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Abstract
This paper is devoted to studying the following nonlinear fractional problem:

{
(–�)su + u = K (|x|)up, u > 0, x ∈ R

N ,

u(x) ∈ Hs(RN),
(0.1)

where N ≥ 3, 0 < s < 1, 1 < p < N+2s
N–2s , K (|x|) is a positive radical function. We

constructed infinitely many non-radial solutions of the new type which have a more
complex concentration structure for (0.1).
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1 Introduction and main result
In this paper, we focus on the following fractional problem:

⎧⎨
⎩(–�)su + u = K(|x|)up, u > 0, x ∈R

N ,

u(x) ∈ Hs(RN ),
(1.1)

where N ≥ 3, 0 < s < 1, 1 < p < N+2s
N–2s , K(|x|) is a positive radical function. Problem (1.1)

arises from the study of time-independent waves ψ(x, t) = e–iEtu(x) of the following non-
linear fractional Schrödinger equation:

i
∂ψ

∂t
= (–�)sψ + P(x)ψ – |ψ |p–1ψ , x ∈R

N , t > 0. (1.2)

In (1.1), the fractional Laplacian operator (–�)s is defined as

(–�)su(x) = CN ,sP.V .
∫
RN

u(x) – u(y)
|x – y|N+2s dy, (1.3)

where CN ,s is some normalization constant and P.V. stands for the Cauchy principle value.
The fractional Schrödinger equation was discovered by Laskin [23, 24] as a result of ex-
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tending the Feynman path integral from the Brownian-like paths to Lévy-like quantum
mechanical paths. This problem has a strong physical background and it has frequently
been studied by a lot of researchers.

Problem (1.1) is a typical case of the equation

(–�)su + V (x)u = f (x, u), u > 0, x ∈R
N . (1.4)

For a subcritical power, under suitable conditions on V and f , Bieganowski and Secchi
in [6] showed that the ground state solutions to (1.4) converge in L2

loc(RN ). Using the pe-
nalized technique and the variational methods, An et al. in [3] proved the existence of a
positive solution to (1.4) with the fast decaying potential V . In [10], Dávila, del Pino, and
Wei generalized some previous results on the Schrödinger equation to fractional problem
(1.4) by using the Lyapunov–Schmidt variational reduction. In [27], Long, Peng, and Yang
obtained infinitely many non-radial positive solutions for (1.1) whose functional energy is
very large. For the general nonlinearity, in [32], Secchi constructed solutions to (1.4), and
the approach based on minimization on the Nehari manifold. For the critical case, He and
Zou in [21] considered the following problem with critical growth:

(–�)su + u = u2∗
s –1 + λ

(
f (x, u) + h(x)

)
, u > 0, x ∈ R

N , (1.5)

where the parameter λ > 0, 2∗
s is the critical Sobolev exponent, f and h satisfy certain

conditions. They showed the bifurcation and multiplicity of positive solutions for (1.5)
in their paper. In [19], Guo and He proved the existence and concentration of positive
solutions to the following fractional nonlinear Schrödinger equation:

ε2s(–�)su + V (x)u = P(x)g(u) + Q(x)u2∗
s –2u, x ∈R

N . (1.6)

For the supercritical case, Ao et al. in [4] proved the existence of bound state solutions for
(1.4). When the potential and nonlinearity satisfy certain conditions, Bisci and Rădulescu
in [30] studied the existence of multiple ground state solutions for the following problem:

(–�)su + V (x)u = λf (x, u).

For other existence results, we refer to [1, 2, 5, 7–9, 12, 14, 17, 18, 20, 22, 25, 26, 28, 29, 31,
35–37] and the references therein.

After the above bibliography review, we want to specifically mention two papers [13]
and [33]. In [33], Wei and Yan used a constructive method to produce infinitely many
non-radial solutions to (1.1) when s = 1 with high energy. Using the same method, Duan
and Musso in [13] got other type of building blocks for the same problem in [33]. It is
worth mentioning here that the structure of solutions in [13, 33] is dissimilar. Compared
to the results in [33], the solutions in [13] have a more complex concentration structure.
The solutions in [33] show the polygonal symmetry in the (x1, x2)-plane and are radially
symmetric in other variables. However, the solutions in [13] have the polygonal symme-
try in the (x1, x2)-plane, the even symmetry in the x3 direction, and the radial symmetry
in other variables. Inspired by the two works mentioned above, our aim is to construct
new type solutions like the solutions in [13] which have a more complex concentration
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structure for problem (1.1). Since the fractional Laplacian operator is a nonlocal one, it
is difficult to use the methods for local operator directly. For instance, the ground state
for –� decays exponentially at infinity. In contrast, the ground state for (1.7) decays alge-
braically at infinity. So, the research of problem (1.1) becomes more complicated. At the
same time, we need to redetermine the range for the parameters h and r which will be
used to determine the position of the locations yj, y

j
of the bumps in Wr,h(x).

Next, we give some notation and definitions which are used in our paper.
Let N ≥ 3, m be an integer and introduce the points

⎧⎨
⎩yj = r(

√
1 – h2 cos 2(j–1)π

k ,
√

1 – h2 sin 2(j–1)π
k , h, 0), j = 1, 2, . . . , k,

y
j
= r(

√
1 – h2 cos 2(j–1)π

k ,
√

1 – h2 sin 2(j–1)π
k , –h, 0), j = 1, 2, . . . , k,

where 0 is the zero vector in R
N–3.

Throughout this paper, we assume that (r, h) ∈ �k and define

�k : =
[((

Ã1(N + 2s)
Em

– α

) 1
N+2s–m

)
k

N+2s
N+2s–m ,

((
Ã1(N + 2s)

Em
+ α

) 1
N+2s+m

)
k

N+2s
N+2s–m

]

×
[(

A3

Ã1
– β

) 1
N+2s+2 1

k
N+2s

N+2s+2
,
(

A3

Ã1
+ β

) 1
N+2s+2 1

k
N+2s

N+2s+2

]
,

where α,β > 0 are small constants, Ã1, A3, and E are defined in Proposition 4.1.
Set x = (x1, x2, x3, x′′) ∈R×R×R×R

N–3. Define

ℵs =
{

u : u ∈ Hs(
R

N), u is even in xl, l = 2, . . . , N ,

u
(√

x2
1 + x2

2 cos θ ,
√

x2
1 + x2

2 sin θ , x3, x′′
)

= u
(√

x2
1 + x2

2 cos

(
θ +

2π j
k

)
,
√

x2
1 + x2

2 sin

(
θ +

2π j
k

)
, x3, x′′

)}
,

where θ = arctan x2
x1

.
We choose the unique positive solution W (up to translations and dilations) of the fol-

lowing equation:

⎧⎨
⎩(–�)su + u = up, u > 0 in R

N ,

u(0) = maxRN u(x),
(1.7)

to construct the approximate solution for (1.1).
Denote

Wr,h(x) =
k∑

j=1

Wyj +
k∑

j=1

Wyj
,

where Wyj = W (x – yj), Wyj
= W (x – y

j
).
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For j = 1, . . . , k, we divide R
N into k points:

�j :=
{

x =
(
x1, x2, x3, x′′) ∈R

3 ×R
N–3 :

〈
(x1, x2)
|(x1, x2)| ,

(
cos

2(j – 1)π
k

, sin
2(j – 1)π

k

)〉
≥ cos

π

k

}
.

For �j, we divide it into two points:

�+
j =
{

x : x =
(
x1, x2, x3, x′′) ∈ �j, x3 ≥ 0

}
,

�–
j =
{

x : x =
(
x1, x2, x3, x′′) ∈ �j, x3 < 0

}
.

We see that

R
N =

k⋃
j=1

�j, �j = �+
j ∪ �–

j

and the interior of

�j ∩ �l, �+
j ∩ �–

j

and empty for j 
= l.
Before we give the main theorem, we first give the following conditions on the potential

function K :
(K)

K(r) = 1 –
a

rm + O
(

1
rm+θ

)
, as r → +∞, (1.8)

for some a > 0, θ > 0 and N+2s
N+2s+1 < m < N + 2s.

Our main result is summarized as follows.

Theorem 1.1 Assume that N ≥ 3, 0 < s < 1, 1 < p < N+2s
N–2s . If K(r) satisfies K , then there

exists k0 > 0 such that, for all integer k > k0, problem (1.1) has a solution Uk of the form

Uk = Wr,h(x) + vr,h,

where vr,h ∈ ℵs, (r, h) ∈ �k , and as k → +∞,

∫
R2N

|vr,h(x) – vr,h(y)|2
|x – y|N+2s +

∫
RN

v2
r,h → 0.

In this paper, we first give some preliminaries in Sect. 2, and then we study the reduced
finite dimensional problem in Sect. 3. In Sect. 4, we prove Theorem 1.1. Some useful lem-
mas are left in the Appendix.
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2 Some preliminaries
In this section, we list a couple of important properties and basic theory of fractional
Sobolev spaces which are used in our paper. For more technical details, we refer the reader
to [11].

For any s ∈ (0, 1), the space Hs(RN ) = W s,2(RN ) is defined by

Hs(
R

N) =
{

u ∈ L2(
R

N) :
|u(x) – u(y)|
|x – y| N

2 +s
∈ L2(

R
N ×R

N)}

=
{

u ∈ L2(
R

N) :
∫
RN

(
1 + |ξ |2s)∣∣̂u(ξ )

∣∣2 < ∞
}

.

The norm of Hs(RN ) is written as

‖u‖s =
√〈u, u〉s, u ∈ Hs(

R
N),

where

〈v1, v2〉s = 〈v1, v2〉 +
∫
RN

v1v2

:=
∫
RN

∫
RN

(v1(x) – v1(y))(v2(x) – v2(y))
|x – y|N+2s dx dy +

∫
RN

v1v2.

The following identity comes from Proposition 3.6 in [11]:

[u]Hs(RN ) = C
(∫

RN
|ξ |2s∣∣̂u(ξ )

∣∣2 dξ

) 1
2

= C
∥∥(–�)

s
2 u
∥∥

L2(RN ),

wherê is the Fourier transform, C is a suitable positive constant depending only on s, and
[u]Hs(RN ) is the Gagliardo (semi) norm of the form

[u]Hs(RN ) := 〈u, u〉 1
2 =
(∫

RN

∫
RN

|u(x) – u(y)|2
|x – y|N+2s dx dy

) 1
2

.

The following results play a key role in proving Theorem 1.1.

Theorem 2.1 ([11]) The following embeddings are continuous:
(1) Hs(RN ) ↪→ Lq(RN ), 2 ≤ q ≤ 2N

N–2s , if N > 2s,
(2) Hs(RN ) ↪→ Lq(RN ), 2 ≤ q ≤ ∞, if N = 2s.

Moreover, for any R > 0 and p ∈ [1, 2∗
s ), the embedding Hs(BR) ↪→ Lp(BR) is compact.

Theorem 2.2 ([15, 16]) Let N ≥ 1, s ∈ (0, 1), and 1 < p < N+2s
N–2s . Then the ground state solu-

tion W of (1.7) has the following properties:
(1) (Uniqueness) W ∈ Hs(RN ) is positive and unique up to translations and dilations.
(2) (Symmetry, regularity, and decay) W is radially symmetric and strictly decreasing in

|x|. Moreover, the solution W satisfies

C1

1 + |x|N+2s ≤ W ≤ C2

1 + |x|N+2s , x ∈R
N ,

with some constants C2 ≥ C1 > 0.
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(3) (Non-degeneracy) The kernel of the linear operator (–�)s + 1 – p|W |p–1 is spanned
by {∂x1 W , ∂x2 W , . . . ∂xN W }.

3 Variational reduction
Let Z1j =

∂Wxj
∂r , Z1j =

∂Wxj
∂r , Z2j =

∂Wxj
∂h , Z2j =

∂Wxj
∂h , j = 1, . . . , k.

Define

Hs =

{
v ∈ ℵs :

k∑
j=1

∫
RN

W p–1
xj

Zljv = 0 and
k∑

j=1

∫
RN

W p–1
xj

Zljv = 0, l = 1, 2, j = 1, . . . , k

}
.

The energy functional corresponding to (1.1) is defined as

I(u) =
1
2
〈u, u〉 +

1
2

∫
RN

u2 –
1

p + 1

∫
RN

K(x)|u|p+1.

Letting

J(φ) = I(Wr,h + φ) = I

( k∑
j=1

(Wyj + Wyj
) + φ

)
, φ ∈ Hs,

we can expand J(φ) as follows:

J(φ) = J(0) + l(φ) +
1
2

L(φ) + R(φ), ∀φ ∈ Hs,

where

l(φ) = 〈Wr,h,φ〉 +
∫
RN

Wr,hφ –
∫
RN

K(x)W p
r,hφ,

L(φ) = 〈φ,φ〉 +
∫
RN

φ2 –
∫
RN

pK(x)W p–1
r,h φ2,

and

R(φ) = –
1

p + 1

∫
RN

K(x)
(

(Wr,h + φ)p+1 – W p+1
r,h – (p + 1)W p

r,hφ –
1
2

(p + 1)W p–1
r,h φ2

)
.

The following result implies that L is invertible in Hs.

Lemma 3.1 There exists an integer k0 > 0 such that, for k ≥ k0, there is a constant C > 0
independent of k, satisfying that, for any (r, h) ∈ �k ,

‖Lu‖s ≥ C‖u‖s, ∀u ∈ Hs.

Proof We argue by contradiction. Suppose that there are n → +∞, un ∈ Hs, (rk , hk) ∈ �k

such that

‖Lun‖s = o(1)‖un‖s, ‖un‖2
s = k. (3.1)
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By symmetry, we have

k
∫

�1

∫
RN

(un(x) – un(y))(ψ(x) – ψ(y))
|x + y|N+2s + k

∫
�1

unψ – k
∫

�1

pK(x)W p–1
r,h unψ

= o(1)‖un‖s‖ψ‖s = o(
√

k)‖ψ‖s, ∀ψ ∈ Hs. (3.2)

In particular

∫
�1

∫
RN

|un(x) – un(y)|2
|x – y|N+2s +

∫
�1

|un|2 – k
∫

�1

pK(x)W p–1
r,h |un|2 = on(1)

and

∫
�1

∫
RN

|un(x) – un(y)|2
|x – y|N+2s +

∫
�1

|un|2 = 1. (3.3)

Let ũn = ũn(x + y1), we can choose R > 0 such that BR(y1) ⊂ �1. Thus

∫
BR(0)

∫
RN

|ũn(x) – ũn(y)|2
|x – y|N+2s +

∫
BR(0)

|ũn|2 ≤ 1.

So, we can conclude

ũn ⇀ ũ, weakly in Hs(
R

N)

and

ũn → ũ, strongly in L2
loc
(
R

N).
At the same time, we can obtain that ũ is even in xj, j = 2, . . . , N .

From the orthogonal conditions for functions of Hs

∫
RN

W p–1
x1

Z11un = 0,
∫
RN

W p–1
xj

Z21un = 0,

we can get

∫
RN

W p–1 ∂W
∂x1

ũn =
∫
RN

W p–1 ∂W
∂x3

ũn = 0.

Letting k → +∞, we obtain

∫
RN

W p–1 ∂W
∂x1

ũ =
∫
RN

W p–1 ∂W
∂x3

ũ = 0. (3.4)

Now, we claim that u satisfies

(–�)su + u – pW p–1u = 0, in R
N .
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Set

H̃s =
{
ψ : ψ ∈ Hs(

R
N),∫

RN
W p–1 ∂W

∂x1
ψ =

∫
RN

W p–1 ∂W
∂x3

ψ = 0
}

.

For any R > 0, let ψ ∈ C∞
0 (BR(0)) ∩ H̃s be any function satisfying that ψ is even in xj,

j = 2, . . . , N . Then ψ1(x) = ψ(x – y1) ∈ BR(y1). By Lemma 5.3, and inserting ψ1(x) into (3.2),
we have∫

RN

∫
RN

(un(x) – un(y))(ψ(x) – ψ(y))
|x – y|N+2s +

∫
RN

uψ –
∫
RN

pW p–1uψ = 0. (3.5)

But (3.5) holds for ψ = C1
∂W
∂x1

+ C2
∂W
∂x3

. Hence, (3.5) is true for any ψ ∈ Hs(RN ). Then, by
orthogonal condition (3.4), ψ = 0, and thus

∫
BR(y1)

u2
n = o(1).

Thus, we can take R > 0 large enough, then

o(1) =
∫

�1

∫
RN

|un(x) – un(y)|2
|x – y|N+2s +

∫
�1

u2
n –
∫

�1

pK(x)W p–1
r,h u2

n

=
∫

�1

∫
RN

|un(x) – un(y)|2
|x – y|N+2s +

∫
�1

u2
n

–
∫

�1\BR(y1)
pK(x)W p–1

r,h u2
n –
∫

BR(y1)
pK(x)W p–1

r,h u2
n

≥ 1
2

(∫
�1

∫
RN

|un(x) – un(y)|2
|x – y|N+2s +

∫
�1

u2
n

)
+ oR(1) + o(1),

which is a contradiction to (3.3). �

Moreover, we give the estimate for l.

Lemma 3.2 For (r, h) ∈ �k , if k ≥ k0 for some integer k0 > 0, then

‖l‖s ≤ C
(

k
1
2

(
k

r
√

1 – h2

)N+2s
2 +τ

+
k 1

2

r N+2s
2 +τ

)
,

where C > 0 is a constant independent of k and τ > 0 small enough.

Proof Recall that

l(φ) = 〈Wr,h,φ〉 +
∫
RN

Wr,hφ –
∫
RN

K(x)W p
r,hφ

=
∫
RN

k∑
j=1

(
W p

yj
+ W p

yj

)
φ –

∫
RN

K(x)W p
r,hφ

=
∫
RN

( k∑
j=1

(
W p

yj
+ W p

yj

)
– W p

r,h

)
φ –

∫
RN

(
K(x) – 1

)
W p

r,hφ.

(3.6)
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Using the fact N+2s
N+2s+1 < m < N + 2s, we can check that

∫
RN

∣∣(K(x) – 1
)
W p

r,hφ
∣∣

= 2k
∫
RN

∣∣(K(x) – 1
)
W p

y1
φ
∣∣

≤ Ck
(∫

RN

∣∣K(x) – 1
∣∣ p+1

p W p+1
y1

) p
p+1
(∫

RN
|φ|p+1

) 1
p+1

≤ Ck‖φ‖s

(∫
B r

2 (y1)

∣∣K(x) – 1
∣∣ p+1

p W p+1
y1

+
∫
RN \B r

2
(y1)

W p+1
y1

) p
p+1

≤ C‖φ‖s

(
k

rm + k
(∫ +∞

r
2

1
r(N+2s)(p+1) rN–1 dr

) p
p+1
)

≤ C‖φ‖s

(
k

rm + k
1

r(N+2s)p– p
p+1 N

)

≤ C
k 1

2

r m
2 +τ

‖φ‖s

for some small constant τ > 0.
Since m > N+2s

N+2s+1 , we can choose σ satisfying

(N + 2s)(p + 1) –
p + 1

p

(
N + 2s

2
+ σ

)
> N ,

p
p + 1

–
1
2

<
m

N + 2s – m
σ .

Then it follows from Lemma 5.1 and Lemma 5.3 that

[∫
RN

(∑
l 
=j

W
p
2

yl
W

p
2

yj

) p+1
p
] p

p+1

≤
[

C
∑
l 
=j

∫
RN

1

(1 + |y – yl|)
(N+2s)(p+1)

2

1

(1 + |y – yj|)
(N+2s)(p+1)

2

] p
p+1

≤
[

C
∑
l 
=j

1

|yl – yj|
p+1

p ( N+2s
2 +σ )

∫
RN

(
1

(1 + |y – yl|)(N+2s)(p+1)– p+1
p ( N+2s

2 +σ )

+
1

(1 + |y – yj|)(N+2s)(p+1)– p+1
p ( N+2s

2 +σ )

)] p
p+1

≤ C
(∑

l 
=j

1

|yl – yj|
p+1

p ( N+2s
2 +σ )

) p
p+1

= Ck
p

p+1

( k∑
j=2

1
|y1 – yj|

N+2s
2 +σ

)

(3.7)

≤ Ck
p

p+1

(
k

r
√

1 – h2

)N+2s
2 +σ
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≤ Ck
1
2

(
k

r
√

1 – h2

)N+2s
2 +τ

and

[∫
RN

(∑
l 
=j

W p–1
yl

Wyj

) p+1
p
] p

p+1

≤
[

C
∑
l 
=j

∫
RN

1

(1 + |y – yl|)
(N+2s)(p–1)(p+1)

p

1

(1 + |y – yj|)
(N+2s)(p+1)

p

] p
p+1

≤
[

C
∑
l 
=j

1

|yl – yj|
p+1

p ( N+2s
2 +σ )

∫
RN

1

(1 + |y – yl|)(N+2s)(p+1)– p+1
p ( N+2s

2 +σ )

+
1

(1 + |y – yj|)(N+2s)(p+1)– p+1
p ( N+2s

2 +σ )

] p
p+1

(3.8)

≤ C
(∑

l 
=j

1

|yl – yj|
p+1

p ( N+2s
2 +σ )

) p
p+1

= Ck
p

p+1

k∑
j=2

1
|y1 – yj|

N+2s
2 +σ

≤ Ck
1
2

(
k

r
√

1 – h2

)N+2s
2 +τ

for some small constant τ > 0.
Similarly, we have

[∫
RN

(∑
l 
=j

W
p
2

yl
W

p
2

yj

) p+1
p
] p

p+1 ≤ Ck
1
2

(
k

r
√

1 – h2

)N+2s
2 +τ

,

[∫
RN

(∑
l 
=j

W
p
2

yl
W

p
2

yj

) p+1
p
] p

p+1 ≤ Ck
1
2

(
k

r
√

1 – h2

)N+2s
2 +τ

,

[∫
RN

(∑
l 
=j

W p–1
yl

Wyj

) p+1
p
] p

p+1 ≤ Ck
1
2

(
k

r
√

1 – h2

)N+2s
2 +τ

,

and

[∫
RN

(∑
l 
=j

W p–1
yl

Wyj

) p+1
p
] p

p+1 ≤ Ck
1
2

(
k

r
√

1 – h2

)N+2s
2 +τ

.

Combining the above estimates, we obtain

∫
RN

( k∑
j=1

(
W p

yj
+ W p

yj

)
– W p

r,h

)
φ
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≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C
∑

l 
=j
∫
RN W

p
2

yl
W

p
2

yj
φ + C

∑
l 
=j
∫
RN W

p
2

yl
W

p
2

yj
φ + C

∑
l 
=j
∫
RN W

p
2

yl
W

p
2

yj
φ,

if 1 < p ≤ 2,

C
∑

l 
=j
∫
RN W p–1

yl
Wyjφ + C

∑
l 
=j
∫
RN W p–1

yl
Wyj

φ + C
∑

l 
=j
∫
RN W p–1

yl
Wyj

φ,

if p > 2,

≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C[
∫
RN (
∑

l 
=j W
p
2

yl
W

p
2

yj
)

p+1
p )

p
p+1 ]‖φ‖s + C[

∫
RN (
∑

l 
=j W
p
2

yl
W

p
2

yj
)

p+1
p ]

p
p+1 ‖φ‖s+

+ C[
∫
RN (
∑

l 
=j W
p
2

yl
W

p
2

yj
)

p+1
p ]

p
p+1 ‖φ‖s, if 1 < p ≤ 2,

C[
∫
RN (
∑

l 
=j W p–1
yl

Wyj )
p+1

p ]
p

p+1 ‖φ‖s + C[
∫
RN (
∑

l 
=j W p–1
yl

Wyj
)

p+1
p ]

p
p+1 ‖φ‖s

+ C[
∫
RN (
∑

l 
=j W p–1
yl

Wyj
)

p+1
p ]‖φ‖s, if p > 2,

≤ Ck
1
2

(
k

r
√

1 – h2

)N+2s
2 +τ

for some small constant τ > 0.
Inserting the above estimates into (3.6), we obtain the desired results. �

The proof of the following significant Proposition 3.3 is the same as in [27], we only
describe the content of it briefly.

Proposition 3.3 There exist k0 > 0 and a constant C > 0 independent of k, for any k ≥ k0,
there is a C1 map from �k to ℵs : v = v(r, h) satisfying v ∈ Hs and

J ′(v)|Hs = 0.

Moreover,

‖v‖s ≤ Ck
1
2

((
k
r

)N+2s
2 +τ

+
1

r m
2 +τ

)
, (3.9)

where τ > 0 is small enough.

4 Proof of our main result
In this part, we mainly give the estimate in Proposition 4.1 and show Theorem 1.1.

Proposition 4.1 It holds

I(Wr,h) =
p – 1
p + 1

k
∫
R3

W p+1 +
2k

p + 1
B′

1
rm – k

A3

(rh)N+2s – kÃ1

(
k

r
√

1 – h2

)N+2s

+ kO
(

1
(rh)N+2s+τ

+
(

k
r
√

1 – h2

)N+2s+τ

+
1

(r
√

1 – h2)m+τ

)
,

where B′
1, A3, Ã1 are some positive constants and τ > 0 is small enough.

Proof

I(Wr,h) =
1
2
〈Wr,h, Wr,h〉 +

1
2

∫
RN

W 2
r,h –

1
p + 1

∫
RN

K(x)|Wr,h|p+1.
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By symmetry, we see

〈Wr,h, Wr,h〉 +
∫
RN

W 2
r,h

=

〈 k∑
j=1

Wyj ,
k∑

j=1

Wyj

〉
+
∫
RN

∣∣∣∣∣
k∑

j=1

Wyj

∣∣∣∣∣
2

+

〈 k∑
j=1

Wyj
,

k∑
j=1

Wyj

〉
+
∫
RN

∣∣∣∣∣
k∑

j=1

Wyj

∣∣∣∣∣
2

+ 2

〈 k∑
j=1

Wyj ,
k∑

j=1

Wyj

〉
+ 2
∫
RN

( k∑
j=1

Wyj

)( k∑
j=1

Wyj

)

=
k∑

l=1

k∑
j=1

∫
RN

W p
yj

Wyl +
k∑

l=1

k∑
j=1

∫
RN

W p
yj

Wyl
+ 2

k∑
l=1

k∑
j=1

∫
RN

W p
yj

wyl

= k
∫
RN

W p+1 + k
k∑

j=2

∫
RN

W p
y1

Wyj + k
∫
RN

W p+1 + k
k∑

j=2

∫
RN

W p
y1

Wyj

+ 2k
k∑

j=1

∫
RN

W p
y1

Wyj

= 2k
∫
RN

W p+1 + 2k
k∑

j=2

∫
RN

W p
y1

Wyj + 2k
k∑

j=1

∫
RN

W p
y1

Wyj
. (4.1)

Next, we estimate the term
∫
RN K(x)|Wr,h|p+1. Using the symmetry, we can compute

∫
RN

K(x)|Wr,h|p+1

= 2k
∫

�+
1

K(x)

∣∣∣∣∣Wy1 + Wy1
+

k∑
j=2

Wyj +
k∑

j=2

wyj

∣∣∣∣∣
p+1

= 2k
∫

�+
1

K(x)W p+1
y1

+ 2k
∫

�+
1

(p + 1)K(x)W p
y1

(
Wy1

+
k∑

j=2

Wyj +
k∑

j=2

Wyj

)

+ 2k

⎧⎨
⎩O(

∫
�+

1
W

p+1
2

y1
(Wy1 +

∑k
j=2 Wyj +

∑k
j=2 wyj

)
p+1

2 ), if 1 < p ≤ 2,

O(
∫
�+

1
W p–1

y1
(Wy1

+
∑k

j=2 Wyj +
∑k

j=2 wyj
)2), if p > 2.

For x ∈ �+
1 , we have |x – yj| ≥ 1

2 |yj – y1| and |x – yj| ≥ |x – y1|. So

k∑
j=2

Wyj ≤ C
k∑

j=2

1
(1 + |x – yj|)N+2s–γ

1
(1 + |x – yj|)γ

≤ C
k∑

j=2

1
(|y1 – yj|)N+2s–γ

1
(1 + |x – y1|)γ

(4.2)
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and

k∑
j=2

Wyj
≤ C

k∑
j=2

1
(1 + |x – y

j
|)N+2s–γ

1
(1 + |x – y

j
|)γ

≤ C
k∑

j=2

1
(|y

1
– y

j
|)N+2s–γ

1
(1 + |x – y

1
|)γ .

(4.3)

Here, we choose γ > 0 satisfying

min

{
p + 1

2
(N + 2s – γ ), 2(N + 2s – γ )

}
> N + 2s,

and the parameter γ is useful in (4.4) and (4.5).
Using the fact that Wyj ≥ Wyj

for x ∈ �+
1 , (4.2) and (4.3), we can check that

∫
�+

1

W
p+1

2
y1

(
Wy1

+
k∑

j=2

Wyj +
k∑

j=2

Wyj

) p+1
2

≤ C
∫

�+
1

W
p+1

2
y1

(
Wy1

+
k∑

j=2

Wyj

) p+1
2

≤ C
∫

�+
1

1

(1 + |x – y1|)
(N+2s)(p+1)

2

(
1

(1 + |x – y
1
|)N+2s

+
k∑

j=2

1
(|y1 – yj|)N+2s–γ

1
(1 + |x – y1|)γ

) p+1
2

≤ C
∫

�+
1

1

(1 + |x – y1|)(N+2s)( p+1
2 –τ )

1

(1 + |x – y
1
|) (N+2s)(p+1)

2

1
(1 + |x – y1|)(N+2s)τ

+ C
∫

�+
1

1

(1 + |x – y1|)
(N+2s)(p+1)

2 + p+1
2 γ

( k∑
j=2

1
(|y1 – yj|)N+2s–γ

) p+1
2

(4.4)

≤ C
1

|y1 – y
1
|N+2s

∫
�+

1

(
1

(1 + |x – y1|)(N+2s)(p–τ ) +
1

(1 + |x – y
1
|)(N+2s)(p–τ )

)

× 1
(1 + |x – y1|)(N+2s)τ + C

( k∑
j=2

1
|y1 – yj|N+2s–γ

) p+1
2

≤ C
|y1 – y

1
|N+2s+τ

+ C

( k∑
j=2

1
|y1 – yj|N+2s–γ

) p+1
2

≤ C
(

1
rh

)N+2s+τ

+ C
(

k
r
√

1 – h2

) (N+2s–γ )(p+1)
2

≤ C
(

1
rh

)N+2s+τ

+ C
(

k
r
√

1 – h2

)N+2s+τ
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and

∫
�+

1

W p–1
y1

(
Wy1

+
k∑

j=2

Wyj +
k∑

j=2

Wyj

)2

≤ C
∫

�+
1

W p–1
y1

(
Wy1

+
k∑

j=2

Wyj

)2

≤ C
∫

�+
1

1
(1 + |x – y1|)(N+2s)(p–1–τ )

1
(1 + |x – y

1
|)2(N+2s)

1
(1 + |x – y1|)(N+2s)τ

+ C
∫

�+
1

1
(1 + |x – y1|)(N+2s)(p–1)+2γ

( k∑
j=2

1
|y1 – yj|N+2s–γ

)2

(4.5)

≤ C
1

|y1 – y
1
|N+2s

∫
�+

1

(
1

(1 + |x – y1|)(N+2s)(p–τ ) +
1

(1 + |x – y
1
|)(N+2s)(p–τ )

)

× 1
(1 + |x – y1|)(N+2s)τ + C

( k∑
j=2

1
|y1 – yj|N+2s–γ

)2

≤ C
(

1
rh

)N+2s+τ

+ C
(

k
r
√

1 – h2

)2(N+2s–γ )

≤ C
(

1
rh

)N+2s+τ

+ C
(

k
r
√

1 – h2

)N+2s+τ

.

In addition,

∫
�+

1

K(x)W p
y1

(
Wy1

+
k∑

j=2

Wyj +
k∑

j=2

Wyj

)

=
∫

�+
1

W p
y1

(
Wy1

+
k∑

j=2

Wyj +
k∑

j=2

Wyj

)

+
∫

�+
1

(
K(x) – 1

)
W p

y1

(
Wy1

+
k∑

j=2

Wyj +
k∑

j=2

Wyj

)
.

(4.6)

Applying the estimates in Lemma 5.2, we get

∫
�+

1

W p
y1

(
Wy1

+
k∑

j=2

Wyj +
k∑

j=2

Wyj

)

=
∫
RN

W p
y1

(
Wy1

+
k∑

j=2

Wyj +
k∑

j=2

Wyj

)

–
∫
RN \�+

1

W p
y1

(
Wy1

+
k∑

j=2

Wyj +
k∑

j=2

Wyj

)

=
A3

(rh)N+2s +
k∑

j=2

A1

|y1 – yj|N+2s +
k∑

j=2

A2

|y1 – y
j
|N+2s
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+ O
(

1
(rh)N+2s+τ

)
+ O
((

k
r
√

1 – h2

)N+2s+τ)
(4.7)

+ O

((
k

r
√

1 – h2

)σ ∫
RN \�+

1

W p–σ

y1

( k∑
j=2

Wyj +
k∑

j=2

Wyj

))

+ O
(

1
(rh)σ

∫
RN \�+

1

W p–σ

y1
Wy1

)

=
A3

(rh)N+2s +
k∑

j=2

A1

|y1 – yj|N+2s +
k∑

j=2

A2

|y1 – y
j
|N+2s

+ O
(

1
(rh)N+2s+τ

)
+ O
((

k
r
√

1 – h2

)N+2s+τ)
,

where σ > 0 satisfies p – σ > 1.
Moreover, we find

∫
�+

1

∣∣K(x) – 1
∣∣W p

y1

(
Wy1

+
k∑

j=2

Wyj +
k∑

j=2

Wyj

)

=
∫
RN

∣∣K(x) – 1
∣∣W p

y1

(
Wy1

+
k∑

j=2

Wyj +
k∑

j=2

Wyj

)

–
∫
RN \�+

1

∣∣K(x) – 1
∣∣W p

y1

(
Wy1

+
k∑

j=2

Wyj +
k∑

j=2

Wyj

)

≤
∫

B
r
√

1–h2
2

(y1)

∣∣K(x) – 1
∣∣W p

y1

( k∑
j=2

Wyj +
k∑

j=2

Wyj

)

+
∫

B r
2 (y1)

∣∣K(x) – 1
∣∣W p

y1
Wy1

+
∫
RN \B

r
√

1–h2
2

(y1)

∣∣K(x) – 1
∣∣W p

y1

( k∑
j=2

Wyj +
k∑

j=2

Wyj

)

+
∫
RN \B r

2 (y1)

∣∣K(x) – 1
∣∣W p

y1
Wy1

+ O
((

k
r
√

1 – h2

)N+2s+τ)
+ O
(

1
(rh)N+2s+τ

)
(4.8)

≤ C
(r

√
1 – h2)m

∫
RN

W p
y1

( k∑
j=2

Wyj +
k∑

j=2

Wyj

)
+

C
rm

∫
RN

W p
y1

Wy1

+ O

(
1

(r
√

1 – h2)σ

k∑
j=2

1
|y1 – yj|N+2s

∫
RN \B

r
√

1–h2
2

(y1)

(
W p–σ

y1
+ W p–σ

yj

))

+ O

(
1

(r
√

1 – h2)σ

k∑
j=2

1
|y1 – y

j
|N+2s

∫
RN \B

r
√

1–h2
2

(y1)

(
W p–σ

y1
+ W p–σ

yj

))
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+ O
(

1
rσ

1
|y1 – y

1
|N+2s

∫
RN \B r

2
(y1)

(
W p–σ

y1
+ W p–σ

y1

))

+ O
((

k
r
√

1 – h2

)N+2s+τ)
+ O
(

1
(rh)N+2s+τ

)

= O
((

k
r
√

1 – h2

)N+2s+τ)
+ O
(

1
(rh)N+2s+τ

)

+ O
(

1
rm+τ

)
+ O
(

1
(r

√
1 – h2)m+τ

)
.

Inserting (4.7), (4.8) into (4.6), we obtain

∫
�+

1

K(x)W p
y1

(
Wy1

+
k∑

j=2

Wyj +
k∑

j=2

Wyj

)

=
A3

(rh)N+2s +
k∑

j=2

A1

|y1 – yj|N+2s +
k∑

j=2

A2

|y1 – y
j
|N+2s (4.9)

+ O
(

1
(rh)N+2s+τ

+
(

k
r
√

1 – h2

)N+2s+τ

+
1

rm+τ
+

1
(r

√
1 – h2)m+τ

)
.

Similarly, we have

∫
�+

1

K(x)W p+1
y1

=
∫
RN

K(x)W p+1
y1

+ O
(∫

RN \B
r
√

1–h2
k

(y1)
K(x)W p+1

y1

)

=
∫

B r
2

(y1)
K(x)W p+1

ȳ1
+
∫
RN \B r

2
(ȳ1)

K(x)W p+1
ȳ1

+ O
(∫

RN \B
r
√

1–h2
k

(y1)
K(x)W p+1

y1

)

=
∫
RN

W p+1 –
B′

1
rm + O

(
1

rm+τ

)
+ O
(∫ +∞

r
√

1–h2
k

1
r(N+2s)(p+1) rN–1 dr

)

=
∫
RN

W p+1 –
B′

1
rm + O

(
1

rm+τ

)
+ O
((

k
r
√

1 – h2

)N+2s–τ)
.

(4.10)

Combining (4.4)–(4.5) and (4.9)–(4.10), we deduce that

∫
RN

K(x)|Wr,h|p+1

= 2k
(∫

RN
W p+1 –

B′
1

rm

)
+ kO

(
1

rm+τ
+
(

k
r
√

1 – h2

)N+2s–τ)

+ 2k(p + 1)

(
A3

(rh)N+2s +
k∑

j=2

A1

|y1 – yj|N+2s +
k∑

j=2

A2

|y1 – y
j
|N+2s

)
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+ kO
(

1
(rh)N+2s+τ

+
(

k
r
√

1 – h2

)N+2s+τ)

+ kO
(

1
rm+τ

+
1

(r
√

1 – h2)m+τ

)
.

Finally, by Lemma A.2 in [27], we have

I(Wr,h)

=
1
2
〈Wr,h, Wr,h〉 +

1
2

∫
RN

W 2
r,h –

1
p + 1

∫
RN

K(x)|Wr,h|p+1

= k
∫
RN

W p+1 + k
k∑

j=2

∫
RN

W p
y1

Wyj + k
k∑

j=2

∫
RN

W p
y1

Wyj

–
2k

p + 1

(∫
RN

W p+1 –
B′

1
rm

)
– 2k

(
A3

(rh)N+2s +
k∑

j=2

A1

|y1 – yj|N+2s +
k∑

j=2

A2

|y1 – y
j
|N+2s

)

+ kO
(

1
(rh)N+2s+τ

+
(

k
r
√

1 – h2

)N+2s+τ

+
1

rm+τ
+

1
(r

√
1 – h2)m+τ

)

=
p – 1
p + 1

k
∫
RN

W p+1 +
2k

p + 1
B′

1
rm

– k

(
A3

(rh)N+2s +
k∑

j=2

A1

|y1 – yj|N+2s +
k∑

j=2

A2

|y1 – y
j
|N+2s

)

+ kO
(

1
(rh)N+2s+τ

+
(

k
r
√

1 – h2

)N+2s+τ

+
1

(r
√

1 – h2)m+τ

)

=
p – 1
p + 1

k
∫
RN

W p+1 +
2k

p + 1
B′

1
rm – k

A3

(rh)N+2s – kÃ1

(
k

r
√

1 – h2

)N+2s

+ kO
(

1
(rh)N+2s+τ

+
(

k
r
√

1 – h2

)N+2s+τ

+
1

(r
√

1 – h2)m+τ

)
. �

We are now to prove Theorem 1.1.

Proof of Theorem 1.1

F(r, h) = I(Wr,h) + O
(‖l‖s‖v‖s + ‖v‖2

s
)

=
p – 1
p + 1

k
∫
RN

W p+1 +
2k

p + 1
B′

1
rm – k

A3

(rh)N+2s – kÃ1

(
k√

1 – h2

)N+2s

+ kO
(

1
(rh)N+2s+τ

+
(

k
r
√

1 – h2

)N+2s

+
1

(r
√

1 – h2)m+τ

)

= k
(

D +
E
rm –

A3

(rh)N+2s – Ã1

(
k√

1 – h2

)N+2s)

+ kO
(

1
(rh)N+2s+τ

+
(

k
r
√

1 – h2

)N+2s

+
1

(r
√

1 – h2)m+τ

)
,

where D = p–1
p+1
∫
RN W p+1, E = 2B′

1
p+1 and A3, Ã1 are constants defined in Proposition 4.1.
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Define

G(r, h) = D +
E
rm –

A3

(rh)N+2s – Ã1

(
k√

1 – h2

)N+2s

.

Then we consider the system

⎧⎪⎨
⎪⎩

Gr(r, h) = –E m
rm + A3(N+2s)

hN+2srN+2s+1 + Ã1kN+2s(N+2s)
(
√

1–h2)N+2srN+2s+1 = 0,

Gh(r, h) = A3(N+2s)
rN+2shN+2s+1 – Ã1kN+2s(N+2s)h

rN+2s(1–h2)
N+2s+2

2
= 0.

Then we can calculate that

r̃ =
(

Ã1(N + 2s)
Em

+ o(1)
) 1

N+2s–m
k

N+2s
N+2s+m ,

h̃ =
(

A3

Ã1
+ o(1)

) 1
N+2s+2 1

k
N+2s

N+2s+2
,

which is really an interior point of �k .
Define

M(r, h) =

[
Grr Grh

Ghr Ghh

]
.

By computing, we know

Grr|(r,h)=(r̃,h̃) < 0, Ghh|(r,h)=(r̃,h̃) < 0

and

Grr × Ghh|(r,h)=(r̃,h̃) – G2
rh|(r,h)=(r̃,h̃) > 0.

So, we obtain that (r̃, h̃) is a maximum point of G(r, h). Then the maximum of G(r, h) in
�k can be achieved. Thus, we can find the critical point (rk , hk) ∈ �k of F(r, h). Through
the conventional conclusion in [10], we can show that Wrk ,hk (x) + vrk ,hk is a critical point
of J , then Wrk ,hk (x) + vrk ,hk is a solution of (1.1). �

Appendix
Some vital lemmas are given as follows.

Lemma 5.1 (Lemma B.1, [34]) For any constant 0 < σ ≤ min{α,β}, there is a constant
C > 0 such that

1
(1 + |x – yj|)α

1
(1 + |x – yl|)β ≤ C

|yj – yl|σ
(

1
(1 + |x – yj|)α+β–σ

+
1

(1 + |x – yl|)α+β–σ

)
,

where α,β ≥ 1 are two constants.
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The proofs of the following two lemmas are similar to Lemma A.2 and (28) in [20] re-
spectively.

Lemma 5.2 For j = 2, 3, . . . , k, there exists a small constant τ > 0 such that

∫
RN

W p
y1

Wyj =
A1

|y1 – yj|N+2s + O
(

1
|y1 – yj|N+2s+τ

)
,

∫
RN

W p
y1

Wyj
=

A2

|y1 – y
j
|N+2s + O

(
1

|y1 – y
j
|N+2s+τ

)
,

and
∫
RN

W p
y1

Wy1
=

A3

(rh)N+2s + O
(

1
(rh)N+2s+τ

)
,

where τ > 0 is small enough.

Lemma 5.3 For (r, h) ∈ �k and η ∈ (1, N + 2s], there is a constant C > 0 such that

k∑
j=2

Wyj ≤ C
1

(1 + |x – y1|)N+2s–η

kη

|y1|η
≤ C

kη

|y1|η
for all x ∈ �+

1

and

k∑
j=2

Wyj
≤ C

1
(1 + |x – y

1
|)N+2s–η

kη

|y
1
|η ≤ C

kη

|y
1
|η for all x ∈ �+

1 .
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