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Abstract
This paper is devoted to prove the existence of positive solutions of a second order
differential equation with a nonhomogeneous Dirichlet conditions given by a
parameter dependence integral. The studied problem is a nonlocal perturbation of
the Dirichlet conditions by considering a homogeneous Dirichlet-type condition at
one extreme of the interval and an integral operator on the other one. We obtain the
expression of the Green’s function related to the linear part of the equation and
characterize its constant sign. Such a property will be fundamental to deduce the
existence of solutions of the nonlinear problem. The results hold from fixed point
theory applied to related operators defined on suitable cones.
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1 Introduction
This paper is devoted to the study of the existence of solutions of the following family of
nonlinear second order ordinary differential equations:

u′′(t) + γ u(t) + f
(
t, u(t)

)
= 0, 0 < t < 1, (1)

coupled to the following integral boundary conditions:

u(0) = 0, u(1) = λ

∫ 1

0
u(s) ds, (2)

where γ < π2 and λ ∈R.
To this end, we will distinguish the cases γ = 0, γ > 0 and γ < 0. We will analyze each

of them and give optimal sufficient conditions on γ , λ and f that allow us to ensure the
existence of a solution of the considered problem.

This kind of problems model the behavior of an harmonic oscillator, subject to an exter-
nal force f , which is fixed at the left extreme of the interval and has some mechanism at
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the right one, that controls the displacement according to the feedback from devices mea-
suring the displacements along parts of the oscillator. Integral boundary conditions have
been considered in much work in the literature; see, for instance, [6, 9, 12] (for second and
fourth order ordinary differential equations) or [1, 5, 7, 8] (for fractional equations) and
the references therein.

We refer a function u ∈ C([0, 1]) as a nonnegative solution of problem (1)–(2) if u solves
such problem and u(t) ≥ 0, for all t ∈ [0, 1]. A function u ∈ C([0, 1]) is called positive solu-
tion of problem (1)–(2) if it is a nonnegative solution and u(t) > 0, for all t ∈ (0, 1).

The paper is organized as follows: in Sect. 2, we study the linear part of problem (1)–
(2), where we obtain the explicit expression of the related Green’s function and calculate
the exact values of γ and λ for which the Green’s function has constant sign. In the next
section we prove the existence of positive solutions for the nonlinear problem (1)–(2).
Such solutions are given as the fixed points of a related integral operator defined on a
suitable cone. At the end of this section we show two examples where the applicability of
the obtained results is pointed out.

The following concept will be fundamental in order to deduce our existence results.

Definition 1 Let X be a Banach space. A subset K ⊂ X is a cone if:
• K is closed,
• K + K ⊂ K , λK ⊂ K for all λ ≥ 0 and K ∩ (–K) = {0}.

We will use the celebrated expansion/contraction theorem of Krasnosels’kĭı [10].

Theorem 2 (Krasnosels’kĭı) Let X be a Banach space and K ⊂ X a cone in X. Let �1,�2 ⊂
X open bounded such that 0 ∈ �1 ⊂ �1 ⊂ �2 and T : K ∩ (�2 \ �1) → K a compact oper-
ator that satisfies one of the following properties:

1. ‖T(u)‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂�1 and ‖T(u)‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂�2.
2. ‖T(u)‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂�1 and ‖T(u)‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂�2.

Then T has a fixed point at K ∩ (�2 \ �1).

2 Linear part: Green’s function
In this section we obtain the expression of the related Green’s function of the linear part
of problem (1)–(2) and deduce some important properties that will be fundamental to ob-
tain the existence of positive solutions of the nonlinear problem. To this end, we consider
separately three cases depending on the sign of the real parameter γ . To do this, we will
follow a treatment of a similar problem studied in [5] for fractional equations.

2.1 Case γ = 0
In this subsection, we obtain the expression of the Green’s function related to the linear
problem

u′′(t) + σ (t) = 0, 0 < t < 1, (3)

coupled to the boundary conditions (2).
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Theorem 3 Let λ �= 2 and σ ∈ C([0, 1]), then problem (3), (2) has a unique solution u ∈
C2([0, 1]), which is given by the following expression:

u(t) =
∫ 1

0
G(t, s)σ (s) ds,

where

G(t, s) =

⎧
⎨

⎩

t(1–s)(2–λ+λs)–(2–λ)(t–s)
2–λ

, 0 ≤ s ≤ t ≤ 1,
t(1–s)(2–λ+λs)

2–λ
, 0 ≤ t < s ≤ 1.

(4)

Proof By using the fundamental theorem of integral calculus to Eq. (3), together with Fu-
bini’s theorem, we arrive at the following expression:

u(t) = –
∫ t

0
(t – s)σ (s) ds + c1t + c2.

Since u(0) = 0, we deduce that c2 = 0.
Now, the boundary condition at t = 1 implies that

λ

∫ 1

0
u(s) ds = u(1) = –

∫ 1

0
(1 – s)σ (s) ds + c1

so

c1 =
∫ 1

0
(1 – s)σ (s) ds + λ

∫ 1

0
u(s) ds.

As a consequence

u(t) = –
∫ t

0
(t – s)σ (s) ds + t

∫ 1

0
(1 – s)σ (s) ds + λt

∫ 1

0
u(s) ds. (5)

By denoting A =
∫ 1

0 u(s) ds, we have

A =
∫ 1

0
u(t) dt = –

∫ 1

0

∫ t

0
(t – s)σ (s) ds dt +

∫ 1

0

∫ 1

0
t(1 – s)σ (s) ds dt + λA

∫ 1

0
t dt.

Thus,

A = –
∫ 1

0

∫ 1

s
(t – s)σ (s) dt ds +

∫ 1

0

∫ 1

0
t(1 – s)σ (s) dt ds +

λ

2
A

= –
∫ 1

0

(1 – s)2

2
σ (s) ds +

∫ 1

0

(1 – s)
2

σ (s) ds +
λ

2
A.

Then

A =
2

2 – λ

(
–

∫ 1

0

(1 – s)2

2
σ (s) ds +

∫ 1

0

(1 – s)
2

σ (s) ds
)

= –
1

2 – λ

∫ 1

0
(1 – s)2σ (s) ds +

1
2 – λ

∫ 1

0
(1 – s)σ (s) ds.



Cabada and Iglesias Boundary Value Problems         (2021) 2021:66 Page 4 of 19

Substituting this value in (5), we obtain the expression of the solution u as follows:

u(t) = –
∫ t

0
(t – s)σ (s) ds + t

∫ 1

0
(1 – s)σ (s) ds –

λ

2 – λ
t
∫ 1

0
(1 – s)2σ (s) ds

+
λ

2 – λ
t
∫ 1

0
(1 – s)σ (s) ds

= –
∫ t

0
(t – s)σ (s) ds + t

∫ 1

0

(1 – s)(2 + λ(s – 1))
2 – λ

σ (s) ds

=
∫ t

0

t(1 – s)(2 + λs – λ)) – (2 – λ)(t – s)
2 – λ

σ (s) ds

+
∫ 1

t

t(1 – s)(2 + λs – λ))
2 – λ

σ (s) ds =
∫ 1

0
G(t, s)σ (s) ds. �

In the sequel, we will state two lemmas related to the properties of the Green’s function
that will be useful to prove the existence of a positive solution of the nonlinear problem
(1)–(2) with γ = 0.

Lemma 4 Let G be the Green’s function related to problem (3), (2), given by Eq. (4). Then,
for all λ �= 2, the following properties are fulfilled:

1. G(0, s) = G(t, 0) = G(t, 1) = 0, for all t, s ∈ [0, 1].
2. G(t, s) is continuous on [0, 1] × [0, 1].
3. G(1, s) = 0 for all s ∈ (0, 1) if and only if λ = 0.
4. (2 – λ)G(1, s) > 0 for all s ∈ (0, 1) if and only if λ > 0.
5. (2 – λ)G(s, s) > 0 for all s ∈ (0, 1) if and only if λ < 2.
6. G(t, s) > 0 for all t, s ∈ (0, 1) if and only if λ ∈ [0, 2).
7. G(t, s) changes sign on (0, 1) × (0, 1) for all λ /∈ [0, 2).
8. For all λ ∈ [0, 2), G(t, s) ≤ 1

2(2–λ) , ∀t, s ∈ [0, 1].

Proof Properties 1. and 2. are immediate. Let us now prove the remaining properties:
3. Let s ∈ (0, 1), then G(1, s) = 0 if and only if λs(1 – s) = 0, i.e. λ = 0.
4. The result holds trivially from the fact that

(2 – λ)G(1, s) = λs(1 – s), for all s ∈ (0, 1). (6)

5. The result is immediately deduced from the following equality:

(2 – λ)G(s, s) = s(1 – s)
(
2 – λ(1 – s)

)
, for all s ∈ (0, 1). (7)

6. Since G(t, s) is linear on t, for all s ∈ [0, 1] fixed, G(t, s) attains its maximum and
minimum at t = 0, t = s or at t = 1.

From Property 1., we have G(0, s) = 0 for all s ∈ [0, 1].
From Property 5., we have G(s, s) > 0 for all s ∈ (0, 1), if and only if λ < 2.
From Property 4., we have G(1, s) > 0 for all s ∈ (0, 1), if and only if λ ∈ (0, 2).
As a consequence of the three previous assertions and Property 3., this property

holds.
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7. From (6) it is clear that G(1, s) < 0 for all s ∈ (0, 1), if and only if λ /∈ (0, 2).
From (7) it is clear that G(s, s) > 0 for all s ∈ (0, 1) and λ ≤ 0 and, moreover, if λ > 2,

we have G(s, s) > 0 for s ∈ (0, 1) close enough to 0. Thus, this property is fulfilled.
8. From Property 6., we know that G(t, s) > 0 for all (t, s) ∈ (0, 1) × (0, 1). As in

Property 6., we know that the maximum values will be attained at G(s, s) and/or
G(1, s). Now, since

(2 – λ)G(s, s) = s(1 – s)
(
2 – λ(1 – s)

)
= 2s(1 – s) – λs(1 – s)2 ≤ 2s(1 – s) ≤ 1

2

and

(2 – λ)G(1, s) = λs(1 – s) ≤ λ

4
<

1
2

,

the proof is concluded. �

In the sequel, we deduce two sharp inequalities for the positiveness of the Green’s func-
tion.

Lemma 5 Let λ ∈ (0, 2) and G(t, s) be the Green’s function related to problem (3), (2), given
by Eq. (4). Then the following properties hold:

tG(1, s) ≤ G(t, s) ≤ 2
λ

G(1, s), for all s, t ∈ [0, 1]. (8)

Proof For t = 0 t = 1, s = 0 or s = 1 the inequalities follow immediately from Properties 1.
and 4. in Lemma 4.

Now let t, s be such that 0 < t ≤ s < 1. In this case

h(t, s) :=
G(t, s)
G(1, s)

=
t(2 – λ(1 – s))

λs
= t

(
1 +

2 – λ

λs

)
.

As a consequence, we have

t < t
(

1 +
2 – λ

λs

)
= h(t, s) ≤ t

2
λs

=
2
λ

t
s

≤ 2
λ

.

Consider now the case 0 < s ≤ t < 1, using s ≥ ts, we conclude that

h(t, s) =
t(1 – s)(2 – λ(1 – s)) – (2 – λ)(t – s)

λs(1 – s)

≥ t(1 – s)(2 – λ(1 – s)) – (2 – λ)(t – ts)
λs(1 – s)

=
t(1 – s)[2 – λ(1 – s) – (2 – λ)]

λs(1 – s)
= t.

Moreover,

lim
t→s+

h(t, s) =
2 – λ(1 – s)

λ
≤ 2

λ
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and

lim
t→1–

h(t, s) =
(1 – s)[(2 – λ(1 – s)) – (2 – λ)]

λs(1 – s)
= 1.

On the other hand, since h(t, s) is a nonnegative, continuous and linear function with
respect to t, we deduce

t ≤ h(t, s) ≤ max
{

lim
t→1–

h(t, s), lim
t→s+

h(t, s)
}

=
2
λ

.

From Property 4. in Lemma 4, we conclude that the inequalities (8) are satisfied. �

2.2 Case γ > 0
In this subsection, we will obtain the expression of the Green’s function related to the
problem

u′′(t) + m2u(t) + σ (t) = 0, 0 < t < 1, (9)

coupled to the boundary conditions (2).

Theorem 6 Let λ �= m sin m
1–cos m , m > 0, m �= 2kπ , k = 1, 2, . . . , and σ ∈ C([0, 1]). Then problem

(9), (2) has a unique solution u ∈ C2([0, 1]), which is given by

u(t) =
∫ 1

0
Gm(t, s)σ (s) ds,

where

Gm(t, s) =

⎧
⎨

⎩
G1

m(t, s), 0 ≤ s ≤ t ≤ 1,

G2
m(t, s), 0 ≤ t < s ≤ 1.

(10)

Here, if m �= kπ , k ∈N odd,

G1
m(t, s) =

sin(ms)[sin(m – mt)(m sin m – λ(1 – cos m)) + λ sin(mt)]
m sin m(m sin m – λ(1 – cos m))

+
λ sin(mt)(sin(m – ms) – sin m)

m sin m(m sin m – λ(1 – cos m))

and

G2
m(t, s) =

sin(mt)[sin(m – ms)(m sin m + λ cos m) + λ(sin(ms) – sin m)]
m sin m(m sin m – λ(1 – cos m))

,

and, if m = kπ , for some k ∈N odd,

G1
kπ (t, s) =

2λ sin(πks) cos(πkt) + sin(πkt)(λ(– cos(πks)) – πk sin(πks) + λ)
2πkλ

and

G2
kπ (t, s) =

sin(πkt)(λ cos(πks) – πk sin(πks) + λ)
2πkλ

.
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Proof It is immediate to verify that the spectrum of problem (9), (2) is given by the fol-
lowing pairs on the plane (m,λ):

1. (m, m sin m
1–cos m ), m > 0, m �= 2kπ , k = 1, 2, . . .

2. (2kπ ,λ), λ ∈ R, k = 1, 2, . . .
Consider the case m �= kπ , k ∈N odd, and let v be the unique solution of

⎧
⎨

⎩
v′′(t) + m2v(t) + σ (t) = 0, 0 < t < 1,

v(0) = 0, v(1) = 0,

and w be defined as the unique solution of

⎧
⎨

⎩
w′′(t) + m2w(t) = 0, 0 < t < 1,

w(0) = 0, w(1) = 1,

then it is not difficult to verify that u(t) = v(t) + (λ
∫ 1

0 u(s) ds)w(t) is a solution of (9), (2).
In [3] there has been constructed and algorithm to calculate the exact expression of the

Green’s function related to any nth order differential equation, with constant coefficients
coupled to arbitrary two-point linear boundary conditions. Such algorithm has been de-
veloped in a Mathematica package that is available in [4]. So, using this package, we obtain

v(t) =
∫ 1

0
Gv

m(t, s)σ (s) ds,

where

Gv
m(t, s) =

⎧
⎨

⎩

sin(ms) sin(m–mt)
m sin m , 0 ≤ s ≤ t ≤ 1,

sin(m–ms) sin(mt)
m sin m , 0 ≤ t < s ≤ 1.

It is immediate to verify that

w(t) =
sin(mt)
sin m

.

Thus,

u(t) =
∫ 1

0
Gv

m(t, s)σ (s) ds +
λ

sin m

(∫ 1

0
u(s) ds

)
sin(mt). (11)

Denoting A =
∫ 1

0 u(s) ds, we deduce from the previous expression that

A =
∫ 1

0
u(t) dt

=
∫ 1

0

∫ 1

0
Gv

m(t, s)σ (s) ds dt +
λ

sin m
A

∫ 1

0
sin(mt) dt

=
∫ 1

0

∫ t

0

sin(ms) sin(m – mt)
m sin m

σ (s) ds dt +
∫ 1

0

∫ 1

t

sin(m – ms) sin(mt)
m sin m

σ (s) ds dt
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+
λ

sin m
A

∫ 1

0
sin(mt) dt =

∫ 1

0

sin(ms)(1 – cos(m – ms))
m2 sin m

σ (s) ds

+
∫ 1

0

sin(m – ms)(1 – cos(ms))
m2 sin m

σ (s) ds + A
λ

sin m
1 – cos m

m
.

As a consequence, it follows that

A =
(

1 –
λ(1 – cos m)

m sin m

)–1 ∫ 1

0

sin(ms) + sin(m – ms) – sin m
m2 sin m

σ (s) ds

=
∫ 1

0

sin(ms) + sin(m – ms) – sin m
m(m sin m – λ(1 – cos m))

σ (s) ds.

Substituting this value in (11) we obtain the following expression:

u(t) =
∫ t

0

sin(ms) sin(m – mt)
m sin m

σ (s) ds +
∫ 1

t

sin(m – ms) sin(mt)
m sin m

σ (s) ds

+
∫ 1

0

sin(ms) + sin(m – ms) – sin m
m(m sin m – λ(1 – cos m))

λ sin(mt)
sin m

σ (s) ds

=
∫ t

0

(
sin(ms)[sin(m – mt)(m sin m – λ(1 – cos m)) + λ sin(mt)]

m sin m(m sin m – λ(1 – cos m))

+
λ sin(mt)(sin(m – ms) – sin m)

m sin m(m sin m – λ(1 – cos m))

)
σ (s) ds

+
∫ 1

t

sin(mt)[sin(m – ms)(m sin m + λ cos m) + λ(sin(ms) – sin m)]
m sin m(m sin m – λ(1 – cos m))

σ (s) ds

=
∫ 1

0
Gm(t, s)σ (s) ds.

The uniqueness of the Green’s function is deduced from the uniqueness of functions v
and w.

The expressions of the Green’s function for m = kπ , with k ∈ N odd, follow by taking
the limit of the expressions of G1

m and G2
m when m goes to kπ . By direct calculations, it is

immediate to verify that such function satisfies the properties of the Green’s function of
problem (9), (2) with m = kπ , k ∈N odd. �

In the same way as in the case γ = 0, we will now state different results about the prop-
erties of the Green’s function that we have just obtained. As before, we will try to give
conditions that allow us to ensure that the Green’s function attains a constant sign. To
this end, we will use the following property, which is a direct consequence of the Sturm
comparison theorem

Remark 7 Since w(t) = sin(π t), is a nontrivial solution of

w′′(t) + π2w(t) = 0,

and it vanishes in Z, from the classical Sturm comparison result, we see that for γ < π2

any nontrivial solution of the problem

v′′(t) + γ v(t) = 0
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vanishes at most once in the interval [0,1]. Therefore, the distance between two zeros of
any nontrivial solution must be greater than 1.

Lemma 8 Let Gm be the Green’s function related to problem (9), (2), given by Eq. (10).
Then, for all λ �= m sin m

1–cos m , m > 0, m �= 2kπ , k = 1, 2, . . . , the following properties hold:
1. Gm(0, s) = Gm(t, 1) = Gm(t, 0) = 0, for all t, s ∈ [0, 1].
2. Gm(t, s) is continuous at (t, s) ∈ [0, 1] × [0, 1].
3. If m ∈ (0, 2π ), then Gm(1, s) = 0 for all s ∈ (0, 1) if and only if λ = 0.
4. If m ∈ (0, 2π ), then (m sin m – λ(1 – cos m))Gm(1, s) > 0 for all s ∈ (0, 1) and λ > 0.
5. Gm(t, s) > 0 for all t, s ∈ (0, 1) if and only if 0 ≤ λ < m sin m

1–cos m , m ∈ (0,π ].
6. Gm(t, s) changes sign on (0, 1) × (0, 1) for all λ /∈ [0, m sin m

1–cos m ), m ∈ (0,π ].

Proof Properties 1. and 2. are immediate. Let us now consider the others:
3. Let s ∈ (0, 1), then Gm(1, s) = 0 if and only if

λ(sin(ms) + sin(m – ms) – sin m)
m(m sin m – λ(1 – cos m))

= 0

which is equivalent to

λ
(
sin(ms) + sin(m – ms) – sin m

)
=: λrm(s) = 0.

It is easy to check that if m ∈ (0, 2π ) then function rm has a unique maximum at
s = 1

2 and, since rm(0) = 0 = rm(1), we deduce that rm(s) > 0 for s ∈ (0, 1). Therefore
Gm(1, s) = 0 if and only if λ = 0.

4. From the previous assertion, we have

(
m sin m – λ(1 – cos m)

)
Gm(1, s) =

λ

m
rm(s) > 0,

for all s ∈ (0, 1), m ∈ (0, 2π ) and λ > 0.
5. Assume now that 0 ≤ λ < m sin m

1–cos m , m ∈ (0,π ]. Using Properties 1. and 4., we know
that, for each s ∈ (0, 1), Gm(0, s) = 0 and Gm(1, s) ≥ 0. In addition,

∂Gm

∂t
(0, s) =

sin(m(1 – s))
sin m

+
λrm(s)

sin m(m sin m + λ(1 – cos m))
> 0.

Therefore, Gm(t, s) is increasing and positive to the right of t = 0 for every s ∈ (0, 1).
On the other hand,

∂2Gm

∂t2 (t, s) + m2Gm(t, s) = 0, t ∈ [0, 1], t �= s. (12)

Since Gm(·, s) ∈ C2([0, s) ∪ (s, 1]), we can use Remark 7 on each interval of the
form [0, s0] ⊂ [0, s) and [s1, 1] ⊂ (s, 1] (notice that we cannot apply such a remark to
the whole interval [0, 1], because Gm(·, s) /∈ C2([0, 1])).

Suppose that there exists t0 ∈ (0, 1) such that Gm(t0, s) = 0. We distinguish the
following cases:

• If t0 ∈ [0, s), since Gm(0, s) = 0 and Gm(·, s) ∈ C2([0, t0]), we would have two
zeros that distances less than 1, which is not possible.
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• Now suppose t0 = s. In this case, since ∂2

∂t2 Gm(t, s)|t=s– exists and is finite, we can
extend Gm(·, s) as a C2 function on the interval [0, s], which brings us back to
the previous case.

• If t0 ∈ (s, 1), considering the C2 extension to interval [s, 1], since Gm(s, s) > 0 and
Gm(1, s) ≥ 0, can occur three situations:
(a) If ∂Gm

∂t (t0, s) < 0, then there exists t1 ∈ (t0, 1] such that Gm(t1, s) = 0, which is
not possible as a consequence of Remark 7 applied on [s, 1].

(b) If ∂Gm
∂t (t0, s) = 0, since Gm(·, s) is a solution of (12) on [s, 1], we deduce that

Gm(t, s) ≡ 0 in [s, 1], which contradicts the fact that Gm(s, s) > 0.
(c) If ∂Gm

∂t (t0, s) > 0, then there exists t1 ∈ (s, t0) such that G(t1, s) = 0, reaching a
contradiction again.

From the equality

(
m sin m – λ(1 – cos m)

)
Gm(1, s) =

λ

m
rm(s),

we deduce immediately that Gm(1, s) takes positive and negative values for all
m > 2π , m �= 2kπ , k = 1, 2, . . . , and all λ ∈ R, λ �= 0. Moreover, from the
expression of Gm(1, s) we deduce that if either, λ < 0 and m ∈ (0, 2π ), or
λ > m sin m

1–cos m and m ∈ (0,π ], or λ > 0 and m ∈ (π , 2π ), then Gm(1, s) < 0.
6. Using the previous assertion, we only need to verify that if λ /∈ [0, m sin m

1–cos m ),
m ∈ (0,π ], then Gm(t, s) takes some positive values on (0, 1) × (0, 1). But to
verify this property it is enough to consider function

fm(t) := Gm(t, t).

By direct computation, we have f ′
m(0) = 1 for all λ ∈ R and m > 0, m �= 2kπ ,

k = 1, 2, . . . . In consequence, Gm(t, t) > 0 in a small enough neighborhood of
(0, 0). �

Now we deduce the following stronger condition on the Green’s function.

Lemma 9 Let 0 < m < π , 0 ≤ λ < m sin m
1–cos m and Gm(t, s) be the Green’s function of problem

(9), (2) given by Eq. (10). Then there are h1 ∈ C([0, 1]), h1 > 0 on (0, 1] and C1 ∈ R, C1 > 0
such that

h1(t)Gm(t, s) ≤ Gm(t, s) ≤ C1Gm(1, s), for all t, s ∈ [0, 1]. (13)

Proof If t = 0, s = 0 or s = 1 the result follows from Lemma 8. Let then 0 < t ≤ 1 be arbi-
trarily set. Since

lim
s→0+

Gm(t, s)
Gm(1, s)

=
sin(m – mt)(m sin m – λ(1 – cos m))

λ sin m(1 – cos m)
> 0,

lim
s→1–

Gm(t, s)
Gm(1, s)

= 1,

and taking into account the Properties 4. and 5. of Lemma 8, then, for any s ∈ (0, 1) fixed,
we can extend function Gm(·,s)

Gm(1,s) continuously to the interval [0, 1] and, furthermore, this
extension is strictly positive for all t ∈ (0, 1].
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As a consequence,

h1(t) = min
s∈[0,1]

Gm(t, s)
Gm(1, s)

> 0, for all t ∈ (0, 1],

and

C1 = max
t∈[0,1]

{
max
s∈[0,1]

Gm(t, s)
Gm(1, s)

}
≥ 1,

from which the result follows. �

2.3 Case γ < 0
Next, we will give the expression of the Green’s function of the problem

u′′(t) – m2u(t) + σ (t) = 0, 0 < t < 1, (14)

coupled to the boundary conditions (2).
In this section we will omit most of the proofs because they are analogous to those pre-

sented in previous cases.
First, we will state a lemma that will be useful for the calculation of this function.

Lemma 10 ([2, Appendix B]) Let us consider the problem

(P)

⎧
⎨

⎩
u′′(t) – m2u(t) + σ (t) = 0,

u(0) = 0 = u(1).

The Green’s function associated with problem (P) is given by the following expression:

Gm(t, s) =

⎧
⎨

⎩

sinh(ms) sinh(m(1–t))
m sinh m , 0 ≤ s ≤ t ≤ 1,

sinh(mt) sinh(m(1–s))
m sinh m , 0 ≤ t < s ≤ 1.

(15)

Theorem 11 Let λ �= m sinh m
cosh m–1 and σ ∈ C([0, 1]), then problem (14), (2) has a unique solution

u ∈ C2([0, 1]), which is given by the expression

u(t) =
∫ 1

0
Gm(t, s)σ (s) ds,

where

Gm(t, s) =

⎧
⎨

⎩
G1

m(t, s), 0 ≤ s ≤ t ≤ 1,

G2
m(t, s), 0 ≤ t < s ≤ 1,

(16)

with

G1
m(t, s) =

sinh(ms)[sinh(m – mt)(m sinh m + λ(1 – cosh m)) – λ sinh(mt)]
m sinh m(m sinh m + λ(1 – cosh m))

–
λ sinh(mt)(sinh(m – ms) – sinh m)

m sinh m(m sinh m + λ(1 – cosh m))
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and

G2
m(t, s) =

sinh(mt)[sinh(m – ms)(m sinh m – λ cosh m) – λ(sinh(ms) – sinh m)]
m sinh m(m sinh m + λ(1 – cosh m))

.

Proof In a similar way to Theorem 6 and using Lemma 10, we construct the Green’s func-
tion taking into account that we can express the solution as

u(t) =
∫ 1

0
Gm(t, s)σ (s) ds + λ

(∫ 1

0
u(s) ds

)
w(t),

where w(t) = sinh mt
sinh m is the unique solution of the following problem:

⎧
⎨

⎩
w′′(t) – m2w(t) = 0, 0 < t < 1,

w(0) = 0, w(1) = 1. �

We will now enunciate some properties of Gm. The proofs are analogous to those that
have been presented in the two previous cases.

Lemma 12 Let Gm be the Green’s function associated with problem (14), (2), given by Eq,
(16). Then, for all λ �= m sinh m

cosh m–1 , m > 0, the following properties hold:
1. Gm(0, s) = Gm(t, 1) = Gm(t, 0) = 0, for all t, s ∈ [0, 1].
2. Gm(t, s) is continuous on [0, 1] × [0, 1].
3. Gm(1, s) = 0, for all s ∈ (0, 1) if and only if λ = 0.
4. (m sinh m + λ(1 – cosh m))Gm(1, s) > 0 for all s ∈ (0, 1) and m > 0.
5. Gm(t, s) > 0 for all t, s ∈ (0, 1) if and only if 0 ≤ λ < m sinh m

cosh m–1 , m > 0.
6. Gm(t, s) changes sign on (0, 1) × (0, 1) for all λ /∈ [0, m sinh m

cosh m–1 ), m > 0.

Lemma 13 Let m > 0, 0 ≤ λ < m sinh m
cosh m–1 and Gm(t, s) be the Green’s function of problem (14),

(2) given by Eq. (16). Then there exist h2 ∈ C([0, 1]), h2 > 0 in (0, 1] and C2 > 0 such that

h2(t)Gm(1, s) ≤ Gm(t, s) ≤ C2Gm(1, s), for all t, s ∈ [0, 1]. (17)

3 Nonlinear problem
This section is devoted to proving the existence of positive solutions on (0, 1) of problem
(1)–(2). We will assume the following regularity condition for the nonlinear part of the
equation:

(f ) f : [0, 1] × [0,∞) → [0,∞) is a continuous function.

As in the previous section, we will distinguish three different cases depending on the
sign of the parameter γ . The results hold from the application of the Krasnosel’skĭı fixed
point Theorem 2 to the operator Tγ : C([0, 1]) → C([0, 1]) defined as

Tγ u(t) :=
∫ 1

0
Gγ (t, s)f

(
s, u(s)

)
ds, t ∈ [0, 1]. (18)

Here, Gγ corresponds to the function G, given by (4), if γ = 0, Gm given by (10) if γ =
m2 > 0, and Gm given by (16) if γ = –m2 < 0.
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As we have proved in previous section, we know that the fixed points of operator Tγ

coincide with the solutions of problem (1)–(2).
To apply Theorem 2, we define X = (C([0, 1]),‖ · ‖), the Banach space endowed with the

supremum norm.
Now, we denote

f0 = lim
u→0+

{
min

t∈[ 1
2 ,1]

f (t, u)
u

}
, f∞ = lim

u→+∞

{
min

t∈[ 1
2 ,1]

f (t, u)
u

}
,

and

f 0 = lim
u→0+

{
max
t∈[0,1]

f (t, u)
u

}
and f ∞ = lim

u→+∞

{
max
t∈[0,1]

f (t, u)
u

}
.

In the sequel, we introduce the cone Kγ ⊂ X, depending on the sign of the real parameter
γ .

If γ = 0:

Kγ =
{

u ∈ X; u(t) ≥ 0, t ∈ [0, 1], u(t) ≥ t
λ

2
‖u‖, t ∈ [0, 1]

}
. (19)

If γ > 0:

Kγ =
{

u ∈ X; u(t) ≥ 0, u(t) ≥ h1(t)
C1

‖u‖, t ∈ [0, 1]
}

. (20)

If γ < 0:

Kγ =
{

u ∈ X; u(t) ≥ 0, u(t) ≥ h2(t)
C2

‖u‖, t ∈ [0, 1]
}

. (21)

Here h1 and C1 are given in Lemma 9, and h2 and C2 are given in Lemma 13.
So, we arrive at the following existence result.

Theorem 14 Let us consider problem (1)–(2), and let � : (–∞,π2) → R be the function
defined as (see Fig. 1):

�(γ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√–γ sinh(√–γ )
cosh(√–γ )–1 , γ < 0,

2, γ = 0,
√

γ sin(√γ )
1–cos(√γ ) , γ > 0.

(22)

Suppose further that (f ) holds and one of the two following conditions is fulfilled:
(i) (sublinear case) f0 = ∞ and f ∞ = 0.

(ii) (superlinear case) f 0 = 0 and f∞ = ∞.
So, for all γ < π2 and 0 < λ < �(γ ) there is a positive solution of problem (1)–(2), u ∈ Kγ .

Proof Consider, to start with, the case γ = m2 > 0.
Let us first see that T : Kγ → Kγ is a compact operator.
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Figure 1 Graphic of �(γ )

Since Gm and f are continuous and nonnegative in their domain of definition, we have
Tγ u ∈ C([0, 1]) and Tγ u(t) ≥ 0, for all t ∈ [0, 1].

Let u ∈ Kγ , using the properties stated in Lemmas 8 and 9, we have, for all t ∈ [0, 1],

Tγ u(t) =
∫ 1

0
Gm(t, s)f

(
s, u(s)

)
ds ≥

∫ 1

0
h1(t)G(1, s)f

(
s, u(s)

)
ds

≥ h1(t)
C1

∫ 1

0

{
max
t∈[0,1]

G(t, s)
}

f
(
s, u(s)

)
ds

≥ h1(t)
C1

max
t∈[0,1]

{∫ 1

0
Gm(t, s)f

(
s, u(s)

)
ds

}

=
h1(t)
C1

‖Tγ u‖.

Furthermore, the continuity of the functions Gm and f guarantees the continuity of the
operator T : Kγ → Kγ . So T(Kγ ) ⊂ Kγ .

Let us now verify that the image by Tγ of a bounded set is relatively compact. To this
end, we will use the Arzelà–Ascoli theorem.

Let � ⊂ Kγ bounded, that is, there exists M ∈R, M > 0 such that ‖u‖ ≤ M, for all u ∈ �.
Let us define

L = max
0≤t≤1,0≤u≤M

∣∣f (t, u)
∣∣.

Then, for all u ∈ � and t ∈ [0, 1], we have

∣
∣Tγ u(t)

∣
∣ =

∣∣
∣∣

∫ 1

0
Gm(t, s)f

(
s, u(s)

)
ds

∣∣
∣∣

≤ L
∫ 1

0
Gm(t, s) ds ≤ L

∫ 1

0
C1Gm(1, s) ds

= LC1
λ(2 – 2 cos m – m sin m)

m2(m sin m – λ(1 – cos m))
:= N .
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As a consequence,

‖Tγ u‖ ≤ N ,

so Tγ (�) is bounded.
On the other hand, for each u ∈ � and t ∈ [0, 1] we have

∣
∣(Tγ u)′(t)

∣
∣ =

∣∣
∣∣

∫ 1

0

∂Gm

∂t
(t, s)f

(
s, u(s)

)
ds

∣∣
∣∣ ≤

∫ 1

0

∣∣
∣∣
∂Gm

∂t
(t, s)

∣∣
∣∣
∣
∣f

(
s, u(s)

)∣∣ds

≤L
∫ 1

0

∣
∣∣
∣
∂Gm

∂t
(t, s)

∣
∣∣
∣ds =: N ′.

The regularity of the Green’s function allows us to ensure that N ′ ∈R, N ′ > 0. Thus, for all
t1, t2 ∈ [0, 1], t1 < t2, the following inequality is fulfilled:

∣
∣(Tγ u)(t2) – (Tγ u)(t1)

∣
∣ =

∣∣
∣∣

∫ t2

t1

(Tγ u)′(s) ds
∣∣
∣∣ ≤

∫ t2

t1

∣
∣(Tγ u)′(s)

∣
∣ds ≤ N ′(t2 – t1),

so Tγ (�) is an equicontinuous set in X.
Thus, by virtue of the Arzelà–Ascoli theorem, we deduce that the set Tγ (�) is relatively

compact, i.e., T : Kγ → Kγ is a compact operator.
Suppose that the first situation holds:
(i) (sublinear case) f0 = ∞ and f ∞ = 0.

Since f0 = ∞, there exists a constant ρ1 such that f (t, u) ≥ δ1u, for all t ∈ [1/2, 1] and 0 ≤
u ≤ ρ1, where δ1 is such that

δ1

C1
max
t∈[0,1]

{∫ 1

1
2

h1(s)Gm(t, s) ds
}

≥ 1.

Let u ∈ Kγ with ‖u‖ = ρ1, then from the previous expression we deduce

‖Tγ u‖ = max
t∈[0,1]

{∫ 1

0
Gm(t, s)f

(
s, u(s)

)
ds

}
≥ max

t∈[0,1]

{∫ 1

1
2

Gm(t, s)f
(
s, u(s)

)
ds

}

≥ max
t∈[0,1]

{∫ 1

1
2

Gm(t, s)δ1u(s) ds
}

≥ δ1 max
t∈[0,1]

{∫ 1

1
2

Gm(t, s)
h1(s)
C1

‖u‖ds
}

= ‖u‖ δ1

C1
max
t∈[0,1]

{∫ 1

1
2

h1(s)Gm(t, s)
}

≥ ‖u‖.

On the other hand, the continuity of f in the second variable allows us to define the func-
tion

f̃ (t, u) = max
z∈[0,u]

{
f (t, z)

}
, t ∈ [0, 1], u ∈R,

which is monotone nondecreasing on [0,∞) for every t ∈ [0, 1]. Now, since f ∞ = 0, it fol-
lows (see [11]) that

lim
u→∞

{
max
t∈[0,1]

f̃ (t, u)
u

}
= 0. (23)



Cabada and Iglesias Boundary Value Problems         (2021) 2021:66 Page 16 of 19

Let us now take δ2 > 0 such that

δ2 max
t∈[0,1]

{∫ 1

0
Gm(t, s) ds

}
≤ 1.

From (23), we know that there exists ρ2 ∈ R, ρ2 > ρ1 > 0 such that f̃ (t, u) ≤ δ2u, for all
t ∈ [0, 1] and u ≥ ρ2.

Let u ∈ Kγ be such that ‖u‖ = ρ2, then using the definition of f̃ and the above inequality
we have

‖Tγ u‖ = max
t∈[0,1]

{∫ 1

0
Gm(t, s)f

(
s, u(s)

)} ≤ max
t∈[0,1]

{∫ 1

0
Gm(t, s)̃f

(
s, u(s)

)}

≤ max
t∈[0,1]

{∫ 1

0
Gm(t, s)̃f

(
s,‖u‖)

}
≤ max

t∈[0,1]

{∫ 1

0
Gm(t, s)δ2‖u‖

}

≤ ‖u‖δ2 max
t∈[0,1]

{∫ 1

0
Gm(t, s)

}
≤ ‖u‖.

Finally, the first part of Theorem 2 implies that there is at least one positive solution of
problem (1)–(2), with γ = m2 > 0, u ∈ Kγ , such that ρ1 ≤ ‖u‖ ≤ ρ2.

Let us now consider the second case:
(ii) (superlinear case) f 0 = 0 and f∞ = ∞.

Let δ2 ∈ (0, 1], chosen in the same way as in the previous case. Since f 0 = 0, there exists a
constant r1 > 0 such that f (t, u) ≤ δ2u for all t ∈ [0, 1] and 0 ≤ u ≤ δ2.

Let us choose u ∈ Kγ be such that ‖u‖ = r1, then

‖Tγ u‖ = max
t∈[0,1]

{∫ 1

0
Gm(t, s)f

(
s, u(s)

)} ≤ max
t∈[0,1]

{∫ 1

0
Gm(t, s)δ2u(s)

}
≤

≤ ‖u‖δ2 max
t∈[0,1]

{∫ 1

0
Gm(t, s)

}
≤ ‖u‖.

Let us take δ3 > 0 so that

δ3

C1
max
t∈[0,1]

{∫ 1

1
2

h1(s)Gm(t, s) ds
}

≥ 1.

Since f∞ = ∞, there exists r2 > r1 > 0 with C1r2 > Mr1 (where M = mint∈[ 1
2 ,1] h1(s)), so that

f (t, u) ≥ δ3u for all t ∈ [1/2, 1] and u ≥ r2. Let u ∈ Kγ be such that ‖u‖ = r2
C1
M , then, by the

definition of Kγ , u(t) ≥ r2 for all t ∈ [1/2, 1] is satisfied.
From this, we deduce the following inequalities:

‖Tγ u‖ = max
t∈[0,1]

{∫ 1

0
Gm(t, s)f

(
s, u(s)

)
ds

}
≥ max

t∈[0,1]

{∫ 1

1
2

Gm(t, s)f
(
s, u(s)

)
ds

}

≥ max
t∈[0,1]

{∫ 1

1
2

Gm(t, s)δ3u(s) ds
}

≥ δ3 max
t∈[0,1]

{∫ 1

1
2

Gm(t, s)
h1(s)
C1

‖u‖ds
}

= ‖u‖ δ3

C1
max
t∈[0,1]

{∫ 1

1
2

h1(s)Gm(t, s) ds
}

≥ ‖u‖.
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Finally, applying part 2 of Theorem 2, we conclude that problem (1)–(2), with γ = m2 > 0,
has at least one positive solution u ∈ Kγ such that

r1 ≤ ‖u‖ ≤ C1

M
r2.

The cases γ = 0 and γ = –m2 < 0 can be proved in a similar way. �

Remark 15 It should be noted that, since G(0, s) = 0, in order to ensure the existence of r2

in the case (ii) of Theorem 14, we have reduced the interval considered in the definition
of the limits f0 and f∞ from [0, 1] to [1/2, 1].

In fact, it is enough to take a, b ∈R such that 0 < a < b ≤ 1 and redefine the limits as

f0 = lim
u→0+

{
min

t∈[a,b]

f (t, u)
u

}
and f∞ = lim

u→+∞

{
min

t∈[a,b]

f (t, u)
u

}
.

In this case, it is easy to check that Theorem 14 remains true for solutions defined in cone
Kγ , given by expressions (19), (20) and (21), by replacing on their definitions [1/2, 1] by
[a, b].

Remark 16 Let us now consider problem (1) coupled to the boundary conditions

u(0) = λ

∫ 1

0
u(s) ds, u(1) = 0. (24)

It is easy to check that v(t) := u(1 – t), t ∈ [0, 1], also satisfies (1) together with

v(0) = u(1) = λ

∫ 1

0
u(s) ds = λ

∫ 1

0
v(s) ds, v(1) = u(0) = 0.

So, if we denote

f ′
0 = lim

u→0+

{
min

t∈[0, 1
2 ]

f (t, u)
u

}
and f ′

∞ = lim
u→+∞

{
min

t∈[0, 1
2 ]

f (t, u)
u

}

and, if γ = 0:

K ′
γ =

{
u ∈ X; u(t) ≥ 0, t ∈ [0, 1], u(t) ≥ (1 – t)

λ

2
‖u‖, t ∈ [0, 1]

}
.

If γ > 0:

K ′
γ =

{
u ∈ X; u(t) ≥ 0, u(t) ≥ h1(1 – t)

C1
‖u‖, t ∈ [0, 1]

}
.

If γ < 0:

K ′
γ =

{
u ∈ X; u(t) ≥ 0, u(t) ≥ h2(1 – t)

C2
‖u‖, t ∈ [0, 1]

}
.

Thus, the following result is then obtained.
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Corollary 17 Consider problem (1), (24) and let � : (–∞,π2) → R be the function defined
in (22). Suppose further that (f ) holds and one of the following conditions is satisfied:

(i) (sublinear case) f ′
0 = ∞ and f ∞ = 0.

(ii) (superlinear case) f 0 = 0 and f ′∞ = ∞.
So, for all γ < π2 and 0 < λ < �(γ ) there is a positive solution of problem (1), (24), u ∈ K ′

γ .

Moreover, analogous considerations to Remark 15 remain valid for problem (1), (24).

3.1 Examples
Example 18 Consider problem (1)–(2) with

f (t, x) = 5√x3 + x + log(3t + x).

It is easy to verify that, for u > 0,

min
t∈[ 1

2 ,1]

f (t, u)
u

=
5√u3 + u + log( 3

2 + u)
u

and max
t∈[0,1]

f (t, u)
u

=
5√u3 + u + log(3 + u)

u
.

Taking limits, it is easy to check that f0 = ∞ and f ∞ = 0, i.e., we are in the sublinear case.
Since f fulfills (f ), we have the hypotheses of the case (i) Theorem 14, so we can ensure
the existence of a positive solution for problem (1)–(2).

Example 19 Consider again the problem (1)–(2) with

f (t, x) = tx3 + etx – 1.

In this case, we have for all u > 0

min
t∈[ 1

2 ,1]

f (t, u)
u

=
u2

2
+

e u2
2 – 1
u

and max
t∈[0,1]

f (t, u)
u

= u2 +
eu2 – 1

u
.

Again, taking limits we see that f 0 = 0 and f∞ = ∞, that is, we have the superlinear case. As
f verifies (f ), the second part of Theorem 14 guarantees the existence of a positive solution
of problem (1)–(2).
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10. Krasnosel’skĭı, M.A.: Positive Solutions of Operator Equations. Noordhoff, Groningen (1964)
11. Wang, H.: On the number of positive solutions of nonlinear systems. J. Math. Anal. Appl. 281(1), 287–306 (2003)
12. Zhang, Y., Abdella, K., Feng, W.: Positive solutions for second-order differential equations with singularities and

separated integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2020, Article ID 75 (2020)

https://library.wolfram.com/infocenter/MathSource/8825/

	Nonlinear differential equations with perturbed Dirichlet integral boundary conditions
	Abstract
	MSC
	Keywords

	Introduction
	Linear part: Green's function
	Case gamma=0
	Case gamma>0
	Case  gamma<0 

	Nonlinear problem
	Examples

	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


