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Abstract
The major goal of this work is investigating sufficient conditions for the existence and
uniqueness of solutions for implicit impulsive coupled system of ϕ-Hilfer fractional
differential equations (FDEs) with instantaneous impulses and terminal conditions.
First, we derive equivalent fractional integral equations of the proposed system. Next,
by employing some standard fixed point theorems such as Leray–Schauder
alternative and Banach, we obtain the existence and uniqueness of solutions. Further,
by mathematical analysis technique we investigate the Ulam–Hyers (UH) and
generalized UH (GUH) stability of solutions. Finally, we provide a pertinent example to
corroborate the results obtained.
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1 Introduction
Fractional differential equations (FDEs) have attracted the interest of researchers from var-
ious disciplines as they are a useful tool in modeling the dynamics of numerous physical
systems and have applications in many fields of applied sciences, engineering and techni-
cal sciences, and so on. For further details, see [26, 36, 38, 40]. There are various defini-
tions of fractional calculus (FC) used in FDEs for modeling and describing the memory
accurately. Among the famous operators of this calculus, there are Riemann–Liouville,
Riemann, Grünwald–Letnikov, Caputo, Hilfer, and Hadamard, which are the most used.
For more detail, we refer the readers to [1–3, 21, 22, 24, 25, 33, 34, 36, 41]. There is a promi-
nent and noticeable interest in the investigation of qualitative characteristics of solutions
(existence, uniqueness, stability) of FDEs. For applications and recent work, we refer the
readers to [4, 7, 14, 18, 37, 42, 43].

In recent years, the impulsive fractional differential equations have become an impor-
tant and successful tool in modeling some physical phenomena that have sudden changes
and have discontinuous jumps by imposing impulsive conditions on the fractional differ-
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ential equations at discontinuity points. For applications and recent work, we refer the
readers to [8, 9, 12, 13, 17, 27, 28, 32, 44].

On the other side, the study of coupled systems involving FDEs is also important as
such systems occur in various problems of applied nature. For some theoretical works on
coupled systems of FDEs, we refer to series of papers [11, 16, 19, 20, 23, 30].

The topic of system stability is one of the most important qualitative characteristics of
a solution, but to our knowledge, the results on UH and UHR stability of solutions for
implicit impulsive coupled systems are very few in the literature.

Very recently, Kharade and Kucche [35] studied the existence and uniqueness of solu-
tions and UHML stability for the following impulsive implicit problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dy,p;ϕ
a+ u(σ ) = f (σ , u(σ ), u(h(σ )),Dy,p;ϕ

a+ y(σ )), σ ∈ J := [0, T],σ �= σk , k = 1, . . . , p,

�I1–γ ,ϕ
0+ u(σk)|σ=σk = Jku(σ –

k ), k = 1, . . . , p,

I1–γ ,ϕ
0+ u(0) = u0,

u(σ ) = φ(σ ), σ ∈ [–r, 0],

where Dy,p;ϕ
a+ denotes the ϕ-Hilfer fractional derivative (FD) of order y ∈ (0, 1) and type

p ∈ [0, 1], and f : J ×R×R×R−→ R is a continuous function. Via standard fixed point
theorems, Ahmed et al. [10] studied the existence, uniqueness, and different kinds of sta-
bility of the following switched coupled implicit ϕ-Hilfer fractional differential system:

⎧
⎪⎪⎨

⎪⎪⎩

Dy,p,ϕ
a+ u(σ ) = f (σ ,u(σ ),Dy,p,ϕ

a+ ϑ(σ )), σ ∈ J := [0, T],

Dy,p,ϕ
a+ ϑ(σ ) = g(σ ,Dy,p,ϕ

a+ u(σ ),ϑ(σ )), σ ∈ J := [0, T],

I1–γ ,ϕ
a+ u(a) = ua, I1–γ ,ϕ

a+ ϑ(a) = ϑa,ua, ϑa ∈R,

whereDy,p,ϕ
a+ denotes the ϕ-Hilfer FD of order y ∈ (0, 1) and type p ∈ [0, 1], and f , g : [0, T]×

R×R −→R are continuous functions.
Abdo et al. [5], via standard fixed point theorems, studied the existence and uniqueness

of the following impulsive problem:

⎧
⎪⎪⎨

⎪⎪⎩

ABDy

[σ ]u(σ ) = f (σ , u(σ )), σ ∈ J := [0, T],σ �= σk , k = 1, . . . , m,

�u|σ=σk = Iku(σ –
k ), k = 1, . . . , m,

u(0) = u0.

On the other hand, Almalahi et al. [15] studied the existence and uniqueness of solution
for the following FDEs:

⎧
⎨

⎩

Dy,p;ϕ
a+ y(σ ) = f (σ , y(σ ),Dy,p;ϕ

a+ y(σ )), σ ∈ (a, T], a > 0,

y(T) = w ∈R,

where Dy,p;ϕ
a+ is the ϕ-Hilfer FD of order y ∈ (0, 1) and type p ∈ [0, 1].



Almalahi and Panchal Boundary Value Problems         (2021) 2021:67 Page 3 of 22

Abdo et al. [6] studied the existence, uniqueness, and UH stability of the following sys-
tem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dy1,p1;ϕ
a+ y(σ ) = f1(σ , y(σ )), σ ∈ (a, T], a > 0

Dy2,p2;ϕ
a+ x(σ ) = f2(σ , y(σ ))

y(T) = w1 ∈R,

x(T) = w2 ∈ R,

where Dy1,p;ϕ
a+ , Dy2,p;ϕ

a+ are the ϕ-Hilfer FDs of orders y1,y2 ∈ (0, 1) and type p ∈ [0, 1].
Motivated by the preceding works, in this paper, we investigate the existence, unique-

ness, and UH stability for more general implicit impulsive coupled systems of ϕ-Hilfer
FDEs:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dy,p,ϕ
[σ ] u(σ ) = f (σ ,u(σ ),Dy,p,ϕ

[σ ] ϑ(σ )), σ ∈ J := [0, T],σ �= σk , k = 1, . . . , m,

Dy,p,ϕ
[σ ] ϑ(σ ) = g(σ ,Dy,p,ϕ

[σ ] u(σ ),ϑ(σ )), σ ∈ J := [0, T],σ �= σk , k = 1, . . . , m,

�u|σ=σk = Zku(σ –
k ), k = 1, . . . , m,�ϑ |σ=σk = Zkϑ(σ –

k ), k = 1, . . . , m,

u(T) = w1, ϑ(T) = w2,

(1.1)

where Dy,p,ϕ
[σ ] denotes the ϕ-Hilfer FD of order y ∈ (0, 1) and type p ∈ [0, 1], [σ ] = σk for

σ ∈ (σk ,σk+1], k = 0, 1, . . . , m,σ0 = 0. The functions f , g : J ×R×R −→R and Zk : R−→ R,
k = 1, 2, . . . , m, are continuous functions fulfilling some conditions that will be described
later. Further, w1, w2 ∈ R, σk satisfy 0 = σ0 < σ1 < · · · < σk < σk+1 = σ , .�u|σ=σk = u(σ +

k ) –
u(σ –

k ) = u(σ +
k ) – u(σk), u(σ +

k ) = limh→0+ u(σk + h), u(σ –
k ) = limh→0– u(σk + h) represent the

right and left limits of u(σ ) at σ ∈ (σk ,σk+1], k = 0, 1, . . . , m, .�ϑ |σ=σk = ϑ(σ +
k ) – ϑ(σ –

k ) =
ϑ(σ +

k )–ϑ(σk), ϑ(σ +
k ) = limh→0+ ϑ(σk +h) and ϑ(σ –

k ) = limh→0– ϑ(σk +h) represent the right
and left limits of ϑ(σ ) at σ ∈ (σk ,σk+1], k = 0, 1, . . . , m.

The coupled systems of ϕ-Hilfer FDEs with impulsive conditions considered in this work
are a wider class of coupled systems of BVPs that incorporates the BVPs for FDEs involving
the most broadly used Riemann–Liouville and Caputo fractional derivatives. Regardless of
this, the coupled systems (1.1) for various values of a function ϕ and parameter p include
coupled systems of FDEs involving the Hilfer, Hadamard, Katugampola, and many other
fractional derivative operators.

• If ϕ(σ ) = σ and p = 1, then system (1.1) reduces to an implicit impulsive coupled system
with the Caputo fractional derivative.

• If ϕ(σ ) = σ and p = 0, then system (1.1) reduces to an implicit impulsive coupled system
with the Riemann–Liouville fractional derivative.

• If p = 0, then system (1.1) reduces to an implicit impulsive coupled system with the
ϕ-Riemann–Liouville fractional derivative.

• If ϕ(σ ) = σ , then system (1.1) reduces to an implicit impulsive coupled system with
the Hilfer fractional derivative.

• If ϕ(σ ) = logσ , then system (1.1) reduces to an implicit impulsive coupled system with
the Hilfer–Hadamard fractional derivative.

• If ϕ(σ ) = σρ , then system (1.1) reduces to an implicit impulsive coupled system with
the Katugampola fractional derivative.
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The major contribution of this paper is obtaining an equivalent fractional integral equa-
tion of the proposed system and establishing the existence, uniqueness, and UH and GUH
stability of a solution for an implicit impulsive coupled system with ϕ-Hilfer FD. Our anal-
ysis relies on the Banach and Leray–Schauder fixed point theorems. Though we use the
standard methodology to obtain our results, its exposition to the proposed system is new.
The acquired results obtained in this paper are more general and cover many parallel prob-
lems that contain particular cases of functions because our proposed system contains a
global fractional derivative that integrates many classic fractional derivatives. Moreover,
the results obtained in this work can be extended to n-tuple fractional systems (FSs). Our
results include the results of Almalahi et al. [15], Abdo et al. [6], and Kharade et al. [35]
and will be a useful contribution to the existing literature on this topic.

This paper is organized as follows. In Sect. 2, we render the rudimentary definitions
and prove some lemmas and present some concepts of fixed point theorems. In Sect. 3,
we prove the existence and uniqueness of solutions for impulsive implicit coupled system
(1.1). In Sect. 4, we discuss the stability by means of mathematical analysis techniques.
In Sect. 5, we give a pertinent example illustrating our results. Concluding remarks are
presented in the last section.

2 Background material and auxiliary results
In this part, we give important definitions and auxiliary lemmas pertinent to our main
results.

Let J := [0, T] and J ′ := (0, T]. Let R = C(J) be the Banach space of continuous functions
u : J ′ → R with the norm ‖u‖ = max{|u(σ )| : σ ∈ J}. Clearly, R is a Banach space with this
norm, and hence the product space R×R is also a Banach space with the norm

∥
∥(u,ϑ)

∥
∥ = ‖u‖ + ‖ϑ‖.

We define the space PC(J) of piecewise continuous functions u : J ′ →R by

PC(J) =

{
u : J ′ →R;u(σ ) ∈ C((σk ,σk+1],R); k = 0, 1, . . . , m,

u(σ +
k ) and u(σ –

k ) exist with u(σ +
k ) = u(σ –

k ) for k = 0, 1, . . . , m

}

.

Obviously, PC(J) is a Banach space endowed with the norm

‖u‖PC(J) = max
σ∈J

∣
∣u(σ )

∣
∣.

Define the product space B = PC(J) ×PC(J) with the norm

∥
∥(u,ϑ)

∥
∥
B = ‖u‖PC(J) + ‖ϑ‖PC(J)

for (u,ϑ) ∈ B.

Definition 2.1 ([36]) Let y > 0 and f ∈ L1(J). Then the generalized RL fractional integral
of a function f of order y with respect to ϕ is defined as

Iy,ϕ
0+ f (σ ) =

1
	(y)

∫ σ

0
ϕ′(s)

(
ϕ(σ ) – ϕ(s)

)y–1f (s) ds.
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Definition 2.2 ([41]) Let n – 1 < y < n ∈ N, and let f ,ϕ ∈ PCn(J). Then the generalized
Hilfer fractional derivative of a function f of order y and type 0 ≤ p ≤ 1 with respect to ϕ

is defined as

HDy,p,ϕ
0+ f (σ ) = Ip(n–y);ϕ

0+ f [n]
ϕ I (1–p)(n–y),ϕ

0+ f (σ )

= Ip(n–y);ϕ
0+ f [n]

ϕ In–γ ,ϕ
0+ f (σ )

= Ip(n–y);ϕ
0+ Dγ ;ϕ

a+ f (σ ), γ = y + np – yp,

where

Dγ ;ϕ
0+ f (σ ) = f [n]

ϕ I (1–p)(n–y);ϕ
0+ f (σ ), and f [n]

ϕ =
(

1
ϕ′(σ )

d
dσ

)n

.

Lemma 2.3 ([41] ) Let γ = y + p – yp, y > 0, p > 0, and u ∈PCγ
1–γ ;ϕ(J). Then

Iγ ;ϕ
0+ Dγ ;ϕ

0+ u = Iy;ϕ
0+

HDy,p;ϕ
0+ u and Dγ ;ϕ

0+ Iy;ϕ
0+ u = Dp(1–y);ϕ

0+ u.

Theorem 2.4 ([41] ) Let 0 ≤ γ < y and u ∈PC(J). Then Iy;ϕ
0+ u(0) = lim

σ→0+
Iy;ϕ

0+ u(σ ) = 0.

Lemma 2.5 ([36, 41]) Let y,p > 0 and δ > 0. Then

Iy,ϕ
0+ Ip,ϕ

0+ f (σ ) = Iy+p,ϕ
0+ f (σ ),

Iy,ϕ
0+

(
ϕ(σ ) – ϕ(0)

)δ–1 =
	(γ )

	(y + γ )
(
ϕ(σ ) – ϕ(0)

)y+δ–1,

and

HDy,p,ϕ
0+

(
ϕ(σ ) – ϕ(0)

)γ –1 = 0, γ = y + np – yp.

Lemma 2.6 ([41]) If f ∈PCn(J), n – 1 < y < n, and 0 ≤ p ≤ 1, then

Iy;ϕ
0+

HDy,p,ϕ
0+ f (σ ) = f (σ ) –

n∑

k=1

(ϕ(σ ) – ϕ(0))γ –k

	(γ – k + 1)
f [n–k]
ϕ I (1–p)(n–y);ϕ

a+ f (0),

and

HDy,p,ϕ
0+ Iy;ϕ

0+ f (σ ) = f (σ ).

Lemma 2.7 ([31] (Leray–Schauder alternative)) Let � : X → X be a completely contin-
uous operator, and let �(�) = {y ∈ X : y = ξ�(y), ξ ∈ [0, 1]}. Then either the set �(�) is
unbounded, or � has at least one fixed point.

Theorem 2.8 ([29] (Banach fixed point theorem)) Let X be a Banach space, let K ⊂X be
closed, and let � : K → K be a strict contraction, that is, ‖�(x) – �(y)‖ ≤ L‖x – y‖ for some
0 < L < 1 and all x, y ∈ K . Then � has a fixed point in K .
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Lemma 2.9 Let γ = y + p – yp, y ∈ (0, 1), p ∈ [0, 1], and let 
 : J ′ → R be a continuous
function. Then u ∈PCγ (J) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

Dy,p,ϕ
[σ ] u(σ ) = 
 (σ ), σ ∈ J := [0, T],σ �= σk , k = 1, . . . , m,

�u|σ=σk = Zku(σ –
k ), k = 1, . . . , m,

u(T) = w

(2.1)

if and only if u satisfies the following integral equations:

u(σ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ϕ(σ )–ϕ(0))γ –1

(ϕ(T)–ϕ(0))γ –1 [w – Iy,ϕ
0+ 
 (s)(T)] + Iy,ϕ

0+ 
 (s)(σ ), σ ∈ [0,σ1],
∑k+1

i=1
(ϕ(σi)–ϕ(σi–1))γ –1

(ϕ(T)–ϕ(σi–1))γ –1 [w – Iy,ϕ
i–1+
 (s)(T)] +

∑k
i=1 I

y,ϕ
σ+

i–1

 (s)(σi)

+ Iy,ϕ
σ+

k

 (s)(σ ) +

∑k
i=1 Ziu(σ –

i ), σ ∈ (σk ,σk+1], k = 1, . . . , m.

(2.2)

Proof First, let u ∈PCγ (J) be a solution of problem (2.1). We prove that u is a solution of
(2.2).

If σ ∈ [0,σ1], then Dy,p,ϕ
[σ ] u(σ ) = 
 (σ ), [σ ] = 0. Taking the operator Iy,ϕ

0+ on both sides of
the first equation in (2.1) and using Lemma 2.6, we have

u(σ ) =
(ϕ(σ ) – ϕ(0))γ –1

	(γ )
I1–γ ,ϕ

0+ u(0) + Iy,ϕ
0+ 
 (s)(σ ). (2.3)

By the terminal condition we have

I1–γ ,ϕ
0+ u(0) =

	(γ )
(ϕ(T) – ϕ(0))γ –1

[
w – Iy,ϕ

0+ 
 (s)(T)
]
. (2.4)

Putting (2.4) into (2.3), we get

u(σ ) =
(ϕ(σ ) – ϕ(0))γ –1

(ϕ(T) – ϕ(0))γ –1

[
w – Iy,ϕ

0+ 
 (s)(T)
]

+ Iy,ϕ
0+ 
 (s)(σ ).

This means

u
(
σ –

1
)

=
(ϕ(σ1) – ϕ(0))γ –1

(ϕ(T) – ϕ(0))γ –1

[
w – Iy,ϕ

0+ 
 (s)(T)
]

+ Iy,ϕ
0+ 
 (s)(σ1).

Since u(σ –
1 ) = u(σ +

1 ) – Z1u(σ –
1 ), we get

u
(
σ +

1
)

=
(ϕ(σ1) – ϕ(0))γ –1

(ϕ(T) – ϕ(0))γ –1

[
w – Iy,ϕ

0+ 
 (s)(T)
]

+ Iy,ϕ
0+ 
 (s)(σ1) + Z1u

(
σ –

1
)
.

If σ ∈ (σ1,σ2], then Dy,p,ϕ
[σ ] u(σ ) = 
 (σ ), [σ ] = σ1, and u(σ ) is given by

u(σ ) = u
(
σ +

1
)

+
(ϕ(σ ) – ϕ(σ1))γ –1

(ϕ(T) – ϕ(σ1))γ –1

[
w – Iy,ϕ

σ+
1


 (s)(T)
]

+ Iy,ϕ
σ+

1

 (s)(σ )

=
(ϕ(σ1) – ϕ(0))γ –1

(ϕ(T) – ϕ(0))γ –1

[
w – Iy,ϕ

0+ 
 (s)(T)
]

+
(ϕ(σ ) – ϕ(σ1))γ –1

(ϕ(T) – ϕ(σ1))γ –1

[
w – Iy,ϕ

σ+
1


 (s)(T)
]

+ Iy,ϕ
0+ 
 (s)(σ1) + Iy,ϕ

σ+
1


 (s)(σ ) + Z1u
(
σ –

1
)
.
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This means that

u
(
σ –

2
)

=
(ϕ(σ1) – ϕ(0))γ –1

(ϕ(T) – ϕ(0))γ –1

[
w – Iy,ϕ

0+ 
 (s)(T)
]

+
(ϕ(σ2) – ϕ(σ1))γ –1

(ϕ(T) – ϕ(σ1))γ –1

[
w – Iy,ϕ

σ+
1


 (s)(T)
]

+ Iy,ϕ
0+ 
 (s)(σ1) + Iy,ϕ

σ+
1


 (s)(σ2) + Z1u
(
σ –

1
)
.

Since u(σ –
2 ) = u(σ +

2 ) – Z2u(σ –
2 ), we get

u
(
σ +

2
)

=
(ϕ(σ1) – ϕ(0))γ –1

(ϕ(T) – ϕ(0))γ –1

[
w – Iy,ϕ

0+ 
 (s)(T)
]

+
(ϕ(σ2) – ϕ(σ1))γ –1

(ϕ(T) – ϕ(σ1))γ –1

[
w – Iy,ϕ

σ+
1


 (s)(T)
]

+ Iy,ϕ
0+ 
 (s)(σ1) + Iy,ϕ

σ+
1


 (s)(σ2) + Z1u
(
σ –

1
)

+ Z2u
(
σ –

2
)
.

If σ ∈ (σ2,σ3], then Dy,p,ϕ
[σ ] u(σ ) = 
 (σ ), [σ ] = σ2, and u(σ ) is given by

u(σ ) = u
(
σ +

2
)

+
(ϕ(σ ) – ϕ(σ2))γ –1

(ϕ(T) – ϕ(σ2))γ –1

[
w – Iy,ϕ

σ+
2


 (s)(T)
]

+ Iy,ϕ
σ+

2

 (s)(σ )

=
(ϕ(σ1) – ϕ(0))γ –1

(ϕ(T) – ϕ(0))γ –1

[
w – Iy,ϕ

0+ 
 (s)(T)
]

+
(ϕ(σ2) – ϕ(σ1))γ –1

(ϕ(T) – ϕ(σ1))γ –1

[
w – Iy,ϕ

σ+
1


 (s)(T)
]

+
(ϕ(σ ) – ϕ(σ2))γ –1

(ϕ(T) – ϕ(σ2))1γ –1

[
w – Iy,ϕ

σ+
2


 (s)(T)
]

+ Iy,ϕ
0+ 
 (s)(σ1) + Iy,ϕ

σ+
1


 (s)(σ2) + Iy,ϕ
σ+

2

 (s)(σ ) + Z1u

(
σ –

1
)

+ Z2u
(
σ –

2
)
.

This means that

u
(
σ –

3
)

=
(ϕ(σ1) – ϕ(0))γ –1

(ϕ(T) – ϕ(0))γ –1

[
w – Iy,ϕ

0+ 
 (s)(T)
]

+
(ϕ(σ2) – ϕ(σ1))γ –1

(ϕ(T) – ϕ(σ1))γ –1

[
w – Iy,ϕ

σ+
1


 (s)(T)
]

+
(ϕ(σ3) – ϕ(σ2))γ –1

(ϕ(T) – ϕ(σ2))γ –1

[
w – Iy,ϕ

σ+
2


 (s)(T)
]

+ Iy,ϕ
0+ 
 (s)(σ1) + Iy,ϕ

σ+
1


 (s)(σ2) + Iy,ϕ
σ+

2

 (s)(σ3)

+ Z1u
(
σ –

1
)

+ Z2u
(
σ –

2
)
.

After impulse (u(σ –
3 ) = u(σ +

3 ) – Z3u(σ –
3 )), we get

u
(
σ –

3
)

=
(ϕ(σ1) – ϕ(0))γ –1

(ϕ(T) – ϕ(0))γ –1

[
w – Iy,ϕ

0+ 
 (s)(T)
]

+
(ϕ(σ2) – ϕ(σ1))γ –1

(ϕ(T) – ϕ(σ1))γ –1

[
w – Iy,ϕ

σ+
1


 (s)(T)
]
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+
(ϕ(σ3) – ϕ(σ2))γ –1

(ϕ(T) – ϕ(σ2))γ –1

[
w – Iy,ϕ

σ+
2


 (s)(T)
]

+ Iy,ϕ
0+ 
 (s)(σ1) + Iy,ϕ

σ+
1


 (s)(σ2) + Iy,ϕ
σ+

2

 (s)(σ3)

+ Z1u
(
σ –

1
)

+ Z2u
(
σ –

2
)

+ Z3u
(
σ –

3
)
.

If σ ∈ (σ3,σ4], then Dy,p,ϕ
[σ ] u(σ ) = 
 (σ ), [σ ] = σ3, and u(σ ) is given by

u(σ ) = u
(
σ +

3
)

+
(ϕ(σ ) – ϕ(σ3))γ –1

(ϕ(T) – ϕ(σ3))γ –1

[
w – Iy,ϕ

σ+
3


 (s)(T)
]

+ Iy,ϕ
σ+

3

 (s)(σ )

=
(ϕ(σ1) – ϕ(0))γ –1

(ϕ(T) – ϕ(0))γ –1

[
w – Iy,ϕ

0+ 
 (s)(T)
]

+
(ϕ(σ2) – ϕ(σ1))γ –1

(ϕ(T) – ϕ(σ1))γ –1

[
w – Iy,ϕ

σ+
1


 (s)(T)
]

+
(ϕ(σ3) – ϕ(σ2))γ –1

(ϕ(T) – ϕ(σ2))γ –1

[
w – Iy,ϕ

σ+
2


 (s)(T)
]

+
(ϕ(σ ) – ϕ(σ3))γ –1

(ϕ(T) – ϕ(σ3))γ –1

[
w – Iy,ϕ

σ+
3


 (s)(T)
]

+ Iy,ϕ
0+ 
 (s)(σ1) + Iy,ϕ

σ+
1


 (s)(σ2) + Iy,ϕ
σ+

2

 (s)(σ3) + Iy,ϕ

σ+
3


 (s)(σ )

+ Z1u
(
σ –

1
)

+ Z2u
(
σ –

2
)

+ Z3u
(
σ –

3
)
.

Assume that

u
(
σ +

k
)

=
(ϕ(σ1) – ϕ(0))γ –1

(ϕ(T) – ϕ(0))γ –1

[
w – Iy,ϕ

0+ 
 (s)(T)
]

+
(ϕ(σ2) – ϕ(σ1))γ –1

(ϕ(T) – ϕ(σ1))γ –1

[
w – Iy,ϕ

σ+
1


 (s)(T)
]

+ · · · +
(ϕ(σk) – ϕ(σk–1))γ –1

(ϕ(T) – ϕ(σk–1))γ –1

[
w – Iy,ϕ

σ+
k–1


 (s)(T)
]

+ Iy,ϕ
0+ 
 (s)(σ1) + Iy,ϕ

σ+
1


 (s)(σ2) + · · · + Iy,ϕ
σ+

k–1

 (s)(σk)

+ Z1u
(
σ –

1
)

+ Z2u
(
σ –

2
)

+ · · · + Zku
(
σ –

k
)
.

Then, inductively, for σ ∈ (σk ,σk+1], we have Dy,p,ϕ
[σ ] u(σ ) = 
 (σ ), [σ ] = σk , and u(σ ) is given

by

u(σ ) = u
(
σ +

k
)

+
(ϕ(σ ) – ϕ(σk))γ –1

(ϕ(T) – ϕ(σk))γ –1

[
w – Iy,ϕ

σ+
k


 (s)(T)
]

+ Iy,ϕ
σ+

k

 (s)(σ )

=
k+1∑

i=1

(ϕ(σi) – ϕ(σi–1))γ –1

(ϕ(T) – ϕ(σi–1))γ –1

[
w – Iy,ϕ

i–1+
 (s)(T)
]

+
k∑

i=1

Iy,ϕ
σ+

i–1

 (s)(σi) + Iy,ϕ

σ+
k


 (s)(σ ) +
k∑

i=1

Ziu
(
σ –

i
)
.

Thus (2.2) is satisfied.
Conversely, assume that u satisfies equation (2.2).
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Case 1: σ ∈ [0,σ1].
Replacing σ by T in (2.2), we get u(T) = w. On the other hand, applying Dγ ;ϕ

0+ to both
sides of (2.2) and using Lemma 2.3, we get

Dγ ;ϕ
0+ u(σ ) = Dp(1–y);ϕ

0+ 
 (σ ). (2.5)

Since u ∈PCγ (J), by definition of PCγ (J) we have Dγ ;ϕ
0+ u ∈PC(J). So, (2.5) implies

Dγ ;ϕ
0+ u(σ ) = Dp(1–y);ϕ

0+ 
 (σ ) ∈PC(J).

For 
 ∈PC(J), it is obvious that I1–p(1–y);ϕ
0+ 
 ∈PC1(J). Hence 
 and I1–p(1–y);ϕ

0+ 
 satisfy
the conditions of Theorem 2.6. Now, applying Ip(1–y);ϕ

0+ to both sides of (2.5) and using
Theorem 2.6, we get

HDy,p;ϕ
0+ u(σ ) = 
 (σ ) –

I1–p(1–y);ϕ
0+ 
 (0)
	(p(1 – y))

(
ϕ(σ ) – ϕ(0)

)p(1–y)–1. (2.6)

By Theorem 2.4 we have I1–p(1–y);ϕ
0+ 
 (0) = 0. Hence (2.6) becomes

HDy,p;ϕ
0+ u(σ ) = 
 (σ ), σ ∈ J .

Case 2: σ ∈ (σk ,σk+1].
By the same technique as in case 1 we can easily prove case 2. �

Lemma 2.10 Let γ = y+p–yp be such that y ∈ (0, 1), p ∈ [0, 1], and let f , g : J ′ ×R×R →R

be continuous functions. If (u,ϑ) ∈ B satisfies problem (1.1), then by Lemma 2.9, (u,ϑ)
satisfies the following integral equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(σ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
0<σk <σ

(ϕ(σk )–ϕ(σk–1))γ –1

(ϕ(T)–ϕ(σk–1))γ –1 [w1 – Iy,ϕ
σ+

k–1
f (s,u(s),Dy,p,ϕ

[σ ] ϑ(s))(T)]

+
∑

0<σk<σ I
y,ϕ
σ+

k–1
f (s,u(s),Dy,p,ϕ

[σ ] ϑ(s))(σk) + Iy,ϕ
σ+

k
f (s,u(s),Dy,p,ϕ

[σ ] ϑ(s))(σ )

+
∑

0<σk<σ Zku(σ –
k ), σ ∈ (σk ,σk+1], k = 1, . . . , m,

ϑ(σ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
0<σk<σ

(ϕ(σk )–ϕ(σk–1))γ –1

(ϕ(T)–ϕ(σk–1))γ –1 [w2 – Iy,ϕ
σ+

k–1
g(s,Dy,p,ϕ

[σ ] u(s),ϑ(s))(T)]

+
∑

0<σk<σ I
y,ϕ
σ+

k–1
g(s,Dy,p,ϕ

[σ ] u(s),ϑ(s))(σk) + Iy,ϕ
σ+

k
g(s,Dy,p,ϕ

[σ ] u(s),ϑ(s))(σ )

+
∑

0<σk<σ Zku(σ –
k ), σ ∈ (σk ,σk+1], k = 1, . . . , m.

Consider the continuous operator � : B → B defined by

�(u,ϑ)(σ ) =
(
�1(u,ϑ)(σ ),�2(ϑ ,u)(σ )

)
, (2.7)

where

�1(u,ϑ)(σ ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
0<σk<σ

(ϕ(σk )–ϕ(σk–1))γ –1

(ϕ(T)–ϕ(σk–1))γ –1 [w1 – Iy,ϕ
σ+

k–1
f (s,u(s),Dy,p,ϕ

[σ ] ϑ(s))(T)]

+
∑

0<σk <σ I
y,ϕ
σ+

k–1
f (s,u(s),Dy,p,ϕ

0 ϑ(s))(σk)

+ Iy,ϕ
σ+

k
f (s,u(s),Dy,p,ϕ

[σ ] ϑ(s))(σ )

+
∑

0<σk <σ Zku(σ –
k ), σ ∈ (σk ,σk+1], k = 1, . . . , m,

(2.8)
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and

�2(ϑ ,u)(σ ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
0<σk<σ

(ϕ(σk )–ϕ(σk–1))γ –1

(ϕ(T)–ϕ(σk–1))γ –1 [w2 – Iy,ϕ
σ+

k–1
g(s,Dy,p,ϕ

[σ ] u(s),ϑ(s))(T)]

+
∑

0<σk <σ I
y,ϕ
σ+

k–1
g(s,Dy,p,ϕ

[σ ] u(s),ϑ(s))(σk)

+ Iy,ϕ
σ+

k
g(s,Dy,p,ϕ

[σ ] u(s),ϑ(s))(σ )

+
∑

0<σk<σ Zku(σ –
k ), σ ∈ (σk ,σk+1], k = 1, . . . , m.

(2.9)

Note that the fixed points of the operator � are solutions of problem (1.1).

3 Existence of solution
In this section, we consider a general coupled system of Hilfer FDEs (1.1) involving an arbi-
trary function ϕ. To demonstrate our main results, we introduce the following hypotheses.

(H1) The functions f , g : J ×R×R → R are continuous, and there exist constant num-
bers �f ,�g ,�′

f ,�′
g > 0 such that for all (u,ϑ), (̂u, ϑ̂) ∈R×R,

∣
∣f

(
σ ,u(σ ),ϑ(σ )

)
– f

(
σ , û(σ ), ϑ̂(σ )

)∣
∣ ≤ �f

∣
∣u(σ ) – û(σ )

∣
∣ + �′

f
∣
∣ϑ(σ ) – ϑ̂(σ )

∣
∣,

∣
∣g

(
σ ,u(σ ),ϑ(σ )

)
– g

(
σ , û(σ ), ϑ̂(σ )

)∣
∣ ≤ �g

∣
∣u(σ ) – û(σ )

∣
∣ + �′

g
∣
∣ϑ(σ ) – ϑ̂(σ )

∣
∣.

(H2) The functions f , g : J × R × R → R are continuous functions such that for each
(u,ϑ) ∈ R, there exist nondecreasing continuous linear functions ωf ,ωg : R+ → R

+ such
that

∣
∣f

(
σ ,u(σ ),ϑ(σ )

)∣
∣ ≤ ωf

∣
∣u(σ )

∣
∣ + ω′

f
∣
∣ϑ(σ )

∣
∣,

∣
∣g

(
σ ,u(σ ),ϑ(σ )

)∣
∣ ≤ ωg

∣
∣u(σ )

∣
∣ + ω′

g
∣
∣ϑ(σ )

∣
∣.

(H3) The functions Zk : R → R are continuous, and there exists a constant LZ > 0 such
that

∣
∣Zk(�) – Zk

(
�∗)∣∣ ≤ LZ

∣
∣� – �∗∣∣, k = 1, . . . , m,�,�∗ ∈R.

In the following, we will apply the Theorem 2.7 to obtain an existence result for sys-
tem (1.1).

Theorem 3.1 Assume that (H1)–(H3) hold. If

Q1 :=
(2m + 1)[ωf (1 + ωg) + ω′

g(1 + ω′
f )]

2	(y + 1)(1 – ω′
f ωg)

(
ϕ(T) – ϕ(0)

)y + mLZ < 1,

then problem (1.1) has at least one solution on J .

Proof Define the closed ball set

BR =
{

(u,ϑ) ∈ B :
∥
∥(u,ϑ)

∥
∥
PC(J) ≤ R, ‖u‖PC(J) ≤ R

2
, ‖ϑ‖PC(J) ≤ R

2

}
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with

R ≥ m[|w1| + |w2|]
1 – Q1

.

We will prove that the operator � defined by (2.7) has a fixed point by using Theorem 2.7.
For this, we divide the proof into three steps.

Step 1: �(BR) ⊂ BR.
For any (u,ϑ) ∈ BR, we have

∥
∥�(u,ϑ)

∥
∥
B ≤ ∥

∥�1(u,ϑ)
∥
∥
PC(J) +

∥
∥�2(ϑ ,u)

∥
∥
PC(J).

From equation (2.8) we have

∣
∣�1(u,ϑ)

∣
∣ ≤

∑

0<σk<σ

(ϕ(σk) – ϕ(σk–1))γ –1

(ϕ(T) – ϕ(σk–1))γ –1

[|w1| + Iy,ϕ
σ+

k–1

∣
∣f

(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)∣
∣(T)

]

+
∑

0<σk<σ

Iy,ϕ
σ+

k–1

∣
∣f

(
s,u(s),Dy,p,ϕ

0 ϑ(s)
)∣
∣(σk)

+ Iy,ϕ
σ+

k

∣
∣f

(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)∣
∣(σ )

+
∑

0<σk<σ

∣
∣Zku

(
σ –

k
)∣
∣

≤ m|w1| + mIy,ϕ
σ+

k–1

∣
∣f

(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)∣
∣(T)

+ mIy,ϕ
σ+

k–1

∣
∣f

(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)∣
∣(σk)

+ Iy,ϕ
σ+

k

∣
∣f

(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)∣
∣(σ ) + mLZ

∣
∣u(σ )

∣
∣

≤ m|w1| + (2m + 1)
[

ωf ‖u‖PC(J) + ω′
f ω

′
g‖ϑ‖PC(J)

	(y + 1)(1 – ω′
f ωg)

]
(
ϕ(T) – ϕ(0)

)y

+ mLZ‖u‖PC(J)

≤ m|w1| + (2m + 1)
[ (ωf + ω′

f ω
′
g)R

2	(y + 1)(1 – ω′
f ωg)

]
(
ϕ(T) – ϕ(0)

)y + mLZ
R
2

.

Using the same technique, we get

∥
∥�2(ϑ ,u)

∥
∥
PC(J) ≤ m|w2| + (2m + 1)

[ (ωf ωg + ω′
g)R

2	(y + 1)(1 – ω′
f ωg)

]
(
ϕ(T) – ϕ(0)

)y + mLZ
R
2

.

Thus

∥
∥�(u,ϑ)

∥
∥
B ≤ ∥

∥�1(u,ϑ)
∥
∥
PC(J) +

∥
∥�2(ϑ ,u)

∥
∥
PC(J)

≤ m
[|w1| + |w2|

]
+ Q1R ≤ R.

Hence �(BR) ⊂ BR.
Step 2: � is continuous and compact.
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Let (un,ϑn) be a sequence such that (un,ϑn) → (u,ϑ) in BR. Then we have

∣
∣�1(un,ϑn)(σ ) – �1(u,ϑ)(σ )

∣
∣

≤
∑

0<σk <σ

Iy,ϕ
σ+

k–1

∣
∣
[
f
(
s,un(s),Dy,p,ϕ

[σ ] ϑn(s)
)

– f
(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)]∣

∣(T)

+
∑

0<σk<σ

Iy,ϕ
σ+

k–1

∣
∣
[
f
(
s,un(s),Dy,p,ϕ

[σ ] ϑn(s)
)

– f
(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)]∣

∣(σk)

+ Iy,ϕ
σ+

k

∣
∣
[
f
(
s,un(s),Dy,p,ϕ

[σ ] ϑn(s)
)

– f
(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)]∣

∣(σ )

+
∑

0<σk<σ

∣
∣Zkun

(
σ –

k
)

– Zku
(
σ –

k
)∣
∣

≤ mIy,ϕ
σ+

k–1

∣
∣
[
f
(
s,un(s),Dy,p,ϕ

[σ ] ϑn(s)
)

– f
(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)]∣

∣(T)

+ mIy,ϕ
σ+

k–1

∣
∣
[
f
(
s,un(s),Dy,p,ϕ

[σ ] ϑn(s)
)

– f
(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)]∣

∣(σk)

+ Iy,ϕ
σ+

k

∣
∣
[
f
(
s,un(s),Dy,p,ϕ

[σ ] ϑn(s)
)

– f
(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)]∣

∣(σ )

+ mLZ
∣
∣
[
un(σ ) – u(σ )

]∣
∣

≤ (2m + 1)
�f ‖un – u‖PC(J) + �′

f �
′
g‖ϑn – ϑ‖PC(J)

	(y+1)(1 – �′
f �g)

(
ϕ(T) – ϕ(0)

)y

+ mLZ‖un – u‖PC(J).

By the same technique we get

∣
∣�2(un,ϑn)(σ ) – �2(u,ϑ)(σ )

∣
∣

≤ (2m + 1)
�g�f ‖un – u‖PC(J) + �′

g‖ϑn – ϑ‖PC(J)

	(y+1)(1 – �′
f �g)

(
ϕ(T) – ϕ(0)

)y

+ mLZ‖ϑn – ϑ‖PC(J).

Thus

∥
∥�(un,ϑn) – �(u,ϑ)

∥
∥
B

≤ ∥
∥�1(un,ϑn) – �1(u,ϑ)

∥
∥
PC(J) +

∥
∥�2(un,ϑn) – �2(u,ϑ)

∥
∥
PC(J)

≤ (2m + 1)
[ (�f + �g�f )‖un – u‖PC(J) + (�′

f �
′
g + �′

g)‖ϑn – ϑ‖PC(J)

	(y+1)(1 – �′
f �g)

]
(
ϕ(T) – ϕ(0)

)y

+ mLZ
[‖un – u‖PC(J) + ‖ϑn – ϑ‖PC(J)

]

→ 0 as (un,ϑn) → (u,ϑ).

Hence � is continuous. Also, the operator � is bounded on BR. Thus � is uniformly
bounded on BR. Next, we prove that � is equicontinuous. Let σ1,σ2 ∈ J be such that σ1 <
σ2. In view of (H2), fixing sup(σ ,(u,ϑ))∈J×BR |f (σ ,u,ϑ)| = f̂ and sup(σ ,(u,ϑ))∈J×BR |g(σ ,u,ϑ)| = ĝ ,
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we have

∣
∣�1

(
u(σ2),ϑ(σ2)

)
– �1

(
u(σ1),ϑ(σ1)

)∣
∣

=
∣
∣Iy,ϕ

σ+
k

f
(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)
(σ2)

– Iy,ϕ
σ+

k
f
(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)
(σ1)

∣
∣

≤ f̂
[

(ϕ(σ2) – ϕ(σ1))y

	(y)
–

(ϕ(σ1) – ϕ(σk))y

	(y)

]

. (3.1)

From (3.1) we have

∥
∥�1

(
u(σ2),ϑ(σ2)

)
– �1

(
u(σ1),ϑ(σ1)

)∥
∥
PC(J) → 0 as σ2 → σ1. (3.2)

By the same technique we get

∥
∥�2

(
u(σ2),ϑ(σ2)

)
– �2

(
u(σ1),ϑ(σ1)

)∥
∥
PC(J) → 0 as σ2 → σ1. (3.3a)

It follows from (3.2) and (3.3a) that

∥
∥�

(
u(σ2),ϑ(σ2)

)
– �

(
u(σ1),ϑ(σ1)

)∥
∥
B → 0 as σ2 → σ1.

Hence � is equicontinuous. By the Arzelà–Ascoli theorem we infer that � is compact in
BR. Therefore from the above steps we conclude that � is completely continuous.

Step 3: The set � = {(u,ϑ) ∈ B : (u,ϑ) = ξ�(u,ϑ), ξ ∈ (0, 1)} is bounded.
Let (u,ϑ) ∈ �. Then (u,ϑ) = ξ�(u,ϑ). Now, for σ ∈ J , we have u(σ ) = ξ�1(u,ϑ) and

ϑ(σ ) = ξ�(u,ϑ). According to our hypotheses, we attain

∣
∣u(σ )

(
ϕ(σ ) – ϕ(0)

)1–γ ∣
∣ =

∣
∣ξ�1(u,ϑ)

∣
∣

≤ ∥
∥�1(u,ϑ)

∥
∥
PC(J).

By step 1 we have

‖u‖PC(J) =
∥
∥ξ�1(u,ϑ)

∥
∥
PC(J)

≤ ∥
∥�1(u,ϑ)

∥
∥
PC(J)

≤ m|w1| + (2m + 1)
[ (ωf + ω′

f ω
′
g)R

2	(y + 1)(1 – ω′
f ωg)

]
(
ϕ(T) – ϕ(0)

)y + mLZ
R
2

(3.4)

and

‖ϑ‖PC(J) ≤ m|w2| +(2m + 1)
[ (ωf ωg + ω′

g)R
2	(y + 1)(1 – ω′

f ωg)

]
(
ϕ(T) – ϕ(0)

)y + mLZ
R
2

. (3.5)

From (3.4) and (3.5) we have

∥
∥(u,ϑ)

∥
∥
B = ‖u‖PC(J) + ‖ϑ‖PC(J) ≤ R.
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Hence the set � is bounded. According to the above steps, together with Theorem 2.7,
we conclude that � has at least one fixed point. Consequently, system (1.1) has at least
one solution on J . �

In the following theorem, we prove the uniqueness of solutions to system (1.1) by using
Theorem 2.8.

Theorem 3.2 Assume that (H1)–(H3) hold. If

Q = (2m + 1)ρ + mLZ < 1,

where ρ = max{ρ1,ρ2} with

ρ1 =
�f (1 + �g)

	(y + 1)(1 – �′
f �g)

,

ρ2 =
�′

g(1 + �′
f )

	(y + 1)(1 – �′
f �g)

,

then system (1.1) has a unique solution.

Proof Consider the closed ballBR defined in Theorem 3.1. First, we show that �(BR) ⊂ BR.
By the first step in Theorem 3.1 we have �(BR) ⊂ BR. Next, we need to prove that � is
a contraction map. Indeed, for (u,ϑ), (̂u, ϑ̂) ∈ BR and σ ∈ J , we obtain

∣
∣
(
�1(u,ϑ)(σ ) – �1(̂u, ϑ̂)(σ )

)∣
∣

≤
∑

0<σk <σ

(ϕ(σk) – ϕ(σk–1))1–γ

(ϕ(T) – ϕ(σk–1))1–γ

× [
Iy,ϕ

σ+
k–1

∣
∣f

(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)

– f
(
s, û(s),Dy,p,ϕ

[σ ] ϑ̂(s)
)∣
∣(T)

]

+
∑

0<σk<σ

Iy,ϕ
σ+

k–1

∣
∣f

(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)

– f
(
s, û(s),Dy,p,ϕ

[σ ] ϑ̂(s)
)∣
∣(σk)

+ Iy,ϕ
σ+

k

∣
∣f

(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)

– f
(
s, û(s),Dy,p,ϕ

[σ ] ϑ̂(s)
)∣
∣(σ )

+
∑

0<σk<σ

∣
∣Zku

(
σ –

k
)

– Zk û
(
σ –

k
)∣
∣

≤ mIy,ϕ
σ+

k–1

∣
∣
[
f
(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)

– f
(
s, û(s),Dy,p,ϕ

[σ ] ϑ̂(s)
)]∣

∣(T)

+ mIy,ϕ
σ+

k–1

∣
∣
[
f
(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)

– f
(
s, û(s),Dy,p,ϕ

[σ ] ϑ̂(s)
)]∣

∣(σk)

+ Iy,ϕ
σ+

k

∣
∣
[
f
(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)

– f
(
s, û(s),Dy,p,ϕ

[σ ] ϑ̂(s)
)]∣

∣(σ )

+ m
∣
∣Zku

(
σ –

k
)

– Zk û
(
σ –

k
)∣
∣

≤ (2m + 1)
[ (�f ‖u – û‖PC(J) + �′

f �
′
g‖ϑ – ϑ̂‖PC(J))

	(y + 1)(1 – �′
f �g)

]
(
ϕ(T) – ϕ(0)

)y

+ mLZ‖u – û‖PC(J),
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and, consequently, we obtain

∥
∥�1(u,ϑ)(σ ) – �1(̂u, ϑ̂)

∥
∥
PC(J) (3.6)

≤ (2m + 1)
[

�f ‖u – û‖PC(J) + �′
f �

′
g‖ϑ – ϑ̂‖PC(J)

	(y + 1)(1 – �′
f �g)

]
(
ϕ(T) – ϕ(0)

)y

+ mLZ‖u – û‖PC(J). (3.7)

By the same way we obtain

∥
∥�2(u,ϑ)(σ ) – �2(̂u, ϑ̂)

∥
∥
PC(J)

≤ (2m + 1)
[

�f �g‖u – û‖PC(J) + �′
g‖ϑ – ϑ̂‖PC(J)

	(y + 1)(1 – �′
f �g)

]
(
ϕ(T) – ϕ(0)

)y

+ mLZ‖ϑ – ϑ̂‖PC(J). (3.8)

From (3.7) and (3.8) it follows that

∥
∥�(u,ϑ)(σ ) – �(̂u, ϑ̂)

∥
∥
B

≤ ∥
∥�1(u,ϑ)(σ ) – �1(̂u, ϑ̂)

∥
∥
PC(J) +

∥
∥�2(u,ϑ)(σ ) – �2(̂u, ϑ̂)

∥
∥
PC(J)

≤ (2m + 1)
[

�f (1 + �g)‖u – û‖PC(J)

	(y + 1)(1 – �′
f �g)

+
�′

g(1 + �′
f )‖ϑ – ϑ̂‖PC(J)

	(y + 1)(1 – �′
f �g)

]
(
ϕ(T) – ϕ(0)

)y

+ mLZ
[‖u – û‖PC(J) + ‖ϑ – ϑ̂‖PC(J)

]

≤ (2m + 1)
[
ρ1‖u – û‖PC(J) + ρ2‖ϑ – ϑ̂‖PC(J)

](
ϕ(T) – ϕ(0)

)y

+ mLZ
[‖u – û‖PC(J) + ‖ϑ – ϑ̂‖PC(J)

]

≤ [
(2m + 1)ρ + mLZ

][‖u – û‖PC(J) + ‖ϑ – ϑ̂‖PC(J)
]

≤Q
∥
∥(u,ϑ) – (̂u, ϑ̂)

∥
∥
B .

Thus the operator � is a contraction. So by Theorem 2.8 system (1.1) has a unique solu-
tion. �

4 Stability analysis
To state the main theorem, we need the following definitions. Let εi > 0 and λφi : J → [0,∞)
(i = 1, 2) be continuous functions. We consider the following inequalities:

∣
∣Dy,p,ϕ

[σ ] û(σ ) – f
(
σ , û(σ ),Dy,p,ϕ

[σ ] ϑ̂(σ )
)∣
∣ ≤ ε1, (4.1)

∣
∣Dy,p,ϕ

[σ ] ϑ̂(σ ) – f
(
σ ,Dy,p,ϕ

0 û(σ ), ϑ̂(σ )
)∣
∣ ≤ ε2, (4.2)

∣
∣Dy,p,ϕ

[σ ] û(σ ) – f
(
σ , û(σ ),Dy,p,ϕ

[σ ] ϑ̂(σ )
)∣
∣ ≤ ε1λφ1 (σ ), (4.3)

∣
∣Dy,p,ϕ

[σ ] ϑ̂(σ ) – f
(
σ ,Dy,p,ϕ

0 û(σ ), ϑ̂(σ )
)∣
∣ ≤ ε2λφ2 (σ ). (4.4)

Definition 4.1 ([39]) System (1.1) is UH stable if there exists a real number M > 0 such
that for each ε = max{ε1, ε2} > 0, there exists a solution (̂u, ϑ̂) ∈ B of inequalities (4.1) and
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(4.2) corresponding to a solution (u,ϑ) ∈ B of system (1.1) such that

∥
∥(̂u, ϑ̂) – (u,ϑ)

∥
∥
B ≤Mε, κ ∈ J .

Definition 4.2 ([39]) System (1.1) is UHR stable with respect to the nondecreasing func-
tion λφ(σ ) = maxκ∈J{λφ1 (σ ),λφ2(σ )} if there exists a real number N > 0 such that for each
solution (̂u, ϑ̂) ∈ B of inequalities (4.3) and (4.4), there exists a solution (u,ϑ) ∈ B of sys-
tem (1.1) such that

∥
∥(̂u, ϑ̂) – (u,ϑ)

∥
∥
B ≤N ελφ(κ), κ ∈ J .

Remark 4.3 A function (̂u, ϑ̂) ∈ B is a solution of inequalities (4.1) and (4.2) if and only if
there exist functions z1, z2 ∈PC(J) such that

(i)
{ |z1(κ)| ≤ ε1, σ ∈ J ,

|z2(κ)| ≤ ε2, σ ∈ J ,

(ii)
{Dy,p,ϕ

[σ ] û(σ ) = f (σ , û(σ ),Dy,p,ϕ
[σ ] ϑ̂(σ )) + z1(σ ), σ ∈ J ,

Dy,p,ϕ
[σ ] ϑ̂(σ ) = g(σ ,Dy,p,ϕ

[σ ] û(σ ), ϑ̂(σ )) + z2(σ ), σ ∈ J .

Lemma 4.4 Let y ∈ (0, 1) and p ∈ [0, 1]. If a function (̂u, ϑ̂) ∈ B satisfies inequalities (4.1)
and (4.2), then (̂u, ϑ̂) satisfies the following integral inequalities:

⎧
⎨

⎩

|̂u(σ ) – Aû – Iy,ϕ
σ+

k
f (s, û(s),Dy,p,ϕ

[σ ] ϑ̂(s))(σ )| ≤ ε1K ,

|ϑ̂(σ ) – Aϑ̂ – Iy,ϕ
σ+

k
g(s,Dy,p,ϕ

[σ ] û(s), ϑ̂(s), )(σ )| ≤ ε2K ,

where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Aû :=
∑

0<σk<σ
(ϕ(σk )–ϕ(σk–1))γ –1

(ϕ(T)–ϕ(σk–1))γ –1 [w1 – Iy,ϕ
σ+

k–1
f (s, û(s),Dy,p,ϕ

[σ ] ϑ̂(s))(T)]

–
∑

0<σk<σ I
y,ϕ
σ+

k–1
f (s, û(s),Dy,p,ϕ

[σ ] ϑ̂(s))(σk) –
∑

0<σk<σ Zk û(σ –
k ),

Aϑ̂ :=
∑

0<σk <σ
(ϕ(σk )–ϕ(σk–1))γ –1

(ϕ(T)–ϕ(σk–1))γ –1 [w2 – Iy,ϕ
σ+

k–1
g(s,Dy,p,ϕ

[σ ] û(s), ϑ̂(s))(T)]

–
∑

0<σk <σ I
y,ϕ
σ+

k–1
g(s,Dy,p,ϕ

[σ ] û(s), ϑ̂(s))(σk) –
∑

0<σk<σ Zkϑ̂(σ –
k ),

and

K := (2m + 1)
(ϕ(T) – ϕ(0))y

	(y + 1)
.

Proof Indeed, by Remark 4.3 we have

⎧
⎨

⎩

Dy,p,ϕ
[σ ] û(σ ) = f (σ , û(σ ),Dy,p,ϕ

[σ ] ϑ̂(σ )) + z1(σ ), σ ∈ J ,

Dy,p,ϕ
[σ ] ϑ̂(σ ) = g(σ ,Dy,p,ϕ

[σ ] û(σ ), ϑ̂(σ )) + z2(σ ), σ ∈ J .
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Then, for σ ∈ (σk ,σk+1], k = 1, . . . , m, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|̂u(σ ) – Aû – Iy,ϕ
σ+

k
f (s, û(s),Dy,p,ϕ

0 ϑ̂(s))(σ )|
≤ ∑

0<σk<σ
(ϕ(σk )–ϕ(σk–1))γ –1

(ϕ(T)–ϕ(σk–1))γ –1 [Iy,ϕ
σ+

k–1
|z1(s)|(T)]

+
∑

0<σk <σ I
y,ϕ
σ+

k–1
|z1(s)|(σk) + Iy,ϕ

σ+
k

|z1(s)|(σ ),

|ϑ̂(σ ) – Aϑ̂ – Iy,ϕ
σ+

k
g(s,Dy,p,ϕ

0 û(s), ϑ̂(s))(σ )|
≤ ∑

0<σk<σ
(ϕ(σk )–ϕ(σk–1))γ –1

(ϕ(T)–ϕ(σk–1))γ –1 [Iy,ϕ
σ+

k–1
|z2(s)|(T)]

+
∑

0<σk <σ I
y,ϕ
σ+

k–1
|z2(s)|(σk) + Iy,ϕ

σ+
k

|z2(s)|(σ ).

It follows that

⎧
⎨

⎩

|̂u(σ ) – Aû – Iy,ϕ
σ+

k
f (s, û(s),Dy,p,ϕ

[σ ] ϑ̂(s))(σ )| ≤ ε1K ,

|ϑ̂(σ ) – Aϑ̂ – Iy,ϕ
σ+

k
g(s,Dy,p,ϕ

[σ ] û(s), ϑ̂(s), )(σ )| ≤ ε2K . �

In the forthcoming theorem, we prove the stability results for system (1.1).

Theorem 4.5 Assume that (H1) and (H2) hold. Then

⎧
⎨

⎩

Dy,p,ϕ
[σ ] u(σ ) = f (σ ,u(σ ),Dy,p,ϕ

[σ ] ϑ(σ )), σ ∈ J ,

Dy,p,ϕ
[σ ] ϑ(σ ) = g(σ ,Dy,p,ϕ

[σ ] u(σ ),ϑ(σ )), σ ∈ J ,
(4.5)

are UH stable, provided that � = (1 – �1f )(1 – �2g) – �1g�2f �= 0, where

�1f =
�f (ϕ(T) – ϕ(0))y

	(y + 1)(1 – �′
f �g)

, �2f =
(ϕ(T) – ϕ(0))y�f �g

	(y + 1)(1 – �′
f �g)

,

�1g =
(ϕ(T) – ϕ(0))y�′

f �
′
g

	(y + 1)(1 – �′
f �g)

, �2g =
(ϕ(T) – ϕ(0))y�′

g

	(y + 1)(1 – �′
f �g)

.

Proof Let ε = max{ε1, ε2} > 0, let (̂u, ϑ̂) ∈ B be functions satisfying inequalities (4.1) and
(4.2), and let (u,ϑ) ∈ B be the unique solution of the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dy,p,ϕ
[σ ] u(σ ) = f (σ ,u(σ ),Dy,p,ϕ

[σ ] ϑ(σ )), σ ∈ J := [0, T],σ �= σk , k = 1, . . . , m,

Dy,p,ϕ
[σ ] ϑ(σ ) = g(σ ,Dy,p,ϕ

[σ ] u(σ ),ϑ(σ )), σ ∈ J := [0, T],σ �= σk , k = 1, . . . , m,

�u|σ=σk = �û|σ=σk = Zk û(σ –
k ), k = 1, . . . , m,

�ϑ |σ=σk = �ϑ̂ |σ=σk = Zkϑ̂(σ –
k ), k = 1, . . . , m,

û(T) = u(T) = w1, ϑ̂(T) = ϑ(T) = w2.

Then by Theorem 3.1 we have

⎧
⎨

⎩

u(σ ) = Au + Iy,ϕ
σ+

k
f (s,u(s),Dy,p,ϕ

[σ ] ϑ(s))(σ ),

ϑ(σ ) = Aϑ + Iy,ϕ
σ+

k
g(s,Dy,p,ϕ

[σ ] u(s),ϑ(s))(σ ).
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Since

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u|σ=σk = �û|σ=σk = Zk û(σ –
k ), k = 1, . . . , m,

�ϑ |σ=σk = �ϑ̂ |σ=σk = Zkϑ̂(σ –
k ), k = 1, . . . , m,

û(T) = u(T) = w1,

ϑ̂(T) = ϑ(T) = w2,

we can easily prove that Au = Aû and Aϑ = Aϑ̂ . Hence from (H2) and Lemma 4.4, for each
σ ∈ J , we have

∣
∣̂u(σ ) – u(σ )

∣
∣ =

∣
∣̂u(σ ) – Aû – Iy,ϕ

σ+
k

f
(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)
(σ )

–Iy,ϕ
σ+

k
f
(
s, û(s),Dy,p,ϕ

[σ ] ϑ̂(s)
)
(σ ) + f

(
s, û(s),Dy,p,ϕ

[σ ] ϑ̂(s)
)
(σ )

∣
∣

≤ ∣
∣̂u(σ ) – Aû – Iy,ϕ

σ+
k

f
(
s, û(s),Dy,p,ϕ

[σ ] ϑ̂(s)
)
(σ )

∣
∣

+Iy,ϕ
σ+

k

∣
∣f

(
s, û(s),Dy,p,ϕ

[σ ] ϑ̂(s)
)
(σ ) – f

(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)
(σ )

∣
∣

≤ Kε1 + +Iy,ϕ
σ+

k

∣
∣f

(
s, û(s),Dy,p,ϕ

[σ ] ϑ̂(s)
)
(σ ) – f

(
s,u(s),Dy,p,ϕ

[σ ] ϑ(s)
)
(σ )

∣
∣ (4.6)

and

∣
∣ϑ̂(σ ) – ϑ(σ )

∣
∣ =

∣
∣ϑ̂(σ ) – Aϑ̂ – Iy,ϕ

σ+
k

g
(
s,Dy,p,ϕ

[σ ] u(s),ϑ(s)
)
(σ )

–Iy,ϕ
σ+

k
g
(
s,Dy,p,ϕ

[σ ] û(s), ϑ̂(s)
)
(σ ) + g

(
s,Dy,p,ϕ

[σ ] û(s), ϑ̂(s)
)
(σ )

∣
∣

≤ ∣
∣ϑ̂(σ ) – Aϑ̂ – Iy,ϕ

σ+
k

g
(
s,Dy,p,ϕ

[σ ] û(s), ϑ̂(s)
)
(σ )

∣
∣

+Iy,ϕ
σ+

k

∣
∣g

(
s,Dy,p,ϕ

[σ ] û(s), ϑ̂(s)
)
(σ ) – g

(
s,Dy,p,ϕ

[σ ] u(s),ϑ(s)
)
(σ )

∣
∣

≤ Kε2 + Iy,ϕ
σ+

k

∣
∣g

(
s,Dy,p,ϕ

[σ ] û(s), ϑ̂(s)
)
(σ ) – g

(
s,Dy,p,ϕ

[σ ] u(s),ϑ(s)
)
(σ )

∣
∣. (4.7)

Thus by (H1) we have

‖̂u – u‖PC(J) ≤ Kε1 +
[

�f ‖̂u – u‖PC(J) + �′
f �

′
g‖ϑ̂ – ϑ‖PC(J)

	(y + 1)(1 – �′
f �g)

]
(
ϕ(T) – ϕ(0)

)y.

By the same technique we get

‖ϑ̂ – ϑ‖PC(J) ≤ Kε2 +
[

�f �g ‖̂u – u‖PC(J) + �′
g‖ϑ̂ – ϑ‖PC(J)

	(y + 1)(1 – �′
f �g)

]
(
ϕ(T) – ϕ(0)

)y.

It follows that

‖̂u – u‖PC(J)(1 – �1f ) – ‖ϑ̂ – ϑ‖PC(J)�1g ≤ Kε1 (4.8)

and

‖ϑ̂ – ϑ‖PC(J)(1 – �2g) – ‖̂u – u‖PC(J)�2f ≤ Kε2. (4.9a)
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Inequalities (4.8) and (4.9a) can be rewritten in the matrix form

(
(1 – �1f ) –�1g

–�2f (1 – �2g)

)(
‖̂u – u‖PC(J)

‖ϑ̂ – ϑ‖PC(J)

)

≤
(

ε1K
ε2K

)

.

By simple computations this inequality becomes

(
‖̂u – u‖PC(J)

‖ϑ̂ – ϑ‖PC(J)

)

≤ 1
�

(
(1 – �2g) �1g

�2f (1 – �1f )

)

×
(

ε1K
ε2K

)

.

This leads to

‖̂u – u‖PC(J) ≤ (1 – �2g)ε1K + �1gε2K
�

,

‖ϑ̂ – ϑ‖PC(J) ≤ �2f ε1K + (1 – �1f )ε2K
�

.

Thus

∥
∥(̂u, ϑ̂) – (u,ϑ)

∥
∥
B ≤ ‖̂u – u‖PC(J) + ‖ϑ̂ – ϑ‖PC(J)

≤ 2 – �2g + �1g + �2f – �1f

�
εK

≤ Mε, (4.10)

where ε = max{ε1, ε2} and M = 2–�2g +�1g +�2f –�1f
�

K . Hence by inequality (4.10) and Defini-
tion 4.1 the solution of system (1.1) is Ulam–Hyers stable. Next, by setting λφ = εM such
that λφ(0) = 0 system (1.1) is generalized Ulam–Hyers stable. �

5 An example
Consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dy,p,ϕ
[σ ] u(σ ) = (ϕ(σ )–ϕ( 1

5 ))γ –1

10e(ϕ(σ )–ϕ(0)) [ |u(σ )|
(1+|u(σ )|) +

|Dy,p,ϕ
[σ ] ϑ(σ )|

(1+|Dy,p,ϕ
[σ ] ϑ(σ )|) ], σ ∈ (0, 1] – { 1

5 },
Dy,p,ϕ

[σ ] ϑ(σ ) = (ϕ(σ )–ϕ( 1
5 ))γ –1

10e(ϕ(σ )–ϕ(0)) [
|Dy,p,ϕ

[σ ] u(σ )|
(1+|Dy,p,ϕ

[σ ] u(σ )|) + |ϑ(σ )|
(1+|ϑ(σ )|) ], σ ∈ (0, 1] – { 1

5 },
�u( 1

5
–) = |u( 1

5
–)|

8(1+|u( 1
5

–)|) , �ϑ( 1
5

–) = |ϑ( 1
5

–)|
8(1+|ϑ( 1

5
–)|) ,

u(1) = 3, ϑ(1) = 2,

(5.1)

Here y = 1
3 , p = 1

2 , γ = 2
3 , w1 = 3, w2 = 2. Set ϕ(σ ) = eσ .

Example 5.1 Define f , g : (0, 1] ×R
2 →R as

f
(
σ ,u(σ ),Dy,p,ϕ

0 ϑ(σ )
)

=
(ϕ(σ ) – ϕ( 1

5 ))γ –1

10e(ϕ(σ )–ϕ(0))

[ |u(σ )|
(1 + |u(σ )|) +

|Dy,p,ϕ
[σ ] ϑ(σ )|

(1 + |Dy,p,ϕ
[σ ] ϑ(σ )|)

]

,

g
(
σ ,Dy,p,ϕ

0 u(σ ),ϑ(σ )
)

=
(ϕ(σ ) – ϕ( 1

5 ))γ –1

10e(ϕ(σ )–ϕ(0))

[ |Dy,p,ϕ
[σ ] u(σ )|

(1 + |Dy,p,ϕ
[σ ] u(σ )|) +

|ϑ(σ )|
(1 + |ϑ(σ )|)

]

,
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and Z1, Z2 : R →R by

Z1(u) =
|u|

8(1 + |u|)

and

Z2(ϑ) =
|ϑ |

8(1 + |ϑ |) .

Then, for (u,ϑ), (̂u, ϑ̂) ∈R×R, we have

∣
∣f

(
σ ,u(σ ),ϑ(σ )

)
– f

(
σ , û(σ ), ϑ̂(σ )

)∣
∣ ≤ 1

10
∣
∣u(σ ) – û(σ )

∣
∣ +

1
10

∣
∣ϑ(σ ) – ϑ̂(σ )

∣
∣,

∣
∣g

(
σ ,u(σ ),ϑ(σ )

)
– g

(
σ , û(σ ), ϑ̂(σ )

)∣
∣ ≤ 1

10
∣
∣u(σ ) – û(σ )

∣
∣ +

1
10

∣
∣ϑ(σ ) – ϑ̂(σ )

∣
∣,

and

∣
∣Z1(u) – Z1(̂u)

∣
∣ ≤ 1

8
∣
∣u(σ ) – û(σ )

∣
∣,

∣
∣Z2(ϑ) – Z2(ϑ̂)

∣
∣ ≤ 1

8
∣
∣ϑ(σ ) – ϑ̂(σ )

∣
∣.

Here �f = �′
f = �g = �′

g = ωf = ω′
f = ωg = ω′

g = 1
10 and LZ1 = LZ2 = 1

8 . From the given data we
deduce that conditions (H1), (H2), and (H3) hold. Thus all the conditions of Theorem 3.1
are satisfied. Therefore problem (1.1) has at least one solution on [0, 1]. Moreover, we have
ρ1 = ρ2 = 0, 1 and Q = 0.48 < 1 Thus all conditions of Theorem 3.2 are satisfied. Therefore
problem (1.1) has a unique solution on [0, 1].

Finally, for ε = max{ε1, ε2} > 0, we find that the inequalities

∣
∣Dy,p,ϕ

[σ ] û(σ ) – f
(
σ , û(σ ),Dy,p,ϕ

[σ ] ϑ̂(σ )
)∣
∣ ≤ ε1,

∣
∣Dy,p,ϕ

[σ ] ϑ̂(σ ) – f
(
σ ,Dy,p,ϕ

0 û(σ ), ϑ̂(σ )
)∣
∣ ≤ ε2

are satisfied. Then equation (4.5) is Ulam–Hyers stable with

∥
∥(̂u, ϑ̂) – (u,ϑ)

∥
∥
B ≤Mε, κ ∈ J .

where

M = 2.3 > 0.

6 Concluding remarks
We obtained the existence, uniqueness, and UH stability of solutions for a new problem
of ϕ-Hilfer FDEs with impulse conditions. Our investigations were based on the reduc-
tion of FDEs to FIEs and application the standard Leray–Schauder and Banach fixed point
theorems. The acquired results in this paper are more general and cover many of the par-
allel problems that contain particular cases of the function ϕ, because our proposed sys-
tem contains a global fractional derivative that integrates many classic fractional deriva-
tives; for instance, for various values of a function ϕ and parameter p, the coupled system
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(1.1) includes coupled systems of FDEs involving the Hilfer, Hadamard, Katugampola, and
many other fractional derivative operators, which are described in the introduction.
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