪⎨

⎪⎪⎩

GφD = 0 in �\D,
1
r

∂φD
∂n = � on �,

φD = 0 on ∂D.

(4)

To solve problem (2), we use the topological gradient method. It corresponds to devel-
oping an asymptotic expansion of the function T as

T(�\χz,ε) – T(�) = f (ε)δT(z) + o
(
f (ε)

)
,

where f (ε) > 0 with limε→0 f (ε) = 0 and χz,ε is a geometric perturbation created near the
point z = (z1, z2) ∈ � having a small size ε > 0 (chosen in such a way that χz,ε ⊂ �) and the
shape χz,ε = z + εχ with χ ⊂ R

2 is a given, regular, and bounded domain containing the
origin.

Further, δT is called the topological gradient and the minimum of T is obtained when
δT is the most negative.

Using this technique, the optimal design of the unknown plasma �P is constructed using
a level set curve of the scalar function δT , namely

�P = {x ∈ � such that δT ≤ c},

where c is a negative constant, chosen in such a way that the shape function T decreases
as most as possible.

3 Plasma reconstruction technique
Using the axisymmetric configuration and a horizontal cut, the first formulation can be
rewritten as follows: find the unknown domain �p occupied by the plasma as the op-
timal solution to the optimization problem (2), where φD is solution to the anisotropic
system

⎧
⎪⎪⎨

⎪⎪⎩

– div(γ (x)∇φD) = 0 in �\D,

γ (x)∇φD · n = � on �,

φD = 0 on ∂D,

with γ being a scalar positive function defined by

γ (x) =
1

|x1| , ∀x = (x1, x2) ∈ �\D.
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In the presence of the perturbation χz,ε , we have

T(�\χz,ε) =
∫

�

|φε – φm|2 ds

where φε is the solution to

⎧
⎪⎪⎨

⎪⎪⎩

– div(γ (x)∇φε) = 0 in �z,ε ,

γ (x)∇φε .n = � on �,

φε = 0 on ∂χz,ε ,

(5)

with �z,ε being the perturbed domain defined by �z,ε = �\χz,ε .
One can establish the following asymptotic expansion for the shape function T (see

[15]).

Theorem 1 The shape function T admits the following asymptotic expansion:

T(�\χz,ε) – T(�) =
–1

log(ε)
δT(z) + o

(
–1

log(ε)

)

,

where δT is the topological gradient given by

δT(z) = 2πγ (z)φ0(z)ϕ0(z), z ∈ �,

with φ0(z) being the solution to problem (5) for ε = 0 and ϕ0 the solution of the associated
adjoint problem.

4 Numerical tests
For the numerical tests, we consider two cases of computational domain �. The unknown
plasma boundary is defined by the level set curve of the topological gradient

δT(x1, x2) =
2π

x1
φ0(x1, x2)ϕ0(x1, x2), ∀(x1, x2) ∈ �. (6)

4.1 Plasma reconstruction algorithm
The main steps of our numerical algorithm are the following.

The reconstruction algorithm
• Solve the direct and adjoint problems in �,
• Compute the topological gradient δT defined in (6),
• Determine the plasma location

�P =
{

(x1, x2) ∈ �; δT(x1, x2) ≤ (1 – ε)δTmin < 0
}

,

where δTmin = min(x,y)∈� δT(x1, x2) and ε ∈ ]0, 1[ is chosen in such a way that the
function T decreases as much as possible.

Next, we apply this reconstruction procedure for two numerical tests.
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Figure 2 Isovalues of φ0

4.2 First test
In this case we have used the following data:

- The vacuum vessel region is defined by the disc � = B(C1, 1), with C1 = (2, 0).
- The exact plasma domain is defined by the disc �ex

P = B(C2, 0.2), with C2 = (3/2, 0).
- The Dirichlet and Neumann boundary data are given by

φm(x, y) =
4 – x – y

x
sin(0.5 + x + y), (x, y) ∈ �,

�(x, y) =
1
x

∂φm

∂n
(x, y), (x, y) ∈ �.

In Fig. 2, we present the obtained isovalues of the solution φ0.
The isovalues of the topological gradient δT are described in Fig. 3.
To evaluate the accuracy of our approach, we introduce the following error function

which defines the Hausdorff distance between the exact �ex
P and obtained �ε

P plasma do-
main

er(ε) =
mes(�ex

P ∪ �ε
P) – mes(�ε

P ∩ �ex
P )

mes(�ex
P )

with

�ε
P =

{
X ∈ �; δT(X) < (1 – ε)δTmin

}
.

The variation of the error function er is illustrated in Fig. 4. As one can see in Fig. 4, the
optimal choice of the parameter ε is ε = 0.88. In this test, we identify the plasma domain
�ex

P .
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Figure 3 Isovalues of the topological gradient δT

Figure 4 Variation of the error function er

4.3 Second test
In this case we have used the following data:

- � = [ π
3 , 2π

3 ] × [0, π
3 ].

- �ex
P = B(C2, 0.2), with C2 = ( π

2 , π
6 ).
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Figure 5 Isovalues of φ0

Figure 6 Isovalues of the topological gradient δT

- The Dirichlet and Neumann boundary data are given by

φm(x, y) = 2ex cos(y) – ey sin(x) – 1.75, (x, y) ∈ �,

�(x, y) =
1
x

∂φm

∂n
(x, y), (x, y) ∈ �.
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Figure 7 Variation of the error function er

The result of this test are described in Figs. 5, 6, and 7. In Fig. 5, we plot the isovalues of
the solution φ0.

Figure 6 describes the isovalues of the topological gradient δT . The variation of the error
function er describing the Hausdorff distance between the exact �ex

P and obtained �ε
P

plasma domain is illustrated in Fig. 7. The optimal choice of the parameter ε corresponds
to ε = 0.82.

We remark that the plasma domain �ex
P has been well identified in one iteration.
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