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Abstract
In this article, we deal with a strongly damped von Karman equation with variable
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1 Introduction
In this work, we discuss a viscoelastic von Karman equation with strong damping and
variable exponent source terms,

wtt + �2w –
∫ t

0
h(t – s)�2w(s) ds – �wt

=
[
w,χ (w)

]
+ |w|q(x)–2w in � × (0, T), (1.1)

�2χ (w) = –[w, w] in � × (0, T), (1.2)

w =
∂w
∂ν

= 0, χ (w) =
∂χ (w)

∂ν
= 0 on ∂� × (0, T), (1.3)

w(0) = w0, wt(0) = w1 in �, (1.4)

where � ⊂ R
2 is a bounded domain with sufficiently smooth boundary ∂�, ν = (ν1,ν2)

is the unit normal vector outward to ∂�, the differentiable kernel function h defined on
[0,∞) satisfies h(0) > 0, h(t) ≥ 0, h′(t) ≤ 0, and

1 –
∫ ∞

0
h(s) ds := l > 0.
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The Von Karman bracket [·, ·] is given as

[y, v] = yx1x1 vx2x2 + yx2x2 vx1x1 – 2yx1x2 vx1x2 ,

here x = (x1, x2) ∈ �. The exponent function q(·) is measurable and verifies

∣∣q(x) – q(x)
∣∣ ≤ –

a
log |x – x| for all x, x ∈ � with |x – x| < κ , (1.5)

where a > 0 and 0 < κ < 1, and

2 ≤ q1 := ess inf
x∈�

q(x) ≤ q(x) ≤ q2 := ess sup
x∈�

q(x) < ∞.

The von Karman equations (1.1)–(1.4) model a nonlinear elastic plate by describing the
transversal displacement w and the Airy-stress function χ (w). Von Karman equation also
arises in many applications such as bifurcation theory and shells. The type of von Karman
equations

wtt + �2w –
∫ t

0
h(t – s)�2w(s) ds + g(x, wt) =

[
w,χ (w)

]
(1.6)

associated with different boundary conditions has been intensively treated about existence
and stability (see [5, 8, 9, 16–18] and the references therein). When h = g = 0, the authors of
[8] studied the unique existence of global solution. When g(x, ut) = a(x)ut and h = 0, Horn
and Lasiecka [9] discussed energy decay estimates. When g = 0, Park et al. [18] obtained
the general decay behavior of solutions.

On the other hand, problems with variable exponent source have been attracting great
interest [13–15, 21]. Such problems appear in physical phenomena such as nonlinear elas-
tics [22], electrorheological fluids [20], stationary thermorheological viscous flows of non-
Newtonian fluids [2], and image precessing [1]. Recently, Messaoudi et al. [15] considered
wave equations with source and damping terms of variable exponent,

wtt – �w + a|wt|γ (x)–2wt = b|w|q(x)–2w.

They obtained the local existence of solutions under appropriate conditions on γ (·) and
q(·) by utilizing the Faedo–Galerkin’s technique and the contraction mapping theorem.
Furthermore, they showed that the solution with negative initial energy blows up in a fi-
nite time. Later, Park and Kang [19] improved and complemented the result of [15] by
obtaining a blow-up result of solution with certain positive initial energy for a wave equa-
tion of memory type. We also refer to a recent work [4] for a nonlinear diffusion system
involving variable exponents dependent on spatial and time variables and cross-diffusion
terms. At this point, it is worthwhile to mention that there is little work concerning global
nonexistence of solutions for viscoelastic von Karman equations with variable source ef-
fect. Particularly, there is no literature concerning blow-up results of solutions with high
initial energy for the equations. Thus, in this article, we establish blow-up results of solu-
tions with three levels of initial energy such as non-positive initial energy, certain positive
initial energy, and high initial energy. Furthermore, we estimate not only the upper bound
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but also the lower bound of the blow-up time. These are inspired by the ideas of [23],
where the authors proved blow-up results of solutions with high initial energy and esti-
mated bounds of existence time of solutions for wave equation with logarithmic nonlinear
source term.

The outline of this article is here. In Sect. 2, we state some definitions, notations, and
auxiliary lemmas. In Sect. 3, we construct blow-up results and obtain bounds of the blow-
up time.

2 Preliminaries
We denote (y, v) =

∫
�

y(x)v(x) dx, ‖y‖2
2 = (y, y). Generally, we denote by ‖ · ‖Y the norm of

a space Y . For simplicity, we write ‖ · ‖Lp(�) by ‖ · ‖p. If there is no ambiguity, we will omit
the variables t and x. Let B1 and B2 be the constants with

‖y‖2 ≤ B1‖∇y‖2 for y ∈ H1
0 (�), ‖∇y‖2 ≤ B2‖�y‖2 for y ∈ H2

0 (�). (2.1)

For a measurable function p : � ⊂R
n → [1,∞], the Lebesgue space

Lp(·)(�) =
{

y : � →R

∣∣∣ y is measurable in �,
∫

�

∣∣δy(x)
∣∣p(x) dx < ∞ for some δ > 0

}

is a Banach space equipped with Luxembourg-type norm

‖y‖p(·) = inf

{
δ > 0

∣∣∣
∫

�

∣∣∣∣y(x)
δ

∣∣∣∣
p(x)

dx ≤ 1
}

.

Lemma 2.1 ([3]) If 1 < p1 := ess infx∈� p(x) ≤ p(x) ≤ p2 := ess supx∈� p(x) < ∞, then

min
{‖y‖p1

p(·),‖y‖p2
p(·)

} ≤
∫

�

∣∣y(x)
∣∣p(x) dx ≤ max

{‖y‖p1
p(·),‖y‖p2

p(·)
}

for any y ∈ Lp(·)(�).

Since dim(�) = 2, the embedding H2
0 (�) ↪→ Lq(·)(�) (2 ≤ q(x) < ∞) is continuous and

compact [11]. We let B be the constant of the embedding inequality

‖y‖q(·) ≤ B‖�y‖2 for y ∈ H2
0 (�). (2.2)

See [6, 7, 11] for more properties of a Lebesgue space with variable exponent.

Lemma 2.2 ([9], Lemma 2.1) If y ∈ H2(�), then χ (y) ∈ W 2,∞(�) and ‖χ (y)‖W 2,∞(�) ≤
a1‖y‖2

H2(�).

Lemma 2.3 ([8], p. 270) If y ∈ H2(�) and v ∈ W 2,∞(�), then [y, v] ∈ L2(�) and ‖[y, v]‖2 ≤
a2‖y‖H2(�)‖v‖W 2,∞(�).

Lemma 2.4 ([5]) Let y1, y2, y3 ∈ H2(�). If at least one of them is an element of H2
0 (�), then

∫
�

[y1, y2]y3 dx =
∫

�

[y1, y3]y2 dx.
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By combining the arguments of [10, 19], for every (w0, w1) ∈ H2
0 (�) × L2(�), we can get

a unique local solution w of problem (1.1)–(1.4) with w ∈ C(0, T ; H2
0 (�)) ∩ C1(0, T ; L2(�))

and wt ∈ L2(0, T ; H1
0 (�)).

3 Blow-up results
In this section, we establish blow-up results of solutions with three levels of initial energy
and estimate bounds of blow-up time. For this, we need ab auxiliary lemma.

Lemma 3.1 ([12]) Let B(t) be a positive, twice differentiable function verifying

B(t)B′′(t) – (1 + θ )
(
B′(t)

)2 ≥ 0

for t > 0, where θ is a positive constant. If B(0) > 0 and B′(0) > 0, then there exists a T1 ≤
B(0)

θB′(0) with limt→T–
1

B(t) = ∞.

Taking the scalar product (1.1) by wt in L2(�) and using (1.3), we get

d
dt

(
1
2
‖wt‖2

2 +
1
2
‖�w‖2

2 –
∫

�

|w|q(x)

q(x)
dx

)
–

∫ t

0
h(t – s)

(
�w(s),�wt(t)

)
ds

= –‖∇wt‖2
2 +

([
w,χ (w)

]
, wt

)
.

From Lemma 2.4, (1.2) and (1.3), we have

([
w,χ (w)

]
, wt

)
=

1
2

(
d
dt

[w, w],χ (w)
)

= –
1
4

d
dt

∥∥�χ (w)
∥∥2

2.

Using this and the relation

–
∫ t

0
h(t – s)

(
�w(s),�wt(t)

)
ds

=
1
2

d
dt

{
(h ◦ �w) –

(∫ t

0
h(s) ds

)
‖�w‖2

2

}
+

h(t)
2

‖�w‖2
2 –

1
2
(
h′ ◦ �w

)
,

we get

E′(t) = –‖∇wt‖2
2 –

h(t)
2

‖�w‖2
2 +

1
2
(
h′ ◦ �w

) ≤ –‖∇wt‖2
2 ≤ 0, t ∈ [0, T∗) (3.1)

and

E(t) +
∫ t

0

∥∥∇wt(s)
∥∥2

2 ds ≤ E(0), t ∈ [0, T∗), (3.2)

where

E(t) =
1
2
‖wt‖2

2 +
1
2

(
1 –

∫ t

0
h(s) ds

)
‖�w‖2

2 +
1
2

(h ◦ �w)

+
1
4
∥∥�χ (w)

∥∥2
2 –

∫
�

|w|q(x)

q(x)
dx, (3.3)
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here

(h ◦ �w)(t) =
∫ t

0
h(t – s)

∥∥�w(t) – �w(s)
∥∥2

2 ds,

and T∗ = sup{T : [0, T] is the existence interval of the solution to (1.1)–(1.4)}.

3.1 Case of non-positive initial energy
Theorem 3.1 Let q1 ≥ 4 and the kernel function h satisfy

∫ ∞

0
h(s) ds ≤ q1(q1 – 2)

q1(q1 – 2) + 1
. (3.4)

Let one of the following hold.
(i) E(0) < 0;

(ii) E(0) = 0 and (w0, w1) > 2‖∇w0‖2
2

q1–2 .
Then the solution w of problem (1.1)–(1.4) blows up in a finite time T∗, that is,

lim
t→T–∗

∥∥�w(t)
∥∥

2 = ∞. (3.5)

In addition, T∗ satisfies

T∗ ≤ 2‖w0‖2
2 + 2αβ2

(q1 – 2){(w0, w1) + αβ} – 2‖∇w0‖2
2

, (3.6)

where

⎧⎨
⎩

0 < α ≤ –2E(0) and β > max{0, – (w0,w1)
α

, 2‖∇w0‖2
2–(q1–2)(w0,w1)

q1–2 } if E(0) < 0;

α = 0 if E(0) = 0 and (w0, w1) > 2‖∇w0‖2
2

q1–2 .
(3.7)

Proof Suppose that w is global. For 0 < T < T∗, we define a function F on [0, T] by

F(t) = ‖w‖2
2 +

∫ t

0

∥∥∇w(s)
∥∥2

2 ds + (T – t)‖∇w0‖2
2 + α(t + β)2, (3.8)

where α ≥ 0 and β > 0 are the constants satisfying (3.7), then

F(t) > 0 for t ∈ [0, T], (3.9)

F ′(t) = 2(w, wt) + 2
∫ t

0

(∇w(s),∇wt(s)
)

ds + 2α(t + β), (3.10)

and

F ′′(t) = 2‖wt‖2
2 – 2

(
1 –

∫ t

0
h(s) ds

)
‖�w‖2

2 + 2
(
w,

[
w,χ (w)

])
+ 2

∫
�

|w|q(x) dx

– 2
∫ t

0
h(t – s)

(
�w(t),�w(t) – �w(s)

)
ds + 2α.
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From Lemma 2.4, (1.2), and (1.3), we have

2
(
w,

[
w,χ (w)

])
= 2

(
[w, w],χ (w)

)
= –2

∥∥�χ (w)
∥∥2

2.

Thus, we get

F ′′(t) = 2‖wt‖2
2 – 2

(
1 –

∫ t

0
h(s) ds

)
‖�w‖2

2 – 2
∥∥�χ (w)

∥∥2
2 + 2

∫
�

|w|q(x) dx

– 2
∫ t

0
h(t – s)

(
�w(t),�w(t) – �w(s)

)
ds + 2α. (3.11)

Using the inequality (aξ1 + bξ2 + cξ3)2 ≤ (a2 + b2 + c2)(ξ 2
1 + ξ 2

2 + ξ 2
3 ) and (3.8), we get

(
F ′(t)

)2 ≤ 4F(t)
(

‖wt‖2
2 +

∫ t

0

∥∥∇wt(s)
∥∥2

2 ds + α

)
. (3.12)

Using (3.11), (3.12), (3.3), (3.2), and Young’s inequality, one finds

F(t)F ′′(t) –
q1 + 2

4
(
F ′(t)

)2

≥ F(t)
{

–q1‖wt‖2
2 – 2

(
1 –

∫ t

0
h(s) ds

)
‖�w‖2

2 – 2
∥∥�χ (w)

∥∥2
2 + 2

∫
�

|w|q(x) dx

– 2
∫ t

0
h(t – s)

(
�w(t),�w(t) – �w(s)

)
ds – (q1 + 2)

∫ t

0

∥∥∇wt(s)
∥∥2

2 ds – q1α

}

= F(t)
{

–2q1E(t) + (q1 – 2)
(

1 –
∫ t

0
h(s) ds

)
‖�w‖2

2 + q1(h ◦ �w)

– 2
∫ t

0
h(t – s)

(
�w(t),�w(t) – �w(s)

)
ds +

(
q1

2
– 2

)∥∥�χ (w)
∥∥2

2

– (q1 + 2)
∫ t

0

∥∥∇wt(s)
∥∥2

2 ds – 2q1

∫
�

|w|q(x)

q(x)
dx + 2

∫
�

|w|q(x) dx – q1α

}

≥ F(t)
{

–2q1E(0) + (q1 – 2)
(

1 –
∫ t

0
h(s) ds

)
‖�w‖2

2 + q1(h ◦ �w)

– 2
∫ t

0
h(t – s)

(
�w(t),�w(t) – �w(s)

)
ds +

(
q1

2
– 2

)∥∥�χ (w)
∥∥2

2

+ (q1 – 2)
∫ t

0

∥∥∇wt(s)
∥∥2

2 ds – 2q1

∫
�

|u|q(x)

q(x)
dx + 2

∫
�

|w|q(x) dx – q1α

}
. (3.13)

Using the relations

–2q1

∫
�

|w|q(x)

q(x)
dx ≥ –2

∫
�

|w|q(x) dx

and

–2
∫ t

0
h(t – s)

(
�w(t),�w(t) – �w(s)

)
ds ≥ –ε(h ◦ �w) –

1
ε

(∫ t

0
h(s) ds

)
‖�w‖2

2



Park Boundary Value Problems         (2021) 2021:63 Page 7 of 14

for ε > 0, we infer

F(t)F ′′(t) –
q1 + 2

4
(
F ′(t)

)2 ≥ F(t)G(t), (3.14)

where

G(t) = –2q1E(0) – q1α + (q1 – ε)(h ◦ �w)

+
{

(q1 – 2) –
(

q1 – 2 +
1
ε

)∫ t

0
h(s) ds

}
‖�w‖2

2. (3.15)

Taking ε = q1 in (3.15), and using (3.4) and (3.7), we find

G(t) ≥ –2q1E(0) +
{

(q1 – 2) –
(

q1 – 2 +
1
q1

)∫ t

0
h(s) ds

}
‖�w‖2 – q1α ≥ 0.

From the condition (3.7), it is clear that

F ′(0) = 2(w0, w1) + 2αβ > 0.

Thus, applying Lemma 3.1, we get the existence of T∗ satisfying

T∗ ≤ 4F(0)
(q1 – 2)F ′(0)

=
2(‖w0‖2

2 + T‖∇w0‖2
2 + αβ2)

(q1 – 2){(w0, w1) + αβ} (3.16)

and

lim
t→T–∗

F(t) = ∞,

which gives

lim
t→T–∗

∥∥�w(t)
∥∥

2 = ∞.

Moreover, using (3.16) and the relation 0 < T < T∗, we see

T∗ ≤ 2(‖w0‖2
2 + T∗‖∇w0‖2

2 + αβ2)
(q1 – 2){(w0, w1) + αβ} .

This gives (3.6) under the condition β given in (3.7). �

3.2 Case of certain positive initial energy
We set

B = max

{
1,

B√
l

}
, η1 =

(
1
B

) q1
q1–2

, E1 =
(q1 – 2)η2

1
2q1

, (3.17)

where B is the embedding constant given in (2.2), and define a function g by

g(η) =
1
2
η2 –

Bq1

q1
ηq1 . (3.18)
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Then one knows
(i) g(0) = 0 and limη→+∞ g(η) = –∞,

(ii) g is increasing on (0,η1) and decreasing on (η1,∞),
(iii) g has the maximum value g(η1) = E1.

Lemma 3.2 Let w be the solution of problem (1.1)–(1.4). Assume that

E(0) < E1 and η1 <
√

l‖�w0‖2 ≤ 1
B

. (3.19)

Then there exists a constant η∗ > η1 such that

l‖�w‖2
2 ≥ η2

∗ for 0 ≤ t < T∗. (3.20)

Proof From (3.3), Lemma 2.1, (2.2) and (3.17), we have

E(t) ≥ 1
2

(
1 –

∫ t

0
h(s) ds

)
‖�w‖2

2 –
∫

�

|w|q(x)

q(x)
dx

≥ l
2
‖�w‖2

2 –
1
q1

max
{‖w‖q1

q(·),‖w‖q2
q(·)

}

≥ l
2
‖�w‖2

2 –
1
q1

max
{

Bq1‖�w‖q1
2 , Bq2‖�w‖q2

2
}}

≥ 1
2
(√

l‖�w‖2
)2 –

1
q1

max
{

Bq1(√l‖�w‖2
)q1 , Bq2(√l‖�w‖2

)q2}

= f
(√

l‖�w‖2
)
, (3.21)

where

f (η) =
1
2
η2 –

1
q1

max
{

Bq1
ηq1 , Bq2

ηq2
}

.

It is easily seen that

f (η) = g(η) for 0 ≤ η ≤ 1
B

. (3.22)

Since E(0) < E1, there exists η∗ > η1 such that

E(0) = g(η∗). (3.23)

From (3.23), (3.21), and (3.19), we observe

g(η∗) = E(0) ≥ f
(√

l‖�w0‖2
)

= g
(√

l‖�w0‖2
)
.

Since g is decreasing on (η1,∞), we see that

η∗ ≤ √
l‖�w0‖2.



Park Boundary Value Problems         (2021) 2021:63 Page 9 of 14

From (3.19), we also know

η1 < η∗ ≤ 1
B

. (3.24)

We will show (3.20) by contradiction. Suppose that there exists t0 ∈ [0, T∗) such that

√
l
∥∥�w(t0)

∥∥
2 < η∗.

Because the solution w is continuous in t, there exists t1 > 0 such that

η1 <
√

l
∥∥�w(t1)

∥∥
2 < η∗. (3.25)

Noting that g is decreasing on (η1,∞) and using (3.23), (3.25), (3.22), (3.24), (3.21), (3.1),
we get

E(0) = g(η∗) < g
(√

l
∥∥�w(t1)

∥∥
2

)
= f

(√
l
∥∥�w(t1)

∥∥
2

) ≤ E(t1) ≤ E(0).

This is a contradiction. �

Theorem 3.2 Let the conditions of Lemma 3.2 are valid. If E(0) = γ E1, where 0 < γ < 1,
and

∫ ∞

0
h(s) ds ≤ q1 – 2

q1 – 2 + 1
(1–γ )2q1+2γ (1–γ )

, (3.26)

the solution w to problem (1.1)–(1.4) blows up in a finite time T∗. Moreover, T∗ satisfies

T∗ ≤ 2‖w0‖2
2 + 2αβ2

(q1 – 2){(w0, w1) + αβ} – 2‖∇w0‖2
2

,

where

0 < α ≤ γ λ(q1 – 2)
q1

, and

β > max

{
0, –

(w0, w1)
α

,
2‖w0‖2

2 – (q1 – 2)(w0, w1)
q1 – 2

}
,

(3.27)

here 0 < λ < η2∗ – η2
1.

Proof Let F be the function given in (3.8) with (3.27). Then (3.9), (3.10), (3.11), (3.14), and
(3.15) are valid. Taking ε = (1 – γ )q1 + 2γ in (3.15), we have

G(t) ≥ –2q1E(0) – q1α + γ (q1 – 2)(h ◦ �w)

+
{

(q1 – 2) –
(

q1 – 2 +
1

(1 – γ )q1 + 2γ

)∫ t

0
h(s) ds

}
‖�w‖2

2. (3.28)

The condition (3.26) implies

(q1 – 2) –
(

q1 – 2 +
1

(1 – γ )q1 + 2γ

)∫ t

0
h(s) ds ≥ γ (q1 – 2)

(
1 –

∫ ∞

0
h(s) ds

)
.
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Since w is continuous in t, Lemma 3.2 guarantees the existence of λ > 0 with

η2
1 + λ < η2

∗ ≤ l‖�w‖2
2 for all t ∈ [0, T].

Adapting these too, noting the definition of E1 given in (3.17), and using (3.27), we have

G(t) ≥ –2q1E(0) – q1α + γ (q1 – 2)l‖�w‖2
2

≥ –2q1γ E1 – q1α + γ (q1 – 2)
(
η2

1 + λ
)

= γ (q1 – 2)λ – q1α ≥ 0.

By the same argument of Theorem 3.1, we complete the proof. �

3.3 Case of high initial energy
Lemma 3.3 If q1 ≥ 4 and h satisfies (3.4), it fulfills

(
(w, wt) –

2q1 + kB2
2

2kQ
E(t)

)
≥ ert

(
(w0, w1) –

2q1 + kB2
2

2kQ
E(0)

)
for t ∈ [0, T∗), (3.29)

here

Q = (q1 – 2) –
(

q1 – 2 +
1
q1

)
(1 – l),

k = min

{
q1 + 2
q1 – 2

,
1

B2
1B2

2

}
, r =

2kq1Q
2q1 + kB2

2
.

(3.30)

Proof Using (1.1)–(1.4) and Young’s inequality, we get

d
dt

(w, wt) = ‖wt‖2
2 –

(
1 –

∫ t

0
h(s) ds

)
‖�w‖2

2 – (∇w,∇wt) –
∥∥�χ (w)

∥∥2
2

+
∫ t

0
h(t – s)

(
�w(s) – �w(t),�w(t)

)
ds +

∫
�

|w|q(x) dx

≥ ‖wt‖2
2 –

{(
1 –

∫ t

0
h(s) ds

)
+

1
2q1

∫ t

0
h(s) ds

}
‖�w‖2

2 –
∥∥�χ (w)

∥∥2
2

–
δ

2
‖∇w‖2

2 –
1
2δ

‖∇wt‖2
2 –

q1

2
(h ◦ �w) +

∫
�

|w|q(x) dx (3.31)

for δ > 0. From (3.3), we observe

∫
�

|w|q(x) dx ≥ –q1E(t) +
q1

2
‖wt‖2

2 +
q1

2

(
1 –

∫ t

0
h(s) ds

)
‖�w‖2

2

+
q1

2
(h ◦ �w) +

q1

4
∥∥�χ (w)

∥∥2
2.

Applying this to (3.31) and using (3.1), we have

d
dt

(w, wt) ≥ q1 + 2
2

‖wt‖2
2 +

1
2δ

E′(t) – q1E(t)
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+
[{

(q1 – 2) –
(

q1 – 2 +
1
q1

)∫ t

0
h(s) ds

}
B–2

2 – δ

]‖∇w‖2
2

2

≥ q1 + 2
2

‖wt‖2
2 +

1
2δ

E′(t) – q1E(t)

+
1

2B2
1B2

2

[{
(q1 – 2) –

(
q1 – 2 +

1
q1

)∫ t

0
h(s) ds

}
– B2

2δ

]
‖w‖2

2.

Recalling (3.30), we have

d
dt

(
(w, wt) –

1
2δ

E(t)
)

≥ q1 + 2
2

‖wt‖2
2 +

Q – B2
2δ

2B2
1B2

2
‖w‖2

2 – q1E(t)

≥ k(q1 – 2)
2

‖wt‖2
2 +

k(Q – B2
2δ)

2
‖w‖2

2 – q1E(t)

≥ k(Q – B2
2δ)

2
(‖wt‖2

2 + ‖w‖2
2
)

– q1E(t)

≥ k
(
Q – B2

2δ
)(

(w, wt) –
q1

k(Q – B2
2δ)

E(t)
)

for 0 < δ <
Q
B2

2
.

Taking

δ =
kQ

2q1 + kB2
2

,

we find

d
dt

(
(w, wt) –

2q1 + kB2
2

2kQ
E(t)

)
≥ 2kq1Q

2q1 + kB2
2

(
(w, wt) –

2q1 + kB2
2

2kQ
E(t)

)
.

This completes the proof. �

Theorem 3.3 Let q1 ≥ 4 and h satisfy (3.4). If 0 < E(0) < 2kQ
2q1+kB2

2
(w0, w1), then the solution

w blows up in a finite time T∗. Moreover, if E(0) < Q‖u0‖2
2

2q1B2
1B2

2
, then T∗ satisfies

T∗ ≤ 2‖w0‖2
2 + 2αβ2

(q1 – 2){(w0, w1) + αβ} – 2‖∇w0‖2
2

,

where

0 < α ≤ –2q1B2
1B2

2E(0) + Q‖w0‖2
2

q1B2
1B2

2
and

β > max

{
0,

–(q1 – 2)(w0, w1) + 2‖∇w0‖2
2

(q1 – 2)α

}
.

(3.32)
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Proof Suppose that w is global. Then, using (3.2), we get

‖w‖2 ≤ ‖w0‖2 +
∫ t

0

∥∥wt(s)
∥∥

2 ds ≤ ‖w0‖2 + B1t
1
2

(∫ t

0

∥∥∇wt(s)
∥∥2

2 ds
) 1

2

≤ ‖w0‖2 + B2
(
t
(
E(0) – E(t)

)) 1
2 , t ≥ 0. (3.33)

In the case E(t) ≥ 0 for all t ≥ 0, from (3.33), we see

‖w‖2
2 ≤ 2‖w0‖2

2 + 2B2
2E(0)t, t ≥ 0. (3.34)

Applying Lemma 3.3, we also have

‖w‖2
2 = ‖w0‖2

2 + 2
∫ t

0

(
w(s), wt(s)

)
ds

≥ ‖w0‖2
2 + 2

{∫ t

0
ers

(
(w0, w1) –

2q1 + kB2
2

2kQ
E(0)

)
ds +

∫ t

0

2q1 + kB2
2

2kQ
E(s) ds

}

≥ ‖w0‖2
2 + 2

(
(w0, w1) –

2q1 + kB2
2

2kQ
E(0)

)
ert – 1

r
for all t ≥ 0. (3.35)

But this contradicts (3.34) for t appropriately large. In the case E(t1) < 0 for some t1 > 0,
there exists the first t2 > 0 with 0 < t2 < t1 satisfying E(t2) = 0, E(t) > 0 for 0 ≤ t < t2, and
E(t0) < 0 for some t0 > t2. Taking w(t0) as a new initial datum, by Theorem 3.1, the solution
w blows up after the time t0. This also is a contradiction. Consequently, T∗ < ∞.

Let F be the function given in (3.8) with (3.32). Then (3.9), (3.10), (3.11), (3.14), and
(3.15) are also valid. Taking ε = q1 in (3.15) and using (3.35), we have

F(t)F ′′(t) –
q1 + 2

4
(
F ′(t)

)2 ≥ F(t)
(
–2q1E(0) – q1α + Q‖�w‖2

2
)

≥ F(t)
(

–2q1E(0) – q1α +
Q

B2
1B2

2
‖w0‖2

2

)
.

From (3.32), we observe

F(t)F ′′(t) –
q1 + 2

4
(
F ′(t)

)2 ≥ 0.

By the same argument of Theorem 3.1, we complete the proof. �

Theorem 3.4 Let the conditions of one of Theorem 3.1–Theorem 3.3 are satisfied. Then
the blow-up time T∗ verifies

∫ ∞

D(0)

1
2y + d1y3 + d2yq1–1 + d3yq2–1 dy ≤ T∗, (3.36)

where D(0) = ‖w1‖2
2 + ‖�w0‖2

2 and di > 0 (i = 1, 2, 3) are certain constants.

Proof We let

D(t) = ‖wt‖2
2 +

(
1 –

∫ t

0
h(s) ds

)
‖�w‖2

2 + (h ◦ �w). (3.37)
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From (3.5), it is observed

lim
t→T–∗

D(t) ≥ lim
t→T–∗

(‖wt‖2
2 + l‖�w‖2

2
)

= ∞. (3.38)

Using (1.1)–(1.4), one gets

D′(t) = –2‖∇wt‖2
2 – h(t)‖�w‖2

2 +
(
h′ ◦ �w

)
+ 2

(
wt ,

[
w,χ (w)

])
+ 2

∫
�

wt|w|q(x)–2w dx

≤ 2‖wt‖2
2 +

∥∥[
w,χ (w)

]∥∥2
2 +

∫
�

|w|2(q(x)–1) dx. (3.39)

From Lemma 2.2 and Lemma 2.3, we see

∥∥[
w,χ (w)

]∥∥2
2 ≤ (

a2‖w‖H2(�)
∥∥χ (w)

∥∥
W 2,∞(�)

)2

≤ (
a1a2‖w‖3

H2(�)

)2

≤ b1‖�w‖6
2 (3.40)

for some b1 > 0. The last term of (3.39) is estimated as

∫
�

|w|2(q(x)–1) dx ≤
∫

|w|<1
|w|2(q1–1) dx +

∫
|w|≥1

|w|2(q2–1) dx

≤ ‖w‖2(q1–1)
2(q1–1) + ‖w‖2(q2–1)

2(q2–1)

≤ b2‖�w‖2(q1–1)
2 + b3‖�w‖2(q2–1)

2 (3.41)

for some b2, b3 > 0. From (3.39), (3.40), (3.41), and (3.37), we arrive at

D′(t) ≤ 2‖wt‖2
2 + b1‖�w‖6

2 + b2‖�w‖2(q1–1)
2 + b3‖�w‖2(q2–1)

2

≤ 2D(t) + d1
(
D(t)

)3 + d2
(
D(t)

)q1–1 + d3
(
D(t)

)q2–1

for some d1, d2, d3 > 0. Using the integration of substitution and (3.38), we get (3.36). �

4 Conclusion
In this paper, the author considered a viscoelastic von Karman equation with strong damp-
ing and variable exponent source terms. We showed that the solutions with three levels of
initial energy such as non-positive initial energy, certain positive initial energy, and high
initial energy blow up in a finite time. Moreover, we estimated not only the upper bound
but also the lower bound of the blow-up time.
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