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Abstract
The definition of a Green’s function of a Cauchy–Dirichlet problem for the hyperbolic
equation in a quarter plane is given. Its existence and uniqueness have been proven.
Representation of the Green’s function is given. It is shown that the Green’s function
can be represented by the Riemann–Green function.
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1 Introduction
This work is devoted to the substantiation of the Green’s function method for solving
the first initial-boundary value problem for a linear hyperbolic equation. The problem is
considered in a quarter plane.

The Green’s function method, well developed for elliptic and parabolic problems, is still
little developed for hyperbolic problems. In our work, we introduce the definition of the
Green’s function for the hyperbolic problem (the first initial-boundary value problem),
prove its existence and uniqueness, and also construct an integral representation of the
solution to the problem using this Green’s function.

The hyperbolic Green’s function differs significantly from the Green’s functions for el-
liptic or parabolic problems. In particular, the Green’s function of a hyperbolic problem
can have discontinuities along several characteristics of the equation. As we can see, in
this regard, for each hyperbolic problem, the definition and substantiation of the Green’s
function must be carried out separately, and detailed studies in this direction are required.

If we consider the question of classical solvability of the following hyperbolic equation:

utt – uxx = f (x, t), (x, t) ∈ S, (1.1)

where f ∈ C1(S), S = {(x, t) : 0 < x < 1, t > 0}, with the initial

u(x, 0) = ut(x, 0) = 0, 0 < x < 1 (1.2)
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Figure 1 The domain D

and boundary conditions

u(0, t) = u(1, t) = 0, t > 0, (1.3)

then by the Fourier method [1], we find a solution to problem (1.1)–(1.3) in the following
form:

u(x, t) =
∫ t

0
dτ

∫ 1

0
G(x, t; ξ , τ )f (ξ , τ ) dξ , (1.4)

where

G(x, t; ξ , τ ) =
∞∑

k=1

2 sin kπx
kπ

sin kπ (t – τ ) sin kπξ (1.5)

is the Green’s function of problem (1.1)–(1.3). But from (1.5) we do not see what properties
the Green’s function of problem (1.1)–(1.3) has.

From the previous works related to the topic, the articles [2–25] should be noted.
First of all, we note the articles [2–5], in which, apparently, there were attempts to estab-

lish analogues of Sturm’s comparison theorems for hyperbolic problems. However, it be-
came clear that these extensions of classical results from the theory of ordinary differential
operators to the hyperbolic problems require caution and special attention to boundary
conditions and to the type of a domain in which the problem is being considered.

One of the explanations to this was given in the works of Kal’menov [6, 7], in which
eigenvalues and eigenfunctions of one class of the boundary value problems with shift
for a wave equation in a characteristic triangle were calculated. It was shown that the
eigenvalues of the problem have two series, real parts of which tend to –∞ and to +∞,
respectively. Thus, even in the self-adjoint case, although the eigenvalues of the problem
are real, the operator is not positive definite. This essentially distinguishes the hyperbolic
problems from the boundary value problems for elliptic and parabolic equations. Note
that these studies were continued in our subsequent works [8–10] as well.

To avoid the problems that have arisen, in [11] it was proposed to consider the construc-
tion of the Green’s function for problems in the characteristic triangle D = {(x, t) : t – T <
x < T – t, 0 < t < T} (see Fig. 1) for the wave equation

utt – uxx = f (x, t), (x, t) ∈ D. (1.6)
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The problems on finding the coefficient k with respect to the initial conditions

u(x, 0) = kg(x), ut(x, 0) = 0,
or

u(x, 0) = 0, ut(x, 0) = kg(x),
– T < x < T , (1.7)

and the additional condition

u(0, T) = 0
(
or ut(0, T) = 0

)
(1.8)

were considered.
According to today’s terminology, these problems are inverse problems of the recovery

of coefficient.
When solving these problems, a construction resembling the Green’s function arose. Us-

ing this function, in the domain D we can solve problems (1.6)–(1.8) for the wave equation
with the lower-order coefficient

utt – uxx + p(x, t)u = 0, (x, t) ∈ D. (1.9)

Obviously, having the Green’s function, the solution to equation (1.9) with conditions
(1.7), (1.8) can be reduced to the solution of an integral equation. Further, the results on
comparing two positive solutions u1 ≤ u2 to problem (1.7), (1.8) for equation (1.9) with
different potentials p2 ≤ p1 were obtained using the method from the monograph by Kras-
noselskii [12].

The opportunity of using the Green’s function to obtain such results prompted a more
detailed research of the Green’s function itself of hyperbolic problems in the character-
istic triangle. Variants of various characteristic boundary value problems for hyperbolic
equations and systems were considered in [13–22]. All cases of the considered problems
were self-adjoint.

In the paper [23] one-dimensional wave equation with quadratic and hyperbolic non-
linearities was considered. Using the method of generalized separation of variables, it is
shown that a hierarchy of nonlinear wave equations can be reduced to second-order non-
linear ordinary differential equations, to which Frasca’s method is applicable. In [24] the
Green’s function was computed for the Dirichlet problem associated with the hyperbolic
heat equation in the spatial interval [0, 1]. It was shown that its Green’s functions do not
have to be continuous in all points of the domain. In [25] the authors considered the class
of hypoelliptic operators

Lu ≡
m0∑

i,j=1

ai,j(z)∂xi ,xj u +
N∑

i,j=1

bi,jxi∂xj u – ∂tu,

where z = (x, t) ∈ R
N+1, 0 < m0 ≤ N , the coefficients ai,j belong to the space of vanishing

mean oscillation functions, B = (bi,j) is a constant real matrix. In that paper they proved
that a strong solution to the differential equation Lu = f with the known term f in the
Morrey space Lp,λ belongs to a suitable Sobolev–Morrey space Sp,λ.
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Figure 2 The domain �

One of the most significant advances in constructing the Green’s function of the char-
acteristic boundary value problem was the work of Haws [20]. He considered the two-
dimensional hyperbolic equation

uxy + p(x, y)u = f (x, y), (x, y) ∈ �, (1.10)

in the characteristic triangle � = {(x, y) : 0 < x < y < 1} (see Fig. 2).
One of the following two conditions was chosen as a boundary condition on the non-

characteristic line AB: either the boundary condition of the first kind

u(x, x) = 0, 0 ≤ x ≤ 1,

or the boundary condition of the second kind

(ux – uy)(x, x) = 0, 0 ≤ x ≤ 1,

and the condition at the point C was used:

u(0, 1) = 0.

The problem was added by one more condition, which ensures the symmetry of the
Green’s function of the problem under consideration. As an example, it was proposed to
use self-adjoint boundary conditions with shift from the works of Kal’menov [6, 7].

In the general case, the problem was only formulated, but not solved. For the special
case p(x, y) ≡ 0, the definition of the Green’s function was given and the method of its
construction was indicated.

The solution to the problem was represented as the sum

u(x, y) =
∫∫

Ri

Gi(x, y; ξ ,η)f (ξ ,η) dξ dη,

where Gi is the function defined in the subdomain Ri (see Fig. 3).
Also, for the case of the symmetric coefficient

p(x, y) = p(y, x), (1.11)
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Figure 3 The subdomains Ri

the possibility of constructing the Green’s function was justified using the Riemann–Green
function. However, the method used does not allow one to abandon the symmetry condi-
tion of potential (1.11).

The author also considered a hyperbolic equation with lower-order coefficients

uxy + aux + buy + cu = f (x, y), (x, y) ∈ �.

However, only the case of constant coefficients a, b, c was considered.
The problem of constructing the Green’s function of a characteristic boundary value

problem with arbitrary coefficients (without using the symmetry condition (1.11)) was
singled out as an unsolved problem that is interesting for further consideration.

This problem still remains unsolved.

2 Formulation of the problem
Let Q = {(x, t) : x > 0, t > 0}. The following hyperbolic equation is considered in Q:

Lu ≡ ∂2u(x, t)
∂t2 –

∂2u(x, t)
∂x2 + a1(x, t) · ∂u(x, t)

∂x

+ b1(x, t) · ∂u(x, t)
∂x

+ c1(x, t) · u(x, t) = F(x, t), (x, t) ∈ Q,
(2.1)

with the initial conditions

u(x, 0) = T(x),
∂u
∂t

(x, 0) = N(x), x > 0, (2.2)

and the boundary condition

u(t, 0) = 	(t), t > 0. (2.3)

It is well known that this problem is correct, both in the sense of classical and generalized
solutions. We are interested in the question of integral form of the solution of problem
(2.1)–(2.3). We show that the solution to the problem can be written in terms of the Green’s
function, the definition of which we introduce.
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In the characteristic coordinates ξ = x + t,η = x – t equation (2.1) has the form

∂2u
∂ξ ∂η

+ a(ξ ,η) · ∂u
∂ξ

+ b(ξ ,η) · ∂u
∂η

+ c(ξ ,η) · u = f (ξ ,η), (ξ ,η) ∈ 
, (2.4)

and initial conditions (2.2) have the form

u(ξ , ξ ) = τ (ξ ),
(

∂u
∂ξ

–
∂u
∂η

)
(ξ , ξ ) = ν(ξ ), ξ > 0, (2.5)

and boundary condition (2.3) will change to

u(–η,η) = ϕ(η), η ≤ 0. (2.6)

We will assume that a, b ∈ C1(
); c, f ∈ C(
); ϕ ∈ C1((–∞, 0]); ν ∈ C([0, +∞)); τ ∈
C1([0, +∞));ϕ′(0) = –ν(0),ϕ(0) = τ (0).

The aim is to construct a Green’s function and a solution to problem (2.4)–(2.6).

3 Proof of correctness of problem (2.4)–(2.6)
For the sake of completeness, we present here a proof of the correctness of the considered
problem (2.4)–(2.6).

Let us call a function from the class u(ξ ,η), uξη ∈ C(
) a regular solution to the problem,
converting equation (2.4), initial conditions (2.5), and boundary condition (2.6) into an
identity.

Theorem 3.1 Let a, b ∈ C1(
); c, f ∈ C(
); ϕ ∈ C1((–∞, 0]); ν ∈ C([0, +∞)); τ ∈
C1([0, +∞));ϕ′(0) = –ν(0),ϕ(0) = τ (0). Then problem (2.4)–(2.6) has a unique regular so-
lution.

3.1 Proof of existence of solution of problem (2.4)–(2.6)
Let

u(ξ ,η) = ζ (ξ ,η) · ω(ξ ,η). (3.1)

Then (2.4) has the form

∂2ζ

∂ξ ∂η
· ω +

∂2ω

∂ξ ∂η
· ζ +

[
∂ζ

∂ξ
+ bζ

]
· ∂ω

∂η
+

[
∂ζ

∂η
+ aζ

]
· ∂ω

∂ξ

+
[

b
∂ζ

∂η
+ a

∂ζ

∂ξ
+ cζ

]
· ω = f .

(3.2)

We choose ζ (ξ ,η) in such a way that

∂ζ (ξ ,η)
∂ξ

+ b(ξ ,η) · ζ (ξ ,η) = 0 (3.3)

holds. From (3.3) we get

ζ (ξ ,η) = exp

(
–

∫ ξ

0
b(s,η) ds

)
. (3.4)
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Figure 4 The domain 
(ξη) , when η > 0

Dividing equation (3.2) by ζ , we have the following problem:

∂2ω

∂ξ ∂η
+ a2(ξ ,η) · ∂ω

∂ξ
+ c2(ξ ,η) · ω = f2, (ξ ,η) ∈ 
, (3.5)

ω(ξ , ξ ) = τ2(ξ ),
(

∂ω

∂ξ
–

∂ω

∂η

)
(ξ , ξ ) = ν2(ξ ), ξ > 0, (3.6)

ω(–η,η) = ϕ2(η), η ≤ 0, (3.7)

where

a2 =
1
ζ

· ζη + a,

c2 =
1
ζ

(ζξη + aζξ + bζη + c), τ2(ξ ) =
τ (ξ )

ζ (ξ , ξ )
, ϕ2(η) =

ϕ(η)
ζ (–η,η)

,

ν2(ξ ) =
ν(ξ )

ζ (ξ , ξ )
–

τ2(ξ )(ζξ (ξ , ξ ) – ζη(ξ , ξ ))
ζ (ξ , ξ )

, f2(ξ ,η) =
f (ξ ,η)
ζ (ξ ,η)

.

Let us introduce a new notation

∂ω

∂ξ
= υ.

Then equation (3.5) is equivalent to the following system of equations:

⎧⎨
⎩

∂υ
∂η

= f2(ξ ,η) – a2(ξ ,η) · υ(ξ ,η) – c2(ξ ,η) · ω(ξ ,η),
∂ω
∂ξ

= υ(ξ ,η).
(3.8)

In the domain 
, take an arbitrary point C(ξ ,η) and draw the characteristics CB, CD, CA
through it to the boundary of the domain 
 (see Figs. 4, 5). Integrating the first equation
of system (3.8) by DC, AC, the second by BC, and using conditions (3.6), (3.7), we get

⎧⎨
⎩

υ(ξ ,η) = ψ(ξ ) –
∫ ξ

η
[f2(ξ ,η1) – a2(ξ ,η1)υ(ξ ,η1) – c2(ξ ,η1)ω(ξ ,η1)] dη1,

ω(ξ ,η) = τ1(η) +
∫ ξ

|η| υ(ξ1,η) dξ1, (ξ ,η) ∈ 
,
(3.9)
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Figure 5 The domain 
(ξη) , when η < 0

where

ψ(ξ ) =
1
2
(
τ ′

2(ξ ) + ν2(ξ )
)
, (3.10)

τ1(η) =

⎧⎨
⎩

τ2(η) when η > 0,

ϕ2(η) when η ≤ 0.
(3.11)

It is easy to show that, if υ(ξ ,η),ω(ξ ,η) are solutions to system (3.9), then ω(ξ ,η) is a
solution to problem (3.5)–(3.7). Therefore, system (3.9) is equivalent to problem (3.5)–
(3.7).

We will search the solution to system (3.9) using the method of successive approxima-
tions. Let M be an arbitrary positive number. 
M = 
∩{ξ < M} and for points (ξ ,η) ∈ 
M

choose an initial approximation

υ0(ξ ,η) = ψ(ξ ), ω0(ξ ,η) = τ1(η).

We construct the following approximation using the formulas:

⎧⎪⎪⎨
⎪⎪⎩

υn(ξ ,η) = ψ(ξ ) –
∫ ξ

η
[f2(ξ ,η1) – a2(ξ ,η1)υn–1(ξ ,η1)

– c2(ξ ,η1)ωn–1(ξ ,η1)] dη1,

ωn(ξ ,η) = τ1(η) +
∫ ξ

|η| υn–1(ξ1,η) dξ1, (ξ ,η) ∈ 
M.

(3.12)

We prove the uniform convergence of sequences υn,ωn in a closed domain 
M . Let us
make up the differences

⎧⎨
⎩

υn+1 – υn =
∫ ξ

η
[a2(υn(ξ ,η1) – υn–1(ξ ,η1)) + c2(ωn(ξ ,η1) – ωn–1(ξ ,η1))] dη1,

ωn+1 – ωn =
∫ ξ

|η|[υn(ξ1,η) – υn–1(ξ1,η)] dξ1, (ξ ,η) ∈ 
M.
(3.13)
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Show that differences |υn – υn–1| and |ωn – ωn–1| satisfy the inequalities

|υn – υn–1| ≤ Kn · A · (ξ – η)n

n!
,

|ωn – ωn–1| ≤ Kn · A · (ξ – η)n

n!
,

(3.14)

where

K = max

M

[
1, |a2| + |c2|

]
,

A = ‖f2‖C(
M) + ‖ψ‖C([0,M]) + ‖τ1‖C([–M,M]),
(3.15)

where τ1(η),ψ(ξ ) are defined in (3.10), (3.11). We prove the validity of inequalities (3.14)
by mathematical induction. For n = 1, as is easy to see from (3.12), the estimates of (3.14)
are correct.

We show that these inequalities will remain valid when n is replaced with n + 1. From
equality (3.13), according to the classical method, we have

|υn+1 – υn| ≤
∫ ξ

η

(|a2| + |c2|
) · Kn · A · (ξ – η1)n

n!
dη1

≤ Kn+1 · A ·
∫ ξ

η

(ξ – η1)n

n!
dη1 =

Kn+1

(n + 1)!
· A · (ξ – η)n+1,

|ωn+1 – ωn| ≤
∫ ξ

|η|
Kn · A · (ξ1 – η)n

n!
dξ1 ≤ Kn+1 · A ·

∫ ξ

|η|
(ξ1 – η)n

n!
dξ1

=
Kn+1

(n + 1)!
· A · (ξ – η)n+1 –

Kn+1

(n + 1)!
· A · (|η| – η

)n+1

≤ Kn+1

(n + 1)!
· A · (ξ – η)n+1.

Estimates (3.14) show absolute and uniform convergence over 
M of the following series:

υ0 +
∞∑

n=1

(υn – υn–1),ω0 +
∞∑

n=1

(ωn – ωn–1),

members of which are less than the absolute value of the members of the uniformly con-
verging series

A + A ·
∞∑

n=1

Kn (ξ – η)n

n!
= A · exp

(
K(ξ – η)

)
.

Consequently, successive approximations of υn,ωn on 
M uniformly tend, respectively, to
certain limits of υ,ω, which are continuous on 
M . Passing to the limit in equalities (3.12),
we obtain that the limit functions of υ(ξ ,η),ω(ξ ,η) satisfy system (3.9). In this case, the
functions υ,ω are continuous on 
M . Since we have proved the existence of the solution
in 
M for any M, the solution exists in the entire 
 domain. The solution to problem
(2.4)–(2.6) is found by substituting ω,ϕ for (3.1).
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3.2 Proof of uniqueness of the solution to problem (3.5)–(3.7)
Assume that system (3.9) has different solutions υ1,ω1,υ2,ω2. Denote V = υ1 – υ2, W =
ω1 – ω2. Then V , W satisfy the following system of equations:

⎧⎨
⎩

V (ξ ,η) =
∫ ξ

η
[a2(ξ ,η1) · V (ξ ,η1) + c2(ξ ,η1) · W (ξ ,η1)] dη1,

W (ξ ,η) =
∫ ξ

|η| V (ξ1,η) dξ1, (ξ ,η) ∈ 
M.
(3.16)

Let us prove that V = W ≡ 0. Functions V , W are continuous and bounded as the dif-
ferences of continuous functions in a closed domain 
M . Therefore, there is a positive
constant B such that

∣∣V (ξ ,η)
∣∣ ≤ B,

∣∣W (ξ ,η)
∣∣ ≤ B, (ξ ,η) ∈ 
M.

Then by (3.16) we have

|V | ≤ B
∫ ξ

η

(∣∣a2(ξ ,η1)
∣∣ +

∣∣c2(ξ ,η1)
∣∣)dη1 ≤ K

(ξ – η)
1!

,

|W | ≤ B
∫ ξ

|η|
B dξ1 ≤ K · (ξ – η)

1!
,

where K is defined in (3.15). By mathematical induction, for any n, we obtain the following
estimates:

|V | ≤ BKn (ξ – η)n

n!
, |W | ≤ BKn (ξ – η)n

n!
.

Since these inequalities are met for any n, then it follows that V = W ≡ 0, i.e., υ1 = υ2,ω1 =
ω2.

3.3 Proof of stability of the solution to problem (3.5)–(3.7)
In order to prove the stability of the solution to problem (3.5)–(3.7), we need a stability
estimate for ω. Since

ω(ξ ,η) = lim
N→∞ωN = lim

N→∞

[
ω0 +

N∑
n=1

(ωn – ωn–1)

]
= ω0 +

∞∑
n=1

(ωn – ωn–1), (3.17)

then using the estimate of (3.14), from (3.17), we get

∣∣ω(ξ ,η)
∣∣ ≤ A ·

∞∑
n=0

Kn

n!
(ξ – η)n = A · exp(2KM), (3.18)

where A is defined in (3.15). Using equality (3.15), from (3.18), we have

∣∣ω(ξ ,η)
∣∣ ≤ exp(2KM) · (‖f1‖C(
M) + ‖ψ‖C([0,M]) + ‖τ1‖C([–M,M])

)
.
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Hence, using (3.10), (3.11), we obtain the estimate of the stability of the solution to problem
(3.5)–(3.7):

‖ω‖C(
M) ≤ exp(2KM)

× (‖f1‖C(
M) + ‖ν2‖C([0,M]) + ‖τ2‖C1([0,M]) + ‖ϕ2‖C([–M,0])
)
.

4 On the Riemann function of equation (2.4)
It is well known that the Riemann–Green function R(ξ ,η; ξ1,η1) is not defined in the entire
domain 
×
, but only for those points (ξ1,η1) ∈ 
, for which |η| < ξ1, –ξ < η1 < ξ . And for
the remaining points of the domain 
 × 
, the Riemann–Green function is not uniquely
determined. For our further constructions, it is important for us to use the Riemann–
Green function defined at all points of the domain 
 × 
, for which η1 < –ξ .

For further reasoning, we need to fulfill some relations between the coefficients a(ξ ,η)
and b(ξ ,η) on the border ξ = –η. For this purpose, in equation (2.4) let us replace the
function

u(ξ ,η) = U(ξ ,η) · γ (η) · μ(ξ ). (4.1)

Then with respect to the new unknown function U(ξ ,η), we get the equation

∂2U
∂ξ ∂η

+ â(ξ ,η)
∂U
∂ξ

+ b̂(ξ ,η)
∂U
∂η

+ ĉ(ξ ,η)U = f̂ , (ξ ,η) ∈ 
, (4.2)

where

â =
1

γ (η)
· (γ ′(η) + a(ξ ,η)γ (η)

)
, b̂ =

1
μ(ξ )

· (μ′(ξ ) + b(ξ ,η)μ(ξ )
)
,

ĉ =
γ ′(η)μ′(ξ )
γ (η)μ(ξ )

+ a(ξ ,η)
μ′(ξ )
μ(ξ )

+ b(ξ ,η)
γ ′(η)
γ (η)

+ c(ξ ,η), f̂ =
f

γ (η)μ(ξ )
.

(4.3)

Let us take functions γ (η),μ(ξ ) so that equalities

â(–η,η) = –̂b(–η,η), âξ (–η,η) = b̂η(–η,η), η ≤ 0. (4.4)

hold. Then from (4.4) we have the following system of equations:

⎧⎨
⎩

γ ′(η)
γ (η) = – μ′(–η)

μ(–η) – a(–η,η) – b(–η,η), η ≤ 0,
γ ′(η)
γ (η) = μ′(–η)

μ(–η) – aξ (–η,η) + bη(–η,η), η ≤ 0.
(4.5)

This system (4.5) has a solution that can be written as

γ (η) = exp

[
1
2

∫ η

0

(
bη(–t, t) – aξ (–t, t) – a(–t, t) – b(–t, t)

)
dt

]
,

μ(ξ ) = exp

[
1
2

∫ ξ

0

(
–bη(t, –t) + aξ (t, –t) – a(t, –t) – b(t, –t)

)
dt

]
.
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Thus, if γ (η),μ(ξ ) are selected in this way, condition (4.4) is satisfied at η ≤ 0. For values
η > 0, we continue the function γ (η) in such a way that it is continuously differentiable
and the condition γ (η) > 0 is satisfied.

To introduce the Riemann–Green function at all points of the domain 
 × 
, we con-
tinue the coefficients of equation (4.2) in the domain 
– = {(ξ ,η) ∈ R

2 : η < –|ξ |} as fol-
lows:

A(ξ ,η) =

⎧⎨
⎩

â(ξ ,η), (ξ ,η) ∈ 
,

–̂b(–η, –ξ ), (ξ ,η) ∈ 
–,
(4.6)

B(ξ ,η) =

⎧⎨
⎩

b̂(ξ ,η), (ξ ,η) ∈ 
,

–̂a(–η, –ξ ), (ξ ,η) ∈ 
–,
(4.7)

C(ξ ,η) =

⎧⎨
⎩

ĉ(ξ ,η), (ξ ,η) ∈ 
,

ĉ(–η, –ξ ). (ξ ,η) ∈ 
–.
(4.8)

If the coefficients a(ξ ,η), b(ξ ,η) ∈ C1(
); c(ξ ,η) ∈ C(
), then in virtue of (4.3), (4.4) coef-
ficients A(ξ ,η), B(ξ ,η), C(ξ ,η) in the domain 
̃ = 
 ∪ 
– = {(ξ ,η) ∈ R

2 : ξ > η} have the
following smoothness:

A(ξ ,η), B(ξ ,η) ∈ C1(
); C(ξ ,η) ∈ C(
), (4.9)

and satisfy the following symmetry conditions:

A(ξ ,η) = –B(–η, –ξ ), Aξ (ξ ,η) = Bη(–η, –ξ ),

C(ξ ,η) = C(–η, –ξ ), (ξ ,η) ∈ 
̃.
(4.10)

Actually, show that (4.10) is true. From (4.6) we have that

A(–η, –ξ ) =

⎧⎨
⎩

â(–η, –ξ ), (–η, –ξ ) ∈ 
,

–̂b(ξ ,η), (–η, –ξ ) ∈ 
–,

= –

⎧⎨
⎩

b̂(ξ ,η), (ξ ,η) ∈ 
,

–̂a(–η, –ξ ), (ξ ,η) ∈ 
–,
= –B(ξ ,η).

Also in the same way, from (4.7), (4.8) we get

Aξ (ξ ,η) =

⎧⎨
⎩

âξ (ξ ,η), (ξ ,η) ∈ 
,

b̂η(–η, –ξ ), (ξ ,η) ∈ 
–,
= Bη(–η, –ξ ),

C(ξ ,η) =

⎧⎨
⎩

ĉ(ξ ,η), (ξ ,η) ∈ 
,

ĉ(–η, –ξ ), (ξ ,η) ∈ 
–,
= C(–η, –ξ ).

If we have chosen (ξ ,η) from 
, then (–η, –ξ ) will be from 
–.
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In 
̃ we consider the equation

∂2U
∂ξ ∂η

+ A(ξ ,η) · ∂U
∂ξ

+ B(ξ ,η) · ∂U
∂η

+ C(ξ ,η) · U = F , (ξ ,η) ∈ 
̃. (4.11)

Due to smoothness (4.8), it is well known that for equation (4.11) the Riemann–Green
function [26] exists in 
̃, that for any (ξ ,η) ∈ 
̃ satisfies the equation

∂2

∂ξ1 ∂η1
R(ξ ,η; ξ1,η1) –

∂

∂ξ1

(
A(ξ1,η1)R(ξ ,η; ξ1,η1)

)

–
∂

∂η1

(
B(ξ1,η1)R(ξ ,η; ξ1,η1)

)
+ C(ξ1,η1)R(ξ ,η; ξ1,η1) = 0, (ξ1,η1) ∈ 
̃;

(4.12)

and the conditions on the characteristics

∂R(ξ ,η; ξ1,η1)
∂η1

– A(ξ1,η1) · R(ξ ,η; ξ1,η1) = 0, when ξ1 = ξ ; (4.13)

∂R(ξ ,η; ξ1,η1)
∂ξ1

– B(ξ1,η1) · R(ξ ,η; ξ1,η1) = 0, when η1 = η; (4.14)

R(ξ ,η; ξ ,η) = 1. (4.15)

Thus, with this choice of the method of continuation of the coefficients of equation (4.10),
we have determined the values of the Riemann–Green function for all points of the do-
main 
 × 
.

Lemma 4.1 If conditions (4.10) hold, then the Riemann–Green function has a symmetry
such that

R(ξ ,η; ξ1,η1) = R(–η, –ξ ; –η1, –ξ1), (ξ ,η) ∈ 
̃, (ξ1,η1) ∈ 
̃. (4.16)

Proof Denote

R1(ξ ,η; ξ1,η1) = R(–η, –ξ ; –η1, –ξ1), (ξ ,η) ∈ 
̃, (ξ1,η1) ∈ 
̃.

Show that R1(ξ ,η; ξ1,η1) satisfies equation (4.12) and conditions (4.13)–(4.15). Indeed,
substituting the representation of R1(ξ ,η; ξ1,η1) in equation (4.12), at first entering a new
notation –ξ1 = η2, –η1 = ξ2, and then also entering the new symbols

–η = ξ̃ , –ξ = η̃, ξ2 = ξ̃1, η2 = η̃1
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again and using conditions (4.10), we get

∂2

∂ξ1 ∂η1
R(–η, –ξ ; –η1, –ξ1) –

∂

∂ξ1

(
A(ξ1,η1)R(–η, –ξ ; –η1, –ξ1)

)

–
∂

∂η1

(
B(ξ1,η1)R(–η, –ξ ; –η1, –ξ1)

)
+ C(ξ1,η1)R(–η, –ξ ; –η1, –ξ1)

=
∂2

∂ξ2 ∂η2
R(–η, –ξ ; ξ2,η2) +

∂

∂η2

(
A(–η2, –ξ2)R(–η, –ξ ; ξ2,η2)

)

+
∂

∂ξ2

(
B(–η2, –ξ2)R(–η, –ξ ; ξ2,η2)

)
+ C(–η2, –ξ2) · R(–η, –ξ ; ξ2,η2)

=
∂2

∂ξ̃1 ∂η̃1
R(̃ξ , η̃; ξ̃1, η̃1) –

∂

∂η̃1

(
B(ξ̃1, η̃1)R(̃ξ , η̃; ξ̃1, η̃1)

)

–
∂

∂ξ̃1

(
A(ξ̃1, η̃1)R(̃ξ , η̃; ξ̃1, η̃1)

)
+ C(ξ̃1, η̃1) · R(̃ξ , η̃; ξ̃1, η̃1) = 0.

(4.17)

Thus R1(ξ ,η; ξ1,η1) satisfies equation (4.12). Also substituting the representation of
R1(ξ ,η; ξ1,η1) into conditions (4.13)–(4.15) and using all the notation at the top, we have

–
∂R(–η, –ξ ; –η1, –ξ1)

∂ξ1
– A(ξ1,η1) · R(–η, –ξ ; –η1, –ξ1)

=
∂R(̃ξ , η̃; ξ̃1, η̃1)

∂ξ̃1
– B(ξ̃1, η̃1) · R(̃ξ , η̃; ξ̃1, η̃1) = 0, when η̃1 = η̃;

(4.18)

–
∂R(–η, –ξ ; –η1, –ξ1)

∂η1
– B(ξ1,η1) · R(–η, –ξ ; –η1, –ξ1)

=
∂R(̃ξ , η̃; ξ̃1, η̃1)

∂η̃1
– A(ξ̃1, η̃1) · R(̃ξ , η̃; ξ̃1, η̃1) = 0, when ξ̃1 = ξ̃ ;

(4.19)

R(–η, –ξ ; –η, –ξ ) = R(̃ξ , η̃; ξ̃ , η̃) = 1. (4.20)

Due to (4.17)–(4.20) we see that the function R(–η, –ξ ; –η1, –ξ1) satisfies the same con-
ditions as the Riemann–Green function of equation (4.11). It is well known that since
the Riemann–Green function is a solution to Goursat problem that is correct, then it is
unique. It follows that equality (4.16) is true. �

Corollary 4.2 On the line ξ = –η,η ≤ 0, the following equality holds:

R(–η,η; ξ1,η1) = R(–η,η; –η1, –ξ1). (4.21)

5 Green’s function of problem (2.4)–(2.6)
Let us define a Green’s function to the first initial-boundary value problem in the quarter
plane:

∂2U
∂ξ ∂η

+ A(ξ ,η) · ∂U
∂ξ

+ B(ξ ,η) · ∂U
∂η

+ C(ξ ,η) · U = F , (ξ ,η) ∈ 
, (5.1)

U(ξ , ξ ) = T1(ξ ),
(

∂U
∂ξ

–
∂U
∂η

)
(ξ , ξ ) = M1(ξ ), ξ > 0, (5.2)

U(–η,η) = P(η), η ≤ 0. (5.3)
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Definition 5.1 The Green’s function of problem (5.1)–(5.3) is the function G(ξ ,η; ξ1,η1),
which for every fixed (ξ1,η1) ∈ 
 satisfies the homogeneous equation

L(ξ ,η)G(ξ ,η; ξ1,η1) = 0, (ξ ,η) ∈ 
, at ξ �= ξ1,η �= η1,η �= –ξ1; (5.4)

and the following boundary conditions:

G(ξ , ξ ; ξ1,η1) = 0, ξ ≥ 0, (ξ1,η1) ∈ 
; (5.5)
(

∂G
∂ξ

–
∂G
∂η

)
(ξ , ξ ; ξ1,η1) = 0, ξ ≥ 0, (ξ1,η1) ∈ 
, at ξ �= ξ1,η �= η1; (5.6)

G(–η,η; ξ1,η1) = 0, η ≤ 0, (ξ1,η1) ∈ 
, (5.7)

and on the above characteristic lines, the following conditions must hold: the values of
the derivatives of the Green’s function in directions parallel to these characteristics must
coincide in adjacent domains; i.e.,

∂G(ξ1 + 0,η; ξ1,η1)
∂η

+ A(ξ1,η)G(ξ1 + 0,η; ξ1,η1)

=
∂G(ξ1 – 0,η; ξ1,η1)

∂η
+ A(ξ1,η)G(ξ1 – 0,η; ξ1,η1), at η �= η1;

(5.8)

∂G(ξ ,η1 + 0; ξ1,η1)
∂ξ

+ B(ξ ,η1)G(ξ ,η1 + 0; ξ1,η1)

=
∂G(ξ ,η1 – 0; ξ1,η1)

∂ξ
+ B(ξ ,η1)G(ξ ,η1 – 0; ξ1,η1), at ξ �= ξ1;

(5.9)

∂G(ξ , –ξ1 + 0; ξ1,η1)
∂ξ

+ B(ξ , –ξ1)G(ξ , –ξ1 + 0; ξ1,η1)

=
∂G(ξ , –ξ1 – 0; ξ1,η1)

∂ξ
+ B(ξ , –ξ1)G(ξ , –ξ1 – 0; ξ1,η1);

(5.10)

and the “corner condition”

G(ξ1 – 0,η1 – 0; ξ1,η1) – G(ξ1 + 0,η1 – 0; ξ1,η1)

+ G(ξ1 + 0,η1 + 0; ξ1,η1) – G(ξ1 – 0,η1 + 0; ξ1,η1) = 1
(5.11)

must be satisfied as the regions meet at (ξ ,η) = (ξ1,η1).

6 Existence and uniqueness of the Green’s function of problem (2.4)–(2.6)
Theorem 6.1 The function G(ξ ,η; ξ1,η1) that satisfies conditions (5.4)–(5.11) exists and is
unique.

Proof To show that the function G(ξ ,η; ξ1,η1) which satisfies conditions (5.4)–(5.11) exists
and is unique, we divide the domain 
 into several subdomains (see Fig. 6) and consider
the following problems sequentially. Let (ξ1,η1) be an arbitrary point of the domain 
.
Consider the case of η1 > 0, the case of η1 < 0 is considered similarly.

In the domain 
1 = {(ξ ,η) : 0 < ξ < η1, –ξ < η < ξ} we consider the problem

L(ξ ,η)G = 0, (ξ ,η) ∈ 
1; (6.1)
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Figure 6 (a)—splitting the domain 
, when η1 > 0; (b)—splitting the domain 
, when η1 < 0

G(ξ , ξ ; ξ1,η1) = 0, ξ ≥ 0; (6.2)
(

∂G
∂ξ

–
∂G
∂η

)
(ξ , ξ ; ξ1,η1) = 0, ξ ≥ 0; (6.3)

G(–η,η; ξ1,η1) = 0, η ≤ 0. (6.4)

Problem (6.1)–(6.4) is the Cauchy–Dirichlet problem and has a unique solution

G(ξ ,η; ξ1,η1) ≡ 0, (ξ ,η) ∈ 
1. (6.5)

In the domain 
2 = {(ξ ,η) : η1 < ξ < ξ1,η1 < η < ξ}, let us consider the problem

L(ξ ,η)G = 0, (ξ ,η) ∈ 
2; (6.6)

G(ξ , ξ ; ξ1,η1) = 0, ξ ≥ 0; (6.7)
(

∂G
∂ξ

–
∂G
∂η

)
(ξ , ξ ; ξ1,η1) = 0, ξ ≥ 0. (6.8)

Problem (6.6)–(6.8) is the Cauchy problem and has a unique solution

G(ξ ,η; ξ1,η1) ≡ 0, (ξ ,η) ∈ 
2. (6.9)

Therefore from (5.9), (6.5), (6.9) in the domain 
3 = {(ξ ,η) : η1 < ξ < ξ1, –η1 < η < η1}, we
get the problem

L(ξ ,η)G = 0, (ξ ,η) ∈ 
3; (6.10)

G(η1,η; ξ1,η1) = 0, –η1 ≤ η ≤ η1; (6.11)
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∂G(ξ ,η1 – 0; ξ1,η1)
∂ξ

+ B(ξ ,η1) · G(ξ ,η1 – 0; ξ1,η1) = 0, η1 < ξ < ξ1. (6.12)

Integrating (6.12) by ξ , we have

G(ξ ,η1 – 0; ξ1,η1) = exp

(
–

∫ ξ

η1

B(t,η1) dt
)

C1(ξ1,η1), η1 < ξ < ξ1. (6.13)

Substituting ξ = η1 – 0 in (6.13), using condition (5.5), we have that C1(ξ1,η1) ≡ 0 and

G(ξ ,η1 – 0; ξ1,η1) = 0, η1 ≤ ξ ≤ ξ1. (6.14)

Therefore, problem (6.10)–(6.12) is equivalent to problem (6.10), (6.11), (6.14), which is
the Goursat problem and has a unique solution

G(ξ ,η; ξ1,η1) ≡ 0, (ξ ,η) ∈ 
3. (6.15)

Since the Green’s function is continuous for η = –η1, then from (6.15) in the domain

4 = {(ξ ,η) : η1 < ξ < ξ1, –ξ < η < –η1} we get the problem

L(ξ ,η)G = 0, (ξ ,η) ∈ 
4; (6.16)

G(–η,η; ξ1,η1) = 0, η ≤ 0; (6.17)

G(ξ , –η1; ξ1,η1) = 0, η1 ≤ ξ ≤ ξ1. (6.18)

Problem (6.16)–(6.18) is the Darboux problem and has a unique solution

G(ξ ,η; ξ1,η1) ≡ 0, (ξ ,η) ∈ 
4. (6.19)

In the domain 
5 = {(ξ ,η) : ξ1 < ξ ,η > ξ1} our problem is the Cauchy problem

L(ξ ,η)G = 0, (ξ ,η) ∈ 
5; (6.20)

G(ξ , ξ ; ξ1,η1) = 0, ξ ≥ 0; (6.21)
(

∂G
∂ξ

–
∂G
∂η

)
(ξ , ξ ; ξ1,η1) = 0, ξ ≥ 0, (6.22)

which has a unique solution

G(ξ ,η; ξ1,η1) ≡ 0, (ξ ,η) ∈ 
5. (6.23)

Therefore from (5.8), (6.9), (6.23) in the domain 
6 = {(ξ ,η) : ξ1 < ξ ,η1 < η < ξ1} we have
the following problem:

L(ξ ,η)G = 0, (ξ ,η) ∈ 
6; (6.24)

G(ξ , ξ1; ξ1,η1) = 0, ξ ≥ ξ1; (6.25)

∂G(ξ1 + 0,η; ξ1,η1)
∂η

+ A(ξ1,η)G(ξ1 + 0,η; ξ1,η1) = 0, η1 < η < ξ1. (6.26)



Sadybekov and Derbissaly Boundary Value Problems         (2021) 2021:69 Page 18 of 23

Integrating (6.26) by η, we get

G(ξ1 + 0,η; ξ1,η1) = exp

(
–

∫ η

η1

A(ξ1, t) dt
)

C2(ξ1,η1), η1 < η < ξ1. (6.27)

Substituting η = ξ1 + 0 in (6.27), using condition (5.5), we have that C2(ξ1,η1) ≡ 0 and

G(ξ1 + 0,η; ξ1,η1) = 0, η1 ≤ η ≤ ξ1. (6.28)

Therefore, problem (6.24)–(6.26) is equivalent to problem (6.24), (6.25), (6.28), which is
the Goursat problem and has a unique solution

G(ξ ,η; ξ1,η1) ≡ 0, (ξ ,η) ∈ 
6. (6.29)

From (5.8), (5.9), (5.11), (6.15), (6.19), (6.29) in the domain 
7 = {(ξ ,η) : ξ1 < ξ , –ξ1 < η <
η1} we have the problem

L(ξ ,η)G = 0, (ξ ,η) ∈ 
7; (6.30)

∂G(ξ1 + 0,η; ξ1,η1)
∂η

+ A(ξ1,η)G(ξ1 + 0,η; ξ1,η1) = 0, –ξ1 < η < η1. (6.31)

∂G(ξ ,η1 – 0; ξ1,η1)
∂ξ

+ B(ξ ,η1)G(ξ ,η1 – 0; ξ1,η1) = 0, ξ1 < ξ . (6.32)

G(ξ1 + 0,η1 – 0; ξ1,η1) = –1. (6.33)

Problem (6.30)–(6.33) is the Goursat problem, and it has a unique solution. Therefore,
the function G(ξ ,η; ξ1,η1) in the domain 
7 is uniquely defined. Comparing conditions
(6.30)–(6.33) with the following conditions

L(ξ ,η)R = 0, (ξ ,η) ∈ 
̃;

∂R(ξ ,η; ξ1,η1)
∂ξ

+ B(ξ ,η) · R(ξ ,η; ξ1,η1) = 0, when η = η1;

∂R(ξ ,η; ξ1,η1)
∂η

+ A(ξ ,η) · R(ξ ,η; ξ1,η1) = 0, when ξ = ξ1;

R(ξ1,η1; ξ1,η1) = 1,

which the Riemann–Green function satisfies, it is easy to get the next equality

G(ξ ,η; ξ1,η1) = –R(ξ ,η; ξ1,η1), (ξ ,η) ∈ 
7. (6.34)

Therefore from (6.34) in the domain 
8 = {(ξ ,η) : ξ1 < ξ , –ξ < η < –ξ1} we get the prob-
lem

L(ξ ,η)G = 0, (ξ ,η) ∈ 
8; (6.35)

G(–η,η; ξ1,η1) = 0, η ≤ 0; (6.36)
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∂G(ξ , –ξ1 – 0; ξ1,η1)
∂ξ

+ B(ξ , –ξ1)G(ξ , –ξ1 – 0; ξ1,η1)

= –
∂R(ξ , –ξ1; ξ1,η1)

∂ξ
– B(ξ , –ξ1)R(ξ , –ξ1 – 0; ξ1,η1), ξ1 < ξ .

(6.37)

Problem (6.35)–(6.37) is the Darboux problem and has the unique solution.
Thus, we have shown that, for any (ξ1,η1) ∈ 
 and (ξ ,η) ∈ 
, the Green’s function that

satisfies conditions (5.4)–(5.11) exists and is unique. The theorem is proved. �

Corollary 6.2 In the course of proving the existence of the Green’s function, we obtained
that G(ξ ,η; ξ1,η1) ≡ 0 in the domains 
1, 
2, 
3, 
4, 
5, 
6. That is, G(ξ ,η; ξ1,η1) ≡ 0
when ξ1 > ξ .

7 Construction of the Green’s function of problem (2.4)–(2.6)
As can be seen from the proof of Theorem 6.1, the Green’s function G(ξ ,η; ξ1,η1) = 0 in
the domains 
1, 
2, 
3, 
4, 
5, 
6. And in the domain 
7 it coincides with the Riemann
function (6.34). Let us find a representation of the Green’s function in the domain 
8. To
construct the Green’s functions, we assume that the coefficients of equation (7.1) satisfy
the symmetry conditions of (4.10).

Let (ξ1,η1) be an arbitrary point of the domain 
. In order to construct the Green’s
function in the domain 
̃8, consider the problem

∂2G1

∂ξ ∂η
+ A(ξ ,η)

∂G1

∂ξ
+ B(ξ ,η)

∂G1

∂η
+ C(ξ ,η)G1 = 0, (ξ ,η) ∈ 
̃8, (7.1)

where 
̃8 = 
8 ∪ 
–
8 , 
–

8 = {(ξ ,η) : ξ1 < ξ ,η < –ξ},

∂G1(ξ , –ξ1 – 0; ξ1,η1)
∂ξ

+ B(ξ , –ξ1)G1(ξ , –ξ1 – 0; ξ1,η1)

= –
∂R(ξ , –ξ1; ξ1,η1)

∂ξ
– B(ξ , –ξ1)R(ξ , –ξ1; ξ1,η1), ξ1 < ξ ;

(7.2)

∂G1(ξ1 + 0,η; ξ1,η1)
∂η

+ A(ξ1,η)G1(ξ1 + 0,η; ξ1,η1)

=
∂R(–η, –ξ1; ξ1,η1)

∂η
+ A(ξ1,η)R(–η, –ξ1; ξ1,η1), η < –ξ1;

(7.3)

G1(ξ1, –ξ1; ξ1,η1) = 0. (7.4)

Problem (7.1)–(7.4) is the Goursat problem. Its solution exists and is unique. We are in-
terested in the representation of the function G1(ξ ,η; ξ1,η1).

Lemma 7.1 If the function G1(ξ ,η; ξ1,η1) is a solution to problem (7.1)–(7.4), then for any
(ξ ,η) ∈ 
̃8 we have G1(ξ ,η; ξ1,η1) = –G1(–η, –ξ ; ξ1,η1).

Proof To show that the function –G1(–η, –ξ ; ξ1,η1) satisfies equation (7.1), in (7.1) re-
place ξ = –η2,η = –ξ2, (–η2, –ξ2) ∈ 
–

8 and after using conditions (4.6)–(4.8), we get that
–G1(–η, –ξ ; ξ1,η1) satisfies equation (7.1).



Sadybekov and Derbissaly Boundary Value Problems         (2021) 2021:69 Page 20 of 23

Also making the substitution of ξ = –η2,η2 < –ξ1 in (7.2) and using conditions (4.6), (4.7),
we get condition (7.3). Similarly, by replacing –η = ξ2,η < –ξ1 in (7.3) and using conditions
(4.6), (4.7), we get condition (7.2).

Thus, we have shown that the function –G1(–η, –ξ ; ξ1,η1) is also a solution to problem
(7.1)–(7.3). Since the solution to problem (7.1)–(7.4) is unique, then

G1(ξ ,η; ξ1,η1) = –G1(–η, –ξ ; ξ1,η1), (ξ ,η) ∈ 
̃8. �

We search the solution to problem (7.1)–(7.4) in the following form:

G1(ξ ,η; ξ1,η1) = g(ξ ,η; ξ1,η1) – R(ξ ,η; ξ1,η1), (ξ ,η) ∈ 
̃8.

Then, for the function g(ξ ,η; ξ1,η1), we get the following problem:

∂2g
∂ξ ∂η

+ A(ξ ,η)
∂g
∂ξ

+ B(ξ ,η)
∂g
∂η

+ C(ξ ,η)g = 0, (ξ ,η) ∈ 
̃8; (7.5)

∂g(ξ , –ξ1; ξ1,η1)
∂ξ

+ B(ξ , –ξ1)g(ξ , –ξ1; ξ1,η1) = 0, ξ1 < ξ ; (7.6)

∂g(ξ1,η; ξ1,η1)
∂η

+ A(ξ1,η)g(ξ1,η; ξ1,η1)

=
∂R(–η, –ξ1; ξ1,η1)

∂η
+ A(ξ1,η)R(–η, –ξ1; ξ1,η1), η < –ξ1;

(7.7)

g(ξ1, –ξ1; ξ1,η1) = R(ξ1, –ξ1; ξ1,η1). (7.8)

It is easy to see that the solution to problem (7.5)–(7.8) has the form

g(ξ ,η; ξ1,η1) = R(–η, –ξ ; ξ1,η1), (ξ ,η) ∈ 
̃8. (7.9)

Then from (7.9) we get

G1(ξ ,η; ξ1,η1) = R(–η, –ξ ; ξ1,η1) – R(ξ ,η; ξ1,η1), (ξ ,η) ∈ 
̃8. (7.10)

Thus the following theorem is proved.

Theorem 7.2 The Green’s function of equation (5.1)–(5.3) exists and is unique. This
Green’s function can be expressed by means of the Riemann–Green function:

G(ξ ,η; ξ1,η1) ≡ 0, if (ξ ,η) ∈ 
1,
2,
3,
4,
5,
6;

G(ξ ,η; ξ1,η1) = –R(ξ ,η; ξ1,η1), if (ξ ,η) ∈ 
7;

G(ξ ,η; ξ1,η1) = R(–η, –ξ ; ξ1,η1) – R(ξ ,η; ξ1,η1), if (ξ ,η) ∈ 
8.

It is well known that for self-adjoint problems (for example, for elliptic equation), the
Green’s function is symmetric with respect to external and internal variables. In our case,
this is not the case for the Green’s function of the hyperbolic first initial-boundary value
problem.
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Lemma 7.3 Let (ξ ,η) be an arbitrary point of the domain 
. By internal variables (ξ1,η1)
the Green’s function of problem (5.1)–(5.3) has the following properties:

L∗
(ξ1,η1)G(ξ ,η; ξ1,η1) = 0, (ξ1,η1) ∈ 
, at ξ1 �= ξ ,η1 �= η, ξ1 �= –η; (7.11)

G(ξ ,η; ξ1, –ξ1) = 0, ξ1 < –η; (7.12)

∂G(ξ ,η; ξ – 0,η1)
∂η1

– A(ξ ,η1)G(ξ ,η; ξ – 0,η1) = 0, at η1 �= η; (7.13)

∂G(ξ ,η; ξ1,η + 0)
∂ξ1

– B(ξ1,η)G(ξ ,η; ξ1,η + 0) = 0, at ξ1 �= ξ ; (7.14)

∂G(ξ ,η; –η – 0,η1)
∂ξ1

– B(–η,η1)G(ξ ,η; –η – 0,η1)

=
∂G(ξ ,η; –η + 0,η1)

∂ξ1
– B(–η,η1)G(ξ ,η; –η + 0,η1);

(7.15)

G(ξ ,η; ξ – 0,η – 0) – G(ξ ,η; ξ + 0,η – 0)

+ G(ξ ,η; ξ + 0,η + 0) – G(ξ ,η; ξ – 0,η + 0) = 1.
(7.16)

Proof Properties (7.11)–(7.16) can be easily obtained from the construction of the Green’s
function of problem (5.1)–(5.3). Under these properties it is possible to uniquely restore
the Green’s function of problem (5.1)–(5.3). �

Using properties (7.11)–(7.16), we can use it to write the integral representation of the
solution to problem (5.1)–(5.3). To do this, we consider the following integral:

∫∫

(ξη)

G(ξ ,η; ξ1,η1)F(ξ1,η1) dξ1 dη1

=
∫∫


(ξη)

G(ξ ,η; ξ1,η1)
(

∂2U
∂ξ1 ∂η1

+ A
∂U
∂ξ1

+ B
∂U
∂η1

+ CU
)

dξ1 dη1.
(7.17)

Applying the Green’s theorem in a plane [27] and using initial conditions (5.2), properties
of the Green’s function, from (7.17) we get the following representation of the solution to
problem (5.1)–(5.3) in the domain 
(ξη), for η > 0:

U(ξ ,η) = –
1
2

G(ξ ,η;η,η)T1(η) –
1
2

G(ξ ,η; ξ , ξ )T1(ξ )

–
1
2

∫ η

ξ

(
∂G
∂N1

(ξ ,η; ξ1, ξ1) + 2(A – B)(ξ1, ξ1)G(ξ ,η; ξ1, ξ1)
)

T1(ξ1) dξ1

+
1
2

∫ η

ξ

G(ξ ,η; ξ1, ξ1)M1(ξ1) dξ1

+
∫∫


(ξη)

G(ξ ,η; ξ1,η1)F(ξ1,η1) dξ1 dη1.

(7.18)

Also, for η < 0, applying the Green’s theorem in a plane [27] and using initial conditions
(5.2), boundary condition (5.3), properties of the Green’s function, from (7.17) we get the



Sadybekov and Derbissaly Boundary Value Problems         (2021) 2021:69 Page 22 of 23

following representation of the solution to problem (5.1)–(5.3) in the domain 
(ξη):

U(ξ ,η) =
1
2
(
G(ξ ,η; –η – 0,η) – 2G(ξ ,η; –η + 0,η)

)
P(η)

–
1
2
(
G(ξ ,η; –η – 0, –η – 0) – G(ξ ,η; –η + 0, –η + 0)

)
T1(–η)

–
1
2

G(ξ ,η; ξ , ξ )T1(ξ ) +
1
2

∫ –η

0

∂G
∂N1

(ξ ,η; ξ1, –ξ1)P(–ξ1) dξ1

+
1
2

∫ ξ

0

(
∂G
∂N1

(ξ ,η; ξ1, ξ1) + 2(A – B)(ξ1, ξ1)G(ξ ,η; ξ1, ξ1)
)

T1(ξ1) dξ1

–
1
2

∫ ξ

0
G(ξ ,η; ξ1, ξ1)M1(ξ1) dξ1 +

∫∫

(ξη)

G(ξ ,η; ξ1,η1)F(ξ1,η1) dξ1.

(7.19)

It is easy to see that (7.18), (7.19) are the solutions to problem (5.1), (5.2), (5.3). Substi-
tuting U(ξ ,η),γ (η),μ(ξ ) for (4.1), we get the solution to problem (2.4)–(2.6).

In conclusion, we would like to note that we have some experience in constructing
Green’s functions for elliptic problems [28–31]. But, as we learned from this study, the
hyperbolic Green’s function differs significantly from the Green’s functions for elliptic or
parabolic problems. In particular, the Green’s function of the hyperbolic problem can have
discontinuities along several characteristics of the equation. As we can see, in this regard,
for each hyperbolic problem, the definition and substantiation of the Green’s function
must be carried out separately, and detailed studies in this direction are required.
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