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Abstract
In this paper, we study the effect of Hardy potential on the existence or nonexistence
of solutions to the following fractional problem involving a singular nonlinearity:

⎧
⎪⎨

⎪⎩

(–�)su = λ u
|x|2s +

μ
uγ + f in �,

u > 0 in �,

u = 0 in (RN \ �).

Here 0 < s < 1, λ > 0, γ > 0, and � ⊂ R
N (N > 2s) is a bounded smooth domain such

that 0 ∈ �. Moreover, 0 ≤ μ, f ∈ L1(�). For 0 < λ ≤ �N,s, �N,s being the best constant
in the fractional Hardy inequality, we find a necessary and sufficient condition for the
existence of a positive weak solution to the problem with respect to the data μ and f .
Also, for a regular datum of f , under suitable assumptions, we obtain some existence
and uniqueness results and calculate the rate of growth of solutions. Moreover, we
mention a nonexistence and a complete blowup result for the case λ >�N,s. Besides,
we consider the parabolic equivalence of the above problem in the case μ ≡ 1 and
some suitable f (x, t), that is,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut + (–�)su = λ u
|x|2s +

1
uγ + f (x, t) in � × (0, T ),

u > 0 in � × (0, T ),

u = 0 in (RN \ �)× (0, T ),

u(x, 0) = u0 in R
N ,

where u0 ∈ Xs
0(�) satisfies an appropriate cone condition. In the case 0 < γ ≤ 1 or

γ > 1 with 2s(γ – 1) < (γ + 1), we show the existence of a unique solution for any
0 < λ <�N,s and prove a stabilization result for certain range of λ.
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1 Introduction
We study the existence and nonexistence of positive solutions to the following singular
elliptic problem:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su = λ u
|x|2s + μ

uγ + f in �,

u > 0 in �,

u = 0 in (RN \ �).

(1)

Here � ⊂ R
N , N > 2s, is an open bounded domain with smooth boundary such that 0 ∈ �,

s ∈ (0, 1), λ > 0, and γ > 0. Moreover, 0 ≤ μ, f ∈ L1(�).
We will prove that for 0 < λ ≤ �N ,s, �N ,s = 4s�2( N+2s

4 )
�2( N–2s

4 )
being the best constant in the

fractional Hardy inequality, the problem has a solution if and only if μ ∈ L1(�, δs(1–γ ) dx),
δ(x) = dist(x, ∂�), and the datum of f satisfies the following integrability condition:

∫

�

f (x)|x|–β dx < +∞,

where the constant β = β(N , s,λ) will be defined later in Lemma 2.4. In this lemma, we
will see that any supersolution to (1) is unbounded near the origin and the nature of this
unboundedness is like u(x) � |x|–β in some open ball centered at the origin.

Also, we will see that there is no positive very weak (distributional) solution for the case
λ > �N ,s. This notion of the solution, which we consider for the nonexistence result, is local
in nature, and we just ask the regularity needed to give distributional sense to the equation
(similar to that in [1, 2]). Moreover, this nonexistence result is strong in the sense that a
complete blowup phenomenon occurs. By complete blowup phenomenon we mean that
the solutions to the approximating problems (with the bounded weights (|x|2s + ε)–1 and
(u + ε)–γ instead of the terms |x|–2s and u–γ , respectively) tend to infinity for every x ∈ �

as 0 < ε ↓ 0.
In the above problem, (–�)s stands for the fractional Laplacian operator:

(–�)su(x) = CN ,sP.V.
∫

RN

u(x) – u(y)
|x – y|N+2s dy

= CN ,s lim
ε→0+

∫

|x–y|≥ε

u(x) – u(y)
|x – y|N+2s dy, u ∈ S

(
R

N)
,

where P.V. is a commonly used abbreviation for the Cauchy principal value and is defined
by the latter equation. Also, S(RN ) denotes the Schwartz space (space of “rapidly decreas-
ing functions” on R

N ), and CN ,s = 4s�( N
2 +s)

π
N
2 |�(–s)|

is the normalization constant such that

(–�)su = F–1(|ξ |2sû(ξ )
)
.

Here � denotes the gamma function, and Fu = û is the Fourier transform of u. By re-
stricting the fractional Laplacian operator to act only on smooth functions that are zero
outside �, we have the restricted fractional Laplacian (–�|� )s. For this operator, the best
alternative to the Dirichlet boundary condition is u ≡ 0 in (RN \�). For more details about
fractional Laplacian, see [3–5].
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Over the past decades, there has been much focus and also a vast literature on singular
problems. Singularities appear in almost all fields of mathematics like differential geome-
try and partial differential equations. Singularities are the qualitative side of mathematics,
and understanding of singularities always leads to a more detailed picture of the objects
mathematics is dealing with [6]. Many more details and references for the singular elliptic
problems can be found in [7].

One famous type of singularities is the singularity of Hardy type, which is related to the
inequality of the same name, and there are various its generalizations. The well-known
classical Hardy inequality is as follows:

∫

�

|∇u|p dx ≥
(

N – p
p

)p ∫

�

|u|p
|x|p dx, u ∈ W 1,p

0 (�),

where � ⊂R
N is a bounded domain containing the origin, and 1 ≤ p < N [8, 9]. The con-

stant ( N–p
p )p is optimal, and it is not attained in W 1,p

0 (�), meaning that the continuous
embedding W 1,p

0 (�) ↪→ Lp(�, |x|–p dx) is not compact. The intention of analyzing Hardy
singularities has come from its widespread use in different branches of science. For de-
tails and references about the enormous literature for this topic, see the more recent book
[10] and Chap. 1 of [11]. Due to these motivations, over the past few decades, general
singularities are widely studied.

In the pioneering works, Baras and Goldstein [12, 13] studied the following singular
Cauchy–Dirichlet heat problem in � = R

N or in a bounded smooth domain � containing
B1(0) = {x ∈R

N : ‖x‖ < 1}:

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – �u = V (x)u + f (x, t), (x, t) ∈ � × (0,∞),

u(x, t) = 0, (x, t) ∈ ∂� × (0,∞),

u(x, 0) = u0(x), x ∈ �.

(2)

The authors assume that f and u0 are nonnegative and 0 ≤ V ∈ L∞(� \ Bε(0)) for each
ε > 0, but V may be singular at the origin. They say that V is too singular if V (x) > C∗(N)

|x|2
near x = 0, whereas V is not too singular if V (x) ≤ C∗(N)

|x|2 near x = 0. Here C∗(N) = (N–2)2

4 is
the sharp constant in the following Hardy inequality:

C∗(N)
∫

�

u2

|x|2 dx ≤
∫

�

|∇u|2 dx, ∀u ∈ H1
0 (�).

In the not too singular potential case, they found necessary and sufficient conditions
for the existence of a nonnegative distributional solution to problem (2). Moreover, they
obtained this solution as the limit of the solutions to the following approximate problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂un
∂t – �un = Vn(x)un + f (x, t), (x, t) ∈ � × (0,∞),

un(x, t) = 0, (x, t) ∈ ∂� × (0,∞),

un(x, 0) = u0(x), x ∈ �,

where Vn(x) = min{V (x), n}. Also, for the too singular potential case, they showed that the
problem has no solution even in the sense of distributions and an instantaneous complete
blowup phenomenon occurs. Namely, un(x, t) → +∞ for all (x, t) ∈ � × (0, T) as n → ∞.
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In problem (1) the singular term λ

|x|2s is related to the following fractional Hardy inequal-
ity:

�N ,s

∫

RN

|u(x)|2
|x|2s dx ≤

∫

RN

∣
∣(–�)

s
2 u(x)

∣
∣2 dx, ∀u ∈ C∞

c
(
R

N)
, (3)

where N > 2s, s ∈ (0, 1), and the constant �N ,s = 4s�2( N+2s
4 )

�2( N–2s
4 )

is optimal [14]. Problem (1) is
motivated by the papers [15, 16], in which the authors proved the existence of solutions
to the following Lazer–McKenna-type problem:

⎧
⎪⎪⎨

⎪⎪⎩

–�u = μ

uγ in �,

u > 0 in �,

u = 0 on ∂�,

where � is a bounded domain of RN , N ≥ 2, γ > 0, and μ is a general Radon measure in
�. See [17–26] for more related problems. These types of problems have been extensively
studied for their relations with some physical phenomena in the theory of pseudoplastic
fluids [27].

Barrios, Bonis, Medina, and Peral [17] studied the solvability of the following superlinear
problem:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su = λ
f (x)
uγ + Mup in �,

u > 0 in �,

u = 0 in (RN \ �).

More precisely, for the case M = 0 and f ≥ 0, they proved the existence of a positive solu-
tion for all γ > 0 and λ > 0. Moreover, in the case M = 1 and f ≡ 1, they found a threshold
� such that there exists a solution for every 0 < λ < � and there does not for λ > �. Also,
in [28] the authors considered the similar superlinear problem with the critical growth,
namely when p = 2∗

s – 1 = N+2s
N–2s , and with a singular nonlinearity of the form u–q, q ∈ (0, 1).

In the detailed paper [29], Abdellaoui, Medina, Peral, and Primo studied the effect of
the Hardy potential on the existence and summability of the solutions to a class of frac-
tional Laplacian problems. We will use the essential tool introduced in this paper, that
is, the weak Harnack inequality, which they proved by following the classical Moser and
Krylov–Safonov idea. Also, we will take advantage of some of Calderón–Zygmund prop-
erties of solutions. See [29, Sect. 4] for the effect of the Hardy potential in some Calderón–
Zygmund properties for the fractional Laplacian.

For the similar parabolic equivalence of (1), Giacomoni, Mukherjee, and Sreenadh [30]
investigated the existence and stabilization for the following parabolic equation involving
the fractional Laplacian with singular nonlinearity:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut + (–�)su = u–q + f (x, u) in � × (0, T),

u(x, 0) = u0(x) in R
N ,

u(x, t) > 0 in � × (0, T),

u(x, t) = 0 in (RN \ �) × (0, T).
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Under suitable assumptions on the parameters and datum, they studied the related sta-
tionary problem, and then using a semidiscretization in time with the implicit Euler
method, they proved the existence and uniqueness of the weak solution. It is worth noting
that in [31, 32] authors have shown the same results for the local version of this problem
for the general p-Laplacian case. Also, for some recent papers on the optimal regularity,
see [33, 34].

The rest of the paper is as follows. In Sect. 2, after introducing the functional setting,
we outline our existence and nonexistence theorems. In particular, we provide a theorem
about necessary and sufficient conditions for the existence of a solution to problem (1) in
the case λ ≤ �N ,s and a nonexistence theorem in the case λ > �N ,s. In Sect. 3, we provide
proofs of our existence theorems. In Sect. 4, we will present some uniqueness results.
Also, concerning uniqueness, with some regularity assumptions on μ and f , we show the
existence and uniqueness of the so-called entropy solution for the case 0 < γ ≤ 1. Besides,
we mention a theorem about the rate of growth of solutions to problem (1). Finally, in
Sect. 5, we consider the parabolic version of problem (1) in the particular case μ ≡ 1.
Firstly, under the assumptions 0 < γ ≤ 1 or γ > 1 with 2s(γ – 1) < (γ + 1), we show the
existence of a unique solution for 0 < λ < �N ,s and secondly, we prove the stability for
some range of λ; that is, we find a positive constant λ∗ = λ∗(N , s) < �N ,s such that for any
λ ∈ (0,λ∗), the solution to the parabolic problem converges to the unique solution of its
stationary problem as t → ∞.

2 Functional setting and existence, nonexistence, and blowup results
Let 0 < s < 1, 1 ≤ p < ∞, and let � be a bounded domain in R

N . Also, let D� = R
N ×R

N \
�c × �c with �c = R

N \ �. We define the Banach space

Xs,p(�) =
{

u : RN → R measurable, u|� ∈ Lp(�),
∫∫

D�

|u(x) – u(y)|p
|x – y|N+ps dx dy < ∞

}

endowed with the norm

‖u‖Xs,p(�) =
(∫

�

|u|p dx +
∫∫

D�

|u(x) – u(y)|p
|x – y|N+ps dx dy

) 1
p

. (4)

In the case p = 2, we denote by Xs(�) the space Xs,2(�), which is a Hilbert space with the
inner product

〈u, v〉Xs(�) =
∫

�

uv dx +
∫∫

D�

(u(x) – u(y))(v(x) – v(y))
|x – y|N+2s dx dy.

Moreover, we define Xs,p
0 (�) as the closure of C∞

0 (�) in Xs,p(RN ). Equivalently, it can be
shown that

Xs,p
0 (�) =

{
u ∈ Xs,p(

R
N)

: u = 0 a.e. in
(
R

N \ �
)}

.

It is easy to see that

(∫

RN

∫

RN

|u(x) – u(y)|p
|x – y|N+ps dx dy

) 1
p

=
(∫∫

D�

|u(x) – u(y)|p
|x – y|N+ps dx dy

) 1
p

, ∀u ∈ Xs
0(�).



Bayrami-Aminlouee et al. Boundary Value Problems         (2021) 2021:68 Page 6 of 42

This equality defines an equivalent norm for Xs,p
0 (�) with (4). We denote it by

‖u‖Xs,p
0 (�) =

(∫∫

D�

|u(x) – u(y)|p
|x – y|N+ps dx dy

) 1
p

.

It is worth noting that the continuous embedding of Xs2
0 (�) into Xs1

0 (�) holds for any s1 < s2

(see, e.g., [4, Proposition 2.1]). Besides, for the Hilbert space case, we have

‖u‖2
Xs

0(�) = 2C–1
N ,s

∥
∥(–�)

s
2 u

∥
∥2

L2(RN ), (5)

where CN ,s is the normalization constant in the definition of (–�)s. Thus Hardy inequality
(3) also can be written as follows:

�N ,s

∫

RN

|u(x)|2
|x|2s dx ≤ CN ,s

2

∫∫

D�

|u(x) – u(y)|2
|x – y|N+2s dx dy, ∀u ∈ Xs

0(�).

For the proofs of the above facts, see [35, Sect. 2.2] and [4]. Also, see [36, Sect. 2].
In this paper, we will use the following continuous embedding:

Xs,p
0 (�) ↪→ Lq(�), ∀q ∈ [

1, p∗
s
]
, (6)

where p∗
s = pN

N–ps is the Sobolev critical exponent. Moreover, this embedding is compact
for 1 ≤ q < p∗

s . See [4, Theorems 6.5 and 7.1].
Also, we denote by Xs,p

loc(�) the set of all functions u such that uφ ∈ Xs,p
0 (�) for any φ ∈

C∞
c (�). When we say that {un} ⊂ Xs,p

loc(�) is bounded, we mean that {φun} ⊂ Xs,p
0 (�) is

bounded for any fixed φ ∈ C∞
c (�).

Since we are dealing with the nonlocal operator (–�)s, we will use the following class of
test functions for defining the weak solution to problem (1):

T (�) =

⎧
⎨

⎩
φ : RN →R

∣
∣
∣
∣
∣

(–�)sφ = ϕ,ϕ ∈ L∞(�) ∩ C0,α(�), 0 < α < 1,

φ = 0 in
(
R

N \ �
)

⎫
⎬

⎭
.

It can be shown that T (�) ⊂ Xs
0(�) ∩ L∞(�) ∩ C0,s(�). See [29], where this class of test

functions is used for dealing with problem (1). Moreover, every φ ∈ T (�) is a strong solu-
tion to the equation (–�)sφ = ϕ, and for every φ ∈ T (�), there exists a constant β ∈ (0, 1)
such that φ

δs ∈ C0,β (�); see [37].
It is easy to check that for u ∈ Xs

0(�) and φ ∈ T (�),

2C–1
N ,s

∫

RN
u(–�)sφ dx = 2C–1

N ,s

∫

RN
(–�)

s
2 u(–�)

s
2 φ dx

=
∫∫

D�

(u(x) – u(y))(φ(x) – φ(y))
|x – y|N+2s dx dy.

(7)

One can show that (–�)s : Xs
0(�) → X–s(�) is a continuous strictly monotone operator,

where X–s(�) is the dual space of Xs
0(�).
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Definition 2.1 We say that u ∈ L1(�) is a very weak (distributional) supersolution (sub-
solution) to

(–�)su = g(x, u) in �

if g(x, u) ∈ L1(�), u ≡ 0 in (RN \ �), and (–�)su ≥ (≤)g(x, u) in the weak sense, that is,
∫

RN
u(–�)sφ dx ≥ (≤)

∫

�

g(x, u)φ dx

for all nonnegative φ ∈ T (�). If u is a very weak (distributional) supersolution and subso-
lution, then we say that u is a very weak (distributional) solution.

Definition 2.2 We say that u ∈ Xs
0(�) is a weak energy supersolution (subsolution) to

(–�)su = g(x, u) in �

if g(x, u) ∈ Xs
0(�), u ≡ 0 in (RN \ �),and (–�)su ≥ (≤)g(x, u) in the weak sense, that is,

∫

RN
u(–�)sφ dx ≥ (≤)

∫

�

g(x, u)φ dx

for all nonnegative φ ∈ Xs
0(�). If u is a weak energy supersolution and subsolution, then

we say that u is a weak energy solution.

Definition 2.3 Let 0 ≤ μ, f ∈ L1(�). We say that u is a weak solution to problem (1) if
• u ∈ L1(�), and for every K � �, there exists CK > 0 such that u(x) ≥ CK a.e. in K and

also u ≡ 0 in (RN \ �);
• Equation (1) is satisfied in the weak sense, that is,

∫

RN
u(–�)sφ dx = λ

∫

�

uφ

|x|2s dx +
∫

�

μφ

uγ
dx +

∫

�

f φ dx, ∀φ ∈ T (�), (8)

together with extra assumption that the first and second terms on the right-hand side
of this equality are finite for any φ ∈ T (�). The well-posedness of the first and second
terms on the right-hand side will be clear after the construction of solution.

Remark 1 Plugging the test function φ = ψ1,s into (8), where ψ1,s is the normalized first
eigenfunction associated with first eigenvalue λ1,s of (–�)s in Xs

0(�), that is,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(–�)sψ1,s = λ1,sψ1,s in �,

ψ1,s = 0 in (RN \ �),

0 < ψ1,s ∈ Xs
0(�) ∩ L∞(�),

‖ψ1,s‖L2(�) = 1

(see, e.g., [38, Proposition 9]) and also noting that there exist l1, l2 > 0 such that l1δ
s(x) ≤

ψ1,s(x) ≤ l2δ
s(x) for a.e. x ∈ � [37], we obtain that the solution u necessarily satisfies

∫

�

μ

uγ
δs dx < +∞.
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Moreover, since by the comparison principle for the fractional Laplacian and Hopf ’s
lemma, u ≥ cδs a.e. in � (see, e.g., [39] or [40, Lemma 4.2]), we have

∫

�

μ

δs(γ –1) dx < +∞.

As an analysis of the linear case with Hardy potential, we first gather the following lem-
mas.

Lemma 2.4 Let λ ≤ �N ,s. Let u be a nonnegative function defined in � such that u �≡ 0,
u ∈ L1(�), u

|x|2s ∈ L1(�), and u ≥ 0 in (RN \�). If u satisfies (–�)su – λ u
|x|2s ≥ 0 in the weak

sense in �, then there exist δ > 0 and a constant C = C(N , δ) such that

u ≥ C|x|–β in Bδ(0),

where β = N–2s
2 – α, and α is given by the identity

λ =
4s�( N+2s+2α

4 )�( N+2s–2α
4 )

�( N–2s+2α
4 )�( N–2s–2α

4 )
. (9)

Lemma 2.5 Let λ ≤ �N ,s. Let u be a positive very weak solution to

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su – λ u
|x|2s = g in �,

u > 0 in �,

u = 0 in (RN \ �),

with g ∈ L1(�) and g ≥ 0. Then g|x|–β ∈ L1(Br(0)) for some Br(0) � �.

Lemma 2.6 (Weak Harnack inequality) Let r > 0 be such that B2r(0) ⊂ �. Assume that
f ≥ 0, and let v ∈ Xs

0(�) with v � 0 in R
N be a supersolution to

⎧
⎨

⎩

(–�)sv = f in �,

v = 0 in (RN \ �),

that is,

∫

RN
(–�)

s
2 v(–�)

s
2 φ dx ≥

∫

�

f φ dx

for all nonnegative φ ∈ Xs
0(�). Then, for every q < N

N–2s , there exists a positive constant
C = C(N , s) such that

(∫

Br(0)
vq dx

) 1
q

≤ C inf
B 3

2 r (0)
v.

For the proof of these lemmas, see [29, Lemma 3.10], [29, Theorem 4.10], and [29, The-
orem 3.4], respectively.
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In the next two theorems, we present our existence results to problem (1). First, we
will prove that for 0 < λ < �N ,s and γ ≥ 1, problem (1) admits a solution for the case μ ∈
L1(�) and f ∈ L1(�) ∩ X–s(�). It is crucial to indicate that our approach in the proof of
Theorem 2.7 only works in the case γ ≥ 1. However, if we further assume that μ ∈ Lm(�),
m = ( 2∗

s
1–γ

)′ (p′ denotes the conjugate exponent of p), then the same approach works for γ <
1. For a result on the existence with less regularity assumption on μ, see [29, Theorem 5.3].
More precisely, the authors showed an existence result for the case μ ∈ L1(�, |x|–(1–γ )β dx).

In the following, we denote

Tn(σ ) =

⎧
⎨

⎩

σ , |σ | ≤ n,

n σ
|σ | , |σ | ≥ n,

the usual truncation operator, and Gn(σ ) := σ – Tn(σ ).

Theorem 2.7 Let s ∈ (0, 1), 0 < λ < �N ,s = 4s�2( N+2s
4 )

�2( N–2s
4 )

, and γ > 0. Also, let μ ∈ L1(�) be a

nonnegative function, and let 0 ≤ f ∈ L1(�) ∩ X–s(�).
1. If γ = 1, then there is a positive weak solution in Xs

0(�) to problem (1).
2. If γ > 1, then there is a positive weak solution in Xs

loc(�) to problem (1) with

T
γ +1

2
k (u) ∈ Xs

0(�) and Gk(u) ∈ Xs
0(�). In addition, if 4γ

(γ +1)2 > λ
�N ,s

, then u
γ +1

2 ∈ Xs
0(�).

3. If γ < 1 and μ ∈ L( 2∗s
1–γ )′ (�), then there is a positive weak solution in Xs

0(�) to problem
(1).

The next theorem gives a necessary and sufficient condition for the existence of a solu-
tion to problem (1).

Theorem 2.8 (A necessary and sufficient condition for the existence of a solution) Let
s ∈ (0, 1), 0 < λ ≤ �N ,s, and γ > 0. Also, let 0 ≤ f ,μ ∈ L1(�). Then problem (1) has a positive
weak solution if and only if

∫

�

f (x)
|x|β dx < +∞,

∫

�

μ

δs(γ –1) dx < +∞. (10)

Moreover, the solution u has the following regularity:
• Tk(u) ∈ Xs

0(�) for all k > 0, and u ∈ Lp(�) for all p ∈ [1, N
N–2s ).

• (–�) s
2 u ∈ Lp(�) for all p ∈ [1, N

N–s ).
• u ∈ Xs1,p

0 (�) for all s1 < s and p < N
N–s .

Remark 2 A similar argument as in [41, Example 3.3] but with the fractional Laplacian
instead of the Laplacian operator shows that problem (1) does not admit a solution for
merely f ∈ L1(�).

The proof of these theorems will appear in the next section. In the following, we will
have a nonexistence and also a blowup result for the case λ > �N ,s.

The following nonexistence result is an immediate consequence of Lemmas 2.4 and 2.5.
More precisely, it is well known that the linear problem with Hardy potential has a non-
positive supersolution if λ > �N ,s. We only bring it here for completeness.
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Theorem 2.9 Let s ∈ (0, 1), λ > �N ,s, and γ > 0. Then there is no positive very weak solution
to problem (1).

Proof We argue by contradiction. Let u be a positive very weak solution to problem (1).
Then u satisfies

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su – �N ,s
u

|x|2s = (λ – �N ,s) u
|x|2s + g in �,

u > 0 in �,

u = 0 in (RN \ �),

where g = μ

uγ + f (x). Then by using Lemma 2.5 and the positivity of g we have

(

(λ – �N ,s)
u

|x|2s

)

|x|–β ∈ L1(Br(0)
)

(11)

for some Br(0) � �. On the other hand, by Lemma 2.4 we have

u(x) ≥ C|x|–β in Br(0) (12)

for sufficiently small r, where β = N–2s
2 – α, and α ∈ [0, N–2s

2 ) is given by the identity

4s�2( N+2s
4 )

�2( N–2s
4 )

=
4s�( N+2s+2α

4 )�( N+2s–2α
4 )

�( N–2s+2α
4 )�( N–2s–2α

4 )
.

The properties of the gamma function imply α = 0; see the proof of [42, Lemma 3.3]. Now
by combining (11) and (12) we obtain that |x|–N ∈ L1(Br(0)), which is a contradiction. �

This nonexistence result is strong in the sense that a complete blowup phenomenon
occurs. Namely, let un be the solution to the following approximated problem with λ >
�N ,s, where the Hardy potential is substituted by the bounded weight (|x|2s + 1

n )–1, and the
singular nonlinearity is substituted by min{μ,n}

(un+ 1
n )γ

:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(–�)sun = λ un
|x|2s+ 1

n
+ min{μ,n}

(un+ 1
n )γ

+ min{f , n} in �,

un > 0 in �,

un = 0 in (RN \ �).

(13)

Then un(x0) → ∞ for any x0 ∈ � as n → ∞.
In the same spirit of Theorem 2.9, we can prove this blowup phenomenon by taking into

consideration that any approximating sequence of nonnegative supersolution to the linear
problem blows up at any point of � if λ > �N ,s, as it is proved in [29].
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3 Proof of Theorem 2.7 and Theorem 2.8
We first prove Theorem 2.7. For this purpose, let us consider the following auxiliary prob-
lem:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su = λ u
|x|2s + g in �,

u > 0 in �,

u = 0 in (RN \ �),

(14)

where g ∈ X–s(�). The function u ∈ Xs
0(�) is a weak energy solution to this problem if

u ≡ 0 in (RN \ �) and

∫

RN
(–�)

s
2 u(–�)

s
2 φ dx = λ

∫

�

uφ

|x|2s dx + 〈g,φ〉X–s(�),Xs
0(�), φ ∈ Xs

0(�).

Here 〈·, ·〉X–s(�),Xs
0(�) denotes the duality pairing between X–s(�) and Xs

0(�).
The proof of the following proposition on the existence for (14) can be obtained by using

the Hardy inequality and classical variational methods. See, for instance, [43, Sect. 4.6].
Also, the uniqueness of the weak energy solution to (14) follows from the strict mono-
tonicity of the operator (–�)su – λ u

|x|2s for 0 ≤ λ < �N ,s. The strict monotonicity of this
operator is a direct consequence of the Hardy inequality.

Proposition 3.1 If g(x) ∈ L2(�), s ∈ (0, 1), and 0 < λ < �N ,s, then there exists a unique
positive weak energy solution to (14) in Xs

0(�).

Before we continue, we need to define the set C of functions v ∈ L2(�) such that there
exist positive constants k1 and k2 such that

k1δ
s(x) ≤ |x|βv(x) ≤ k2δ

s(x),

where the constant β is given in Lemma 2.4, and δ(x) = dist(x, ∂�), x ∈ �, is the distance
function from the boundary ∂�.

Now for v ∈ C , define �(v) = w, where w ∈ Xs
0(�) is the unique solution to the following

problem for any fixed n:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(–�)sw = λ w
|x|2s + μn

(|v|+ 1
n )γ

+ fn(x) in �,

w > 0 in �,

w = 0 in (RN \ �).

(15)

Here fn = Tn(f ) and μn = Tn(μ) are the truncations at level n.
By Lemma 2.4, [29, Theorem 4.1], and a result of [37], it easily follows that w ∈ C . If we

show that � : C → C has a fixed point wn, then wn ∈ C will be the weak solution to the
following problem in Xs

0(�):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(–�)swn = λ wn
|x|2s + μn

(wn+ 1
n )γ

+ fn(x) in �,

wn > 0 in �,

wn = 0 in (RN \ �).

(16)
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We apply the Schauder fixed-point theorem (see, e.g., [43, Theorem 3.2.20]). We need to
prove that � is continuous and compact and that there exists a bounded convex subset of
C ⊂ L2(�) that is invariant under �.

For continuity, let vk → v in L2(�). It is obvious that for each n,

∥
∥
∥
∥

(
μn

(|vk| + 1
n )γ

+ fn

)

–
(

μn

(|v| + 1
n )γ

+ fn

)∥
∥
∥
∥

L2(�)
→ 0, k → ∞.

Now from the uniqueness of the weak solution to (14) we conclude �(vk) → �(v).
For compactness, we argue as follows. For v ∈ C , let w be a solution to (15). If λs

1(�) is
the first eigenvalue of (–�)s in Xs

0(�) [38, Proposition 9], then we have

λs
1(�)

∫

�

w2 dx ≤
∫

RN

∣
∣(–�)

s
2 w

∣
∣2 dx

≤ �N ,s

�N ,s – λ

(∫

RN

∣
∣(–�)

s
2 w

∣
∣2 – λ

w2

|x|2s dx
)

,
(17)

where in the last inequality we have used the Hardy inequality. Testing (15) with φ = w, we
have

∫

RN

∣
∣(–�)

s
2 w

∣
∣2 dx – λ

∫

RN

w2

|x|2s dx =
∫

�

μn

(|v| + 1
n )γ

w dx +
∫

�

fnw dx. (18)

For the first term on the right-hand side of this equality, we have the estimate

∫

�

μn

(|v| + 1
n )γ

w dx ≤ nγ

∫

�

μnw dx ≤ C1

(∫

�

|w|2 dx
) 1

2
, (19)

where in the last inequality, we have used the Hölder inequality. Once more using the
Hölder inequality gives

∫

�
fnw dx ≤ C2(

∫

�
|w|2 dx) 1

2 for some C2 > 0. Thus combining this
inequality with (17), (18), and (19), we obtain

λs
1(�)

∫

�

|w|2 dx ≤ C3

(∫

�

|w|2 dx
) 1

2
,

which implies that �(L2(�)) is contained in a ball of finite radius in L2(�). Therefore
the intersection of this ball with C is invariant under �. Moreover, we have
∫

RN |(–�) s
2 �(v)|2 dx =

∫

RN |(–�) s
2 w|2 dx ≤ C4, which means that �(L2(�)) is relatively

compact in L2(�) by the compactness of embedding (6).

Proposition 3.2 For every K � �, there exists CK > 0 such that {wn}, the solutions to (16),
satisfy wn(x) ≥ CK a.e. in K for each n.

Proof Let us consider the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(–�)svn = μn
(vn+ 1

n )γ
in �,

vn > 0 in �,

vn = 0 in (RN \ �).

(20)
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The existence of a weak solution vn follows from a similar proof to problem (16). In the
same way of [17, Lemma 3.2], we can show that vn ≤ vn+1 a.e. in �. Also, for each K � �,
there exists CK > 0 such that v1(x) ≥ CK a.e. in K . Now subtracting the weak formulation
of (20) from the weak formulation of (16) and using (wn – vn)– as a test function (see [44,
Theorem 20]), we conclude that wn ≥ vn a.e. in �. Therefore, for every K � �, there exists
CK such that wn ≥ vn ≥ v1 ≥ Ck > 0 a.e. in K . �

Proposition 3.3 Let γ ≥ 1. Also, let {wn}∞n=1 be the sequence of solutions to (16). Then

{T
γ +1

2
k (wn)}∞n=1 and {Gk(wn)}∞n=1 are bounded in Xs

0(�), and {Tk(wn)}∞n=1 is bounded in
Xs

loc(�).

Proof We will follow the proof of [29, Theorem 5.2]. Let γ ≥ 1. Taking φ = Tγ

k (wn) as a
test function in (16), we obtain

∫

RN
(–�)

s
2 wn(–�)

s
2 Tγ

k (wn) dx = λ

∫

�

wnTγ

k (wn)
|x|2s dx

+
∫

�

μn

(wn + 1
n )γ

Tγ

k (wn) dx +
∫

�

Tγ

k (wn)fn dx.
(21)

For the left-hand side, by using (7) and the elementary inequality

(s1 – s2)
(
sγ

1 – sγ
2
) ≥ 4γ

(γ + 1)2

(
s

γ +1
2

1 – s
γ +1

2
2

)2, ∀s1, s2 ≥ 0,γ > 0, (22)

we get
∫

RN
(–�)

s
2 wn(–�)

s
2 Tγ

k (wn) dx

=
CN ,s

2

∫∫

D�

(wn(x) – wn(y))(Tγ

k (wn)(x) – Tγ

k (wn)(y))
|x – y|N+2s dx dy

≥ 2γ CN ,s

(γ + 1)2

∫∫

D�

|T
γ +1

2
k wn(x) – T

γ +1
2

k (wn)(y)|2
|x – y|N+2s dx dy

≥ C0

∫

RN

∣
∣(–�)

s
2 T

γ +1
2

k (wn)
∣
∣2 dx. (23)

For the first term on the right-hand side, we have

∫

�

wnTγ

k (wn)
|x|2s dx ≤ kγ –1

∫

�

w2
n

|x|2s dx. (24)

For the second term on the right-hand side of (21), note that Tγ
k (wn)

(wn+ 1
n )γ

≤ wγ
n

(wn+ 1
n )γ

≤ 1. Now
we deduce

∫

�

μn

(wn + 1
n )γ

Tγ

k (wn) dx ≤
∫

�

μn dx ≤ ‖μn‖L1 ≤ C1. (25)

Also, for the last term,
∫

�

Tγ

k (wn)fn dx ≤ k
γ –1

2

∫

�

T
γ +1

2
k (wn)fn dx
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= k
γ –1

2
〈
fn, T

γ +1
2

k (wn)
〉

X–s(�),Xs
0(�)

≤ k
γ –1

2
〈
f , T

γ +1
2

k (wn)
〉

X–s(�),Xs
0(�)

≤ k
γ –1

2 ‖f ‖X–s(�)
∥
∥T

γ +1
2

k (wn)
∥
∥

Xs
0(�) = k

γ –1
2 C2

∥
∥T

γ +1
2

k (wn)
∥
∥

Xs
0(�). (26)

Thus from (21), (23), (24), (25), and (26) we obtain

∫

RN

∣
∣(–�)

s
2 T

γ +1
2

k (wn)
∣
∣2 dx ≤ λkγ –1

C0

∫

RN

w2
n

|x|2s dx

+ C1 + C2k
γ –1

2
∥
∥T

γ +1
2

k (wn)
∥
∥

Xs
0(�).

(27)

If we show that the term

∫

�

w2
n

|x|2s dx (28)

is uniformly bounded in n, then (27) gives ‖T
γ +1

2
k (wn)‖2

Xs
0(�) ≤ C3(k)(1 + ‖T

γ +1
2

k (wn)‖Xs
0(�)),

which implies the boundedness of {T
γ +1

2
k (wn)} in Xs

0(�).
For proving the boundedness of (28), it suffices to consider φ = Gk(wn) as a test function

in (16) as follows, where Gk(σ ) := σ – Tk(σ ):

∫

RN

∣
∣(–�)

s
2 Gk(wn)

∣
∣2 dx ≤ λ

∫

RN

wnGk(wn)
|x|2s dx

+
∫

�

μn

(wn + 1
n )γ

Gk(wn) dx +
∫

�

fnGk(wn) dx.
(29)

Note that for the left-hand side, we have used [44, Proposition 3]. To estimate the terms on
the right-hand side of this equality uniformly in n, we have the following. For the second
term on the right-hand side of (29), we have the following estimate uniformly in n:

∫

�

μn

(wn + 1
n )γ

Gk(wn) dx ≤ 1
kγ –1

∫

�

μn ≤ C.

For
∫

�
fnGk(wn) dx, we have the following estimate:

∫

�

fnGk(wn) dx =
〈
fn, Gk(wn)

〉

X–s(�),Xs
0(�) ≤ 〈

f , Gk(wn)
〉

X–s(�),Xs
0(�)

≤ C1
∥
∥Gk(wn)

∥
∥

Xs
0(�).

For the first term on the right-hand side of (29), we can write

∫

RN

wnGk(wn)
|x|2s dx =

∫

RN

|Gk(wn)|2
|x|2s dx + k

∫

RN

Gk(wn)
|x|2s dx. (30)

For the last term in (30), using the Hölder inequality with exponents a = 2∗
s and b = 2N

N+2s <
N
2s , noting that the integration can be over � because of wn ≡ 0 in R

N \�, and embedding
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(6), we obtain

∫

RN

Gk(wn)
|x|2s dx =

∫

�

Gk(wn)
|x|2s dx ≤

(∫

�

1
|x|2sb dx

) 1
b
(∫

RN

∣
∣Gk(wn)

∣
∣a dx

) 1
a

≤ C2
∥
∥Gk(wn)

∥
∥

Xs
0(�).

Combining the above estimates, from (29) we get

∫

RN

∣
∣(–�)

s
2 Gk(wn)

∣
∣2 dx – λ

∫

RN

|Gk(wn)|2
|x|2s dx ≤ kC2

∥
∥Gk(wn)

∥
∥

Xs
0(�)

+ C + C1
∥
∥Gk(wn)

∥
∥

Xs
0(�).

Now the Hardy inequality shows the boundedness of the term
∫

RN
|Gk (wn)|2

|x|2s dx, and there-
fore we obtain the boundedness of (28) by using the fact that w2

n ≤ 2(T2
k (wn) + G2

k(wn)),
that is,

∫

�

w2
n

|x|2s dx ≤ 2
∫

�

|Tk(wn)|2
|x|2s dx + 2

∫

�

|Gk(wn)|2
|x|2s dx

≤ 2k2
∫

�

1
|x|2s dx + 2

∫

�

|Gk(wn)|2
|x|2s dx.

Moreover, we get the boundedness of ‖Gk(wn)‖Xs
0(�) uniformly in n.

Now we show that {Tk(wn)} is bounded in Xs
loc(�). For this purpose, first note that by

Proposition 3.2, for any compact set K � �, there exists C(K) > 0 such that

wn(x) ≥ w1(x) ≥ C(K) > 0 a.e. in K .

Therefore

Tk(wn) ≥ Tk(w1) ≥ C̃ := min
{

k, C(K)
}

.

For (x, y) ∈ K × K , define αn := Tk (wn)(x)
C̃

and βn := Tk (wn)(y)
C̃

. Since αn,βn ≥ 1, we have the
following estimate by applying an elementary inequality:

(αn – βn)2 ≤ (
α

γ +1
2

n – β
γ +1

2
n

)2.

Now by the definition of αn and βn we obtain

(
Tk

(
wn(x)

)
– Tk

(
wn(y)

))2 ≤ C̃1–γ
(
T

γ +1
2

k wn(x) – T
γ +1

2
k wn(y)

)2.

Thus we get the boundedness of {Tk(wn)}∞n=1 in Xs
loc(�) by using (5) and the boundedness

of {T
γ +1

2
k (wn)}∞n=1 in Xs

0(�). �

Remark 3 In the case γ = 1, since both {Gk(wn)}∞n=1 and {Tk(wn)}∞n=1 are bounded in Xs
0(�),

{wn}∞n=1 is also bounded in Xs
0(�).
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Remark 4 For the case 0 < γ < 1, if furthermore we assume μ ∈ L( 2∗s
1–γ )′ (�), then the se-

quence {wn}∞n=1 is bounded in Xs
0(�). Indeed, you just have to keep in mind that

∫

�

μn

(wn + 1
n )γ

wn dx ≤
∫

�

μnw1–γ
n dx ≤ ‖μ‖

L
( 2∗s

1–γ
)′

(�)
‖wn‖1–γ

L2∗s (�)
≤ C‖wn‖1–γ

Xs
0(�).

Since the rest of the proof can be obtained proceeding as in the case γ = 1, for brevity, we
leave it left to the reader.

Now we are ready to prove Theorem 2.7.

Proof of Theorem 2.7 There exists u ∈ Xs
loc(�) (u ∈ Xs

0(�) in the case γ ≤ 1) such that, up
to a subsequence,

• wn → u weakly in Xs
loc(�) (weakly in Xs

0(�) in the case γ ≤ 1);
• Gk(wn) → Gk(u) weakly in Xs

0(�);

• T
γ +1

2
k (wn) → T

γ +1
2

k (u) weakly in Xs
0(�).

Also, using embedding (6), up to a subsequence, we have
• wn → u in Lr(�) for any r ∈ [1, 2∗

s );
• wn(x) → u(x) pointwise a.e. in �.

Now for every fixed φ ∈ T (�), by the estimates above, we can pass to the limit and obtain

∫

�

wnφ

|x|2s dx →
∫

�

uφ

|x|2s dx < +∞,
∫

�

μn

(wn + 1
n )γ

φ dx →
∫

�

μφ

uγ
dx < +∞,

∫

�

fnφ dx →
∫

�

f φ dx.

Also, for every φ ∈ T (�), we have

lim
n→∞

∫

RN
(–�)

s
2 wn(–�)

s
2 φ dx = lim

n→∞

∫

RN
wn(–�)sφ dx =

∫

RN
u(–�)sφ dx.

Since for every K � �, there exists CK > 0 such that wn(x) ≥ CK a.e. in K and also wn ≡ 0
in (RN \ �), and because of wn(x) → u(x) a.e. in �, u is a weak solution to problem (1).

Finally, note that if we take γ such that 4γ

(γ +1)2 > λ
�N ,s

, then by testing (16) with wγ
n and

using inequality (22) together with Hardy inequality, it easily follows that u
γ +1

2 ∈ Xs
0(�). �

By now, in Theorem 2.9, we have shown that for λ > �N ,s, there is no positive solution
to problem (1). Also, in Theorem 2.7, we have proved the existence of a positive solution
for λ < �N ,s. The following remark for λ = �N ,s may be interesting.

Remark 5 In the borderline case λ = �N ,s, by invoking the improved version of Hardy
inequality [45] we can define the space H(�) as the completion of C∞

0 (�) with respect to
the norm

‖φ‖H(�) :=
(∫

RN

∣
∣(–�)

s
2 φ

∣
∣2 dx – �N ,s

∫

�

φ2

|x|2s dx
) 1

2
.
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It is known that Xs
0(�) � H(�) � Xs,q

0 (�) for all q < 2. By invoking the classical variational
methods in the space H(�) and the same techniques used above we can obtain a similar
existence result in this new function space. See [45, Remark 1] and also [40] for the details.

Now, in the spirit of [29, Theorem 4.10], we prove Theorem 2.8, which gives a necessary
and sufficient condition for the existence of a solution to (1).

Proof of Theorem 2.8 Let u be a weak solution to problem (1), and let φn ∈ T (�) be weak
energy solutions to the following problems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(–�)sφn = λ
φn–1

|x|2s+ 1
n

+ 1 in �,

φn > 0 in �,

φn = 0 in (RN \ �),

where the iteration starts with

⎧
⎪⎪⎨

⎪⎪⎩

(–�)sφ0 = 1 in �,

φ0 > 0 in �,

φ0 = 0 in (RN \ �).

The comparison principle for fractional Laplacian operator implies that φ0 ≤ φ1 ≤ · · · ≤
φn–1 ≤ φn ≤ φ, where φ := limn→∞ φn is the weak energy solution to

⎧
⎪⎪⎨

⎪⎪⎩

(–�)sφ = λ
φ

|x|2s + 1 in �,

φ > 0 in �,

φ = 0 in (RN \ �).

(31)

Using φn as a test function in (1) yields

∫

RN
u(–�)sφn dx = λ

∫

�

uφn

|x|2s dx +
∫

�

μφn

uγ
dx +

∫

�

f φn dx. (32)

On the other hand, by the definition φn we have

∫

RN
u(–�)sφn dx = λ

∫

�

uφn–1

|x|2s + 1
n

dx +
∫

�

u dx. (33)

Combining (32) and (33) and noticing that φn–1
|x|2s+ 1

n
≤ φn

|x|2s , we get

∫

�

f φn dx ≤
∫

�

u dx = C.

Therefore the sequence {f φn} is uniformly bounded in L1(�). Also, since {f φn} is increas-
ing, applying the monotone convergence theorem and invoking Lemma 2.4, we obtain

C1

∫

Br(0)
|x|–β f dx ≤

∫

�

f φ dx ≤ C.
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Also, from Remark 1 it follows that
∫

�

μ

δs(γ –1) dx < +∞.

Now assume that
∫

Br (0)
|x|–β f dx ≤ C for some r and Br(0) � � (34)

and
∫

�

μ

δs(γ –1) dx < +∞. (35)

Let un ∈ Xs
0(�) be weak energy solutions to the problems

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(–�)sun = λ
un–1

|x|2s+ 1
n

+ μ

(un–1+ 1
n )γ

+ fn in �,

un > 0 in �,

un = 0 in (RN \ �),

(36)

where

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su0 = f1 in �,

u0 > 0 in �,

u0 = 0 in (RN \ �).

Here fn = Tn(f ). Again we have u0 ≤ u1 ≤ · · · ≤ un–1 ≤ un in R
N . Using φ ∈ Xs

0(�), the
solution to (31), as a test function in (36), we obtain

∫

RN
un(–�)sφ dx = λ

∫

�

un–1φ

|x|2s + 1
n

dx +
∫

�

μφ

(un–1 + 1
n )γ

dx +
∫

�

fnφ dx. (37)

On the other hand, using un as a test function in the weak formulation of (31), we get

∫

RN
un(–�)sφ dx = λ

∫

�

unφ

|x|2s dx +
∫

�

un dx. (38)

From (37) and (38), using Lemma 2.4 together with (34) and (35), we obtain

∫

�

un dx ≤
∫

�

fnφ dx +
∫

�

μφ

(un–1 + 1
n )γ

dx ≤
∫

�

f φ dx +
∫

�

μφ

uγ
0

dx

≤ C1

∫

�

f |x|–β dx + c1c–γ

∫

�

μ

δs(γ –1) dx

≤ C.

(39)

Note that in the last inequality, we have used u0 ≥ cδs and φ ∼ c1δ
s near the boundary ∂�

for some c1 > 0, since φ is a solution to (31). This follows by a result of [37] together with
the comparison principle for the fractional Laplacian.
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Since un is increasing and also uniformly bounded in L1(�), by the monotone conver-
gence theorem we conclude that u := limn→∞ un is a function in L1(�). We want to show
that u is a weak solution to problem (1). For this purpose, let ψ ∈ Xs

0(�) ∩ L∞(�) be the
unique positive weak energy solution to

⎧
⎨

⎩

(–�)sψ = 1 in �,

ψ = 0 in (RN \ �).

Using ψ as a test function in (36) and noting that ψ ∼ δs, from (39) we get

λ

∫

�

un–1

|x|2s + 1
n
δs dx +

∫

�

μ

(un–1 + 1
n )γ

δs dx ≤ C2

∫

�

un dx ≤ C2C.

Thus by applying the monotone convergence theorem we get

un–1

|x|2s + 1
n

+ fn ↗ u
|x|2s + f , in L1(�, δs dx

)
.

Also, since
∣
∣
∣
∣

μ

(un–1 + 1
n )γ

δs
∣
∣
∣
∣ ≤

∣
∣
∣
∣
μ

uγ
0
δs

∣
∣
∣
∣ ≤ μ

δs(γ –1) ∈ L1(�),

by the dominated convergence theorem we have

μ

(un–1 + 1
n )γ

→ μ

uγ
in L1(�, δs dx

)
.

Therefore u satisfies equation (1) in the following weak sense:

∫

RN
u(–�)sφ dx = λ

∫

�

uφ

|x|2s dx +
∫

�

μφ

uγ
dx +

∫

�

f φ dx, ∀φ ∈ T (�).

Testing Tk(un) in (36) and using (35), we can show that Tk(un) → Tk(u) weakly in Xs
0(�)

(similarly to the arguments in the proof of Proposition 3.3). Moreover, since λ
un–1

|x|2s+ 1
n

+
μ

(un–1+ 1
n )γ

+ fn converges strongly in L1(�, δs dx), by mimicking the proofs of [46, Proposi-
tion 2.3] and [44, Theorem 23] (or directly by adapting the Green operator’s viewpoint of
the Laplacian case [47, Theorem 1.2.2]), we obtain

• u ∈ Lp(�) for all p ∈ [1, N
N–2s );

• (–�) s
2 u ∈ Lp(�) for all p ∈ [1, N

N–s ).
Since N > 2s, we have N

N–s < 2. Now by invoking Theorem 5 and Proposition 10 in Chap. 5
of [48] we get that u ∈ Xs1,p

0 (�) for all s1 < s and p < N
N–s . (In [48], Xs,p

0 (�) reads as �
p,p
s (RN ),

and Lp
s (RN ) denotes the space of Bessel potentials; see [48, Sect. 3.2].) �

4 Some uniqueness results and the rate of the growth of solutions
In this section, we give some uniqueness results. Also, under some summability assump-
tions on the data of μ and f , we find the growth rate of solutions.

First, for the particular case μ ≡ 1, by studying the behavior of solutions near the bound-
ary we discuss the uniqueness of solutions to problem (1).
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Proposition 4.1 If μ ≡ 1, then the solution obtained to problem (1) in Theorem 2.7 behaves
as follows:

⎧
⎪⎪⎨

⎪⎪⎩

k1δ
s(x) ≤ |x|βu(x), 0 < γ < 1,

k1δ
s(x)(ln( r

δs(x) )) 1
2 ≤ |x|βu(x), γ = 1,

k1δ
2s

γ +1 (x) ≤ |x|βu(x), γ > 1,

(40)

for any x ∈ � and some k1 > 0, where r > diam(�). Here β is as defined in Lemma 2.4.

Proof First, notice that by Lemma 2.4 there exists a constant C1 > 0 such that

|x|βu(x) ≥ C1 in Bε(0). (41)

Now let w be a weak energy solution to the problem

⎧
⎪⎪⎨

⎪⎪⎩

(–�)sw = 1
wγ in �,

w > 0 in �,

w = 0 in (RN \ �).

By [30, Theorem 2.9] or [49, Theorem 1.2] w satisfies:

⎧
⎪⎪⎨

⎪⎪⎩

k1δ
s(x) ≤ w(x) ≤ k2δ

s(x), 0 < γ < 1,

k1δ
s(x)(ln( r

δs(x) )) 1
2 ≤ w(x) ≤ k1δ

s(x)(ln( r
δs(x) )) 1

2 , γ = 1,

k1δ
2s

γ +1 (x) ≤ w(x) ≤ k2δ
2s

γ +1 (x), γ > 1,

(42)

for some k1, k2 > 0, r > diam(�), and any x ∈ �. By the comparison principle for the frac-
tional Laplacian operator (see, e.g., [5, Proposition 2.17]) we obtain u(x) ≥ w(x), which,
together with (41) and (42), gives (40). �

Remark 6 Note that by using the estimates in Proposition 4.1 and applying the Hölder and
fractional Hardy–Sobolev inequalities (and convexity of � only for 0 < s < 1

2 ) [50, Theo-
rem 1.1] we get

• For 0 < γ < 1,

∣
∣
∣
∣

∫

�

φ

uγ
dx

∣
∣
∣
∣ ≤ k–γ

1

∫

�

|x|βγ |φ|
δsγ dx ≤ C

(∫

�

φ2

δ2sγ dx
) 1

2 ≤ C1‖φ‖Xsγ
0 (�)

≤ C2‖φ‖Xs
0(�),

where in the last inequality, we used the continuous embedding of Xs2
0 (�) into Xs1

0 (�)
for s1 < s2,

• For γ = 1,

∣
∣
∣
∣

∫

�

φ

u
dx

∣
∣
∣
∣ ≤ k–1

1

∫

�

|x|β |φ|
δs(x)(ln( r

δs(x) )) 1
2

dx

≤ C
(∫

�

1
| ln( r

δs(x) )| dx
) 1

2
(∫

�

φ2

δ2s dx
) 1

2 ≤ C1‖φ‖Xs
0(�);
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• For γ > 1,

∣
∣
∣
∣

∫

�

φ

uγ
dx

∣
∣
∣
∣ ≤ k–γ

1

∫

�

|x|βγ |φ|
δ

2sγ
γ +1

dx ≤ C
(∫

�

1

δ
2s γ –1

γ +1
dx

) 1
2
(∫

�

φ2

δ2s dx
) 1

2

≤ C1

(∫

�

1

δ
2s γ –1

γ +1
dx

) 1
2 ‖φ‖Xs

0(�).

If, in addition, 2s(γ – 1) < γ + 1, then

∫

�

φ

uγ
dx ≤ C2‖φ‖Xs

0(�).

For general domains with some boundary regularity, the fractional Hardy–Sobolev in-
equality is proved for s ∈ [ 1

2 , 1); see [51–53]. However, in [50] the authors proved the frac-
tional Hardy–Sobolev inequality for any s ∈ (0, 1) by using the facts that the domain is a
convex set and its distance from the boundary is a superharmonic function.

Let u1 and u2 be solutions in Xs
loc(�) to problem (1) in the particular case where μ ≡ 1

and either 0 < γ ≤ 1 or γ > 1 with 2s(γ – 1) < γ + 1 and define w = u1 – u2. Then we have

∫

RN
w(–�)sφ dx = λ

∫

�

wφ

|x|2s dx +
∫

�

φ

uγ
1

–
φ

uγ
2

dx, ∀φ ∈ T (�). (43)

The fractional Hardy–Sobolev inequality and a density argument show that equality (43)
holds for all φ ∈ Xs

0(�); see Remark 6. This means that w ∈ Xs
0(�). Now by using w– as a

test function in (43) and applying the ardy inequality we deduce that w– ≡ 0. So we arrive
at the conclusion that u1 ≥ u2. A similar argument shows that u1 ≤ u2. Therefore u1 = u2,
and the uniqueness follows.

Remark 7 The assumption μ ≡ 1 is taken for simplification. However, the above argument
works for any μ ≥ m for some positive constant m such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

�
μ2δ2s(1–γ ) dx < +∞ 0 < γ < 1,

∫

�

μ2

| ln( r
δs )| dx < +∞ γ = 1,

∫

�
μ2δ

2s 1–γ
1+γ dx < +∞ γ > 1, and γ (2s – 1) < (2s + 1),

For a further discussion, see [30, Theorem 5.2] on a Brezis–Oswald-type uniqueness re-
sult.

Once again, because of the interest in uniqueness, we have another definition of solu-
tions to (1). In fact, we would like to consider the entropy solution. The motivation of the
definition comes from the works [54, 55]. In what follows, we consider 0 < γ ≤ 1.

Definition 4.2 Let 0 ≤ μ, f ∈ L1(�) and 0 < γ ≤ 1. We say that u is an entropy solution to
(1) if

• for every K � �, there exists CK > 0 such that u(x) ≥ CK in K and also u ≡ 0 in
R

N \ �;
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• Tk(u) ∈ Xs
0(�) for every k, and u satisfies the following family of inequalities:

∫

{|u–φ|<k}
(–�)

s
2 u(–�)

s
2 (u – φ) dx ≤ λ

∫

�

uTk(u – φ)
|x|2s dx +

∫

�

u–γ μTk(u – φ) dx

+
∫

�

fTk(u – φ) dx

for all k and all φ ∈ Xs
0(�) ∩ L∞(�), together with the assumption that the second

term on the right-hand side of the inequality is finite for all φ ∈ Xs
0(�) ∩ L∞(�). The

well-posedness of this term will be clear after the construction of entropy solution.

Let u and v be entropy solutions. Testing u with φ = Th(v) and v with φ = Th(u) in the
weak formulation of entropy inequalities, we have

∫

{|u–Th(v)|<k}
(–�)

s
2 u(–�)

s
2
(
u – Th(v)

)
dx – λ

∫

�

uTk(u – Th(v))
|x|2s dx

≤
∫

�

μTk(u – Th(v))
uγ

dx +
∫

�

fTk
(
u – Th(v)

)
dx

(44)

and

∫

{|v–Th(u)|<k}
(–�)

s
2 v(–�)

s
2
(
v – Th(u)

)
dx – λ

∫

�

vTk(v – Th(u))
|x|2s dx

≤
∫

�

μTk(v – Th(u))
vγ

dx +
∫

�

fTk
(
v – Th(u)

)
dx.

(45)

Summing the left-hand sides of (44) and (45) and restricting them to

Ah
0 =

{
x ∈ � : |u – v| < k, |u| < h, |v| < h

}
,

we have the following estimate by using the Hardy inequality:

∫

Ah
0

∣
∣(–�)

s
2 (u – v)

∣
∣2 dx – λ

∫

Ah
0

(u – v)2

|x|2s dx ≥ �N ,s – λ

�N ,s

∫

Ah
0

∣
∣(–�)

s
2 (u – v)

∣
∣2 dx. (46)

Also, summing the right-hand sides of (44) and (45) when restricted to Ah
0 gives

∫

Ah
0

(u – v)
(
u–γ – v–γ

)
μdx ≤ 0. (47)

Now consider the set Ah
1 = {x ∈ � : |u – Th(v)| < k, |v| ≥ h}. When restricted to Ah

1, for the
left-hand side of (44), we have:

∫

Ah
1

∣
∣(–�)

s
2 u

∣
∣2 dx – λ

∫

Ah
1

u(u – h)
|x|2s dx ≥

∫

Ah
1

∣
∣(–�)

s
2 u

∣
∣2 dx – λ

∫

Ah
1

u2

|x|2s dx

≥ �N ,s – λ

�N ,s

∫

Ah
1

∣
∣(–�)

s
2 u

∣
∣2 dx ≥ 0.

(48)



Bayrami-Aminlouee et al. Boundary Value Problems         (2021) 2021:68 Page 23 of 42

On the other hand, when restricted to Ah
1, the right-hand side of (44) is

∫

Ah
1

u–γ (u – h)μdx +
∫

Ah
1

f (u – h) dx, (49)

which goes to zero as h → ∞.
Finally, on the remaining set Ah

2 = {x ∈ � : |u – Th(v)| < k, |v| < h, |u| ≥ h}, the left-hand
side of (44) is

∫

Ah
2

(–�)
s
2 u(–�)

s
2 (u – v) dx – λ

∫

Ah
2

u(u – v)
|x|2s dx, (50)

which goes to zero as h → ∞.
The right-hand side of (44), when restricted to Ah

2, is
∫

Ah
2

u–γ (u – v)μdx +
∫

Ah
2

f (x)(u – v) dx, (51)

which also goes to zero as h → ∞.
Similarly, we can estimate the left-hand side of (45) on the sets Bh

1 = {x ∈ � : |v – Th(u)| <
k, |u| ≥ h} and Bh

2 = {x ∈ � : |v – Th(u)| < k, |u| < h, |v| ≥ h} and find that

∫

Bh
1

∣
∣(–�)

s
2 v

∣
∣2 dx – λ

∫

Bh
1

v(v – h)
|x|2s dx ≥ �N ,s – λ

�N ,s

∫

Bh
1

∣
∣(–�)

s
2 v

∣
∣2 dx ≥ 0 (52)

and
∫

Bh
2

(–�)
s
2 v(–�)

s
2 (v – u) dx – λ

∫

Bh
2

v(v – u)
|x|2s dx → 0 as h → 0. (53)

On the other hand, for the right-hand side of (45) on the sets Bh
1 = {x ∈ � : |v – Th(u)| <

k, |u| ≥ h} and Bh
2 = {x ∈ � : |v – Th(u)| < k, |u| < h, |v| ≥ h}, we have

∫

Bh
1

v–γ (v – h)μdx +
∫

Bh
1

f (v – h) dx → 0 as h → 0 (54)

and
∫

Bh
2

v–γ (v – u)μdx +
∫

Bh
2

f (v – u) dx → 0 as h → 0. (55)

Putting all estimates (46), (47), (48), (49), (50), (51), (52), (53), (54), and (55) together, we
obtain

∫

Ah
0

∣
∣(–�)

s
2 (u – v)

∣
∣2 dx ≤ o(h) as h → 0.

Now, since Ah
0 goes to {|u – v| < k} as h → 0, we have

∫

{|u–v|<k}

∣
∣(–�)

s
2 (u – v)

∣
∣2 dx ≤ 0, ∀k.

Therefore u ≡ v, and the uniqueness is proved.
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Now we construct an entropy solution for the case where 0 < γ ≤ 1, μ ∈ L( 2∗s
1–γ )′ (�) ∩

L2(�), and a datum of f ∈ L1(�) satisfying the integrability condition (10). Let consider
the following approximating problems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(–�)sun = λ un
|x|2s + μn

(un+ 1
n )γ

+ fn in �,

un > 0 in �,

un = 0 in (RN \ �).

(56)

Here μn = Tn(μ) and fn = Tn(f ). The increasing behavior of μn(un + 1
n )–γ + fn and the mono-

tonicity of the operator (–�)su – λ u
|x|2s ensures the existence of an increasing sequence of

solutions to problems (56). Testing (56) with Tk(un – φ) implies that {Tk(un – φ)}∞n=1 is a
bounded sequence in Xs

0(�) for each fixed k and each fixed φ ∈ Xs
0(�)∩L∞(�). Therefore,

up to a subsequence, Tk(un – φ) → Tk(u – φ) weakly in Xs
0(�) as n → ∞, where u is the

weak solution to (1) with μ ∈ L( 2∗s
1–γ )′ (�) ∩ L2(�). Also, since {Tk(un – φ)}∞n=1 is an increas-

ing sequence of nonnegative functions, the strict monotonicity of (–�)s again implies that
Tk(un –φ) → Tk(u –φ) strongly in Xs

0(�) (see, e.g., [29, Lemma 2.18] for this compactness
result). Now, using Tk(un – φ) as a test function in (56) and noting that

∫

�

∣
∣
∣
∣
μnTk(un – φ)

(un + 1
n )γ

∣
∣
∣
∣dx ≤

∫

�

μn|Tk(un – φ)|
uγ

1
dx

≤ ‖μ‖L2(�)

∫

�

T2
k (un – φ)

δ2sγ dx

≤ C1‖|Tk(un – φ)|‖Xsγ
0 (�)

≤ C2
∥
∥Tk(un – φ)

∥
∥

Xs
0(�) ≤ C3 < +∞ uniformly in n

(because u1 ∼ cδs near the boundary and applying the Hölder and fractional Hardy–
Sobolev inequalities), we may pass to the limit and find an entropy solution even with the
equalities instead of the inequalities in Definition 4.2. Note that from the above estimate
by Fatou’s lemma we deduce

∫

�

Tk(u – φ)μ
uγ

dx < +∞

for all φ ∈ Xs
0(�) ∩ L∞(�) and k > 0.

We end this section by a Calderón–Zygmund-type property of solutions to problem (1).
See [41] for this property in the local case without the presence of singular nonlinearity
and [15] for the case without the Hardy potential.

As mentioned before in Lemma 2.4, any supersolution to (1) is unbounded, that is,
u(x) � |x|–β in a neighborhood of the origin. Now we have the following result, which
says that this rate is precisely the rate of growth of u for the regular data of μ and f .

Theorem 4.3 Let 0 ≤ μ, f ∈ Lm(�), m > N
2s , and let u ∈ Xs

0(�) be the weak energy solution
to (1) with 0 < λ < �N ,s. Then u(x) ≤ C|x|–β a.e. in �.
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Proof We follow [29, Theorem 4.1]. Also, see [15, Lemma 3.3]. Let k ≥ 1. By the change
of variable v(x) := |x|βu(x) we can check that v solves

⎧
⎪⎪⎨

⎪⎪⎩

Lβv = μ

|x|β(1–γ )vγ + |x|–β f in �,

v > 0 in �,

v = 0 in (RN \ �),

(57)

where the operator Lβ is as follows:

Lβv := CN ,sP.V.
∫

RN

v(x) – v(y)
|x – y|N+2s

dy
|x|β |y|β .

See [29, Sect. 2] for the properties of this operator and the associated weighted fractional
Sobolev space.

Using Gk(v) as a test function in (57) and following the proof of [29, Theorem 4.1], we
obtain

CN ,s

2

∫∫

D�

|Gk(v(x)) – Gk(v(y))|2
|x – y|N+2s

dx
|x|β

dy
|x|β ≤

∫

Ak

|x|βγ μ

vγ
Gk(v)

dx
|x|β

+
∫

Ak

fGk(v)
dx
|x|β ,

(58)

where Ak := {x ∈ � : v(x) ≥ k}. Applying the weighted Sobolev inequality [29, Proposi-
tion 2.11] to the left-hand side of (58) and noting that |x|βγ ≤ C2 in �, we have

C1
∥
∥Gk(v)

∥
∥2

L2∗s (�,|x|–β dx) ≤ C2

∫

Ak

μ

vγ
Gk(v)

dx
|x|β +

∫

Ak

fGk(v)
dx
|x|β .

For the first term on the right-hand side of this inequality, by using the Hölder inequality
we get

∣
∣
∣
∣

∫

Ak

μ

vγ
Gk(v)

dx
|x|β

∣
∣
∣
∣ ≤ k–γ ‖μ‖Lm(�)

∥
∥Gk(v)

∥
∥

L2∗s (�,|x|–β dx)|Ak|1– 1
2∗s – 1

m .

Similarly, for the second term,

∣
∣
∣
∣

∫

Ak

fGk(v)
dx
|x|β

∣
∣
∣
∣ ≤ ‖f ‖Lm(�)

∥
∥Gk(v)

∥
∥

L2∗s (�,|x|–β dx)|Ak|1– 1
2∗s – 1

m .

Putting these results together, we obtain

∥
∥Gk(v)

∥
∥

L2∗s (�,|x|–β dx) ≤ C3|Ak|1– 1
2∗s – 1

m . (59)

On the other hand, since � is bounded, there exists a constant C4 > 0 such that

∥
∥Gk(v)

∥
∥

L2∗s (�,|x|–β dx) ≥ C4
∥
∥Gk(v)

∥
∥

L2∗s (�). (60)
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Moreover, for any z > k, we have that Az ⊂ Ak and Gk(v)χAz ≥ (z – k). Thus from (59) and
(60) we have

(z – k)|Az|
1

2∗s ≤ C5|Ak|1– 1
2∗s – 1

m

or, equivalently,

|Az| ≤ C6
|Ak|2

∗
s (1– 1

2∗s – 1
m )

(z – k)2∗
s

.

Now by invoking [29, Lemma 2.23] with ψ(h) := |Ah| and noting that 2∗
s (1 – 1

2∗
s

– 1
m ) > 1

because of m > N
2s , we obtain that there exists k0 such that ψ(k) ≡ 0 for any k ≥ k0. Thus

v(x) ≤ k0 a.e. in �. This means that u(x) ≤ k0|x|–β a.e. in �. �

5 The parabolic case and a stabilization result
In this section, we study on the following evolution problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut + (–�)su = λ u
|x|2s + 1

uγ + f (x, t) in � × (0, T),

u > 0 in � × (0, T),

u = 0 in (RN \ �) × (0, T),

u(x, 0) = u0 in R
N ,

(61)

where u0 ∈ Xs
0(�) satisfies an appropriate cone condition, which will be specified later. In

what follows, we consider the existence and uniqueness and also a stabilization for prob-
lem (61).

First of all, we define the notion of a weak solution. We need the following class of test
functions:

A(�T ) :=
{

u : u ∈ L2(� × (0, T)
)
, ut ∈ L2(� × (0, T)

)
, u ∈ L∞(

0, T ; Xs
0(�)

)}
.

Note that the Aubin–Lions–Simon lemma (see [56]) implies that the following embed-
ding is compact:

A(�T ) ↪→ C
(
[0, T]; L2(�)

)
. (62)

Definition 5.1 Let u0 ∈ L2(�) and f ∈ L2(� × (0, T)). We say that u ∈ A(�T ) is a weak
supersolution (subsolution) to problem (61) if

• for every K � � × (0, T), there exists CK > 0 such that u(x, t) ≥ CK a.e. in K and also
u ≡ 0 in (RN \ �) × [0, T);

• for every nonnegative φ ∈A(�T ), we have

∫ T

0

∫

�

utφ dx dt +
∫ T

0

∫

RN
(–�)

s
2 u(–�)

s
2 φ dx dt

≥ (≤)λ
∫ T

0

∫

�

uφ

|x|2s dx dt +
∫ T

0

∫

�

φ

uγ
dx dt +

∫ T

0

∫

�

f φ dx dt
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and also that the second term on the right-hand side of the inequality is finite for any
φ ∈A(�T ) (the well-posedness of the second term on the right-hand side will be clear
after the construction of a solution);

• u(x, 0) ≥ (≤)u0(x) a.e. in �.
If u is a weak supersolution and subsolution, then we say that u is a weak solution. Note
that by embedding (62) the initial condition u(x, 0) = u0 makes sense.

Before outlining our theorems, we need to define the following sets:
• USing

γ , the set of all functions in L2(�) such that there exists k1 > 0 such that

⎧
⎪⎪⎨

⎪⎪⎩

k1δ
s(x) ≤ |x|βu(x), 0 < γ < 1,

k1δ
s(x)(ln( r

δs(x) )) 1
2 ≤ |x|βu(x), γ = 1,

k1δ
2s

γ +1 (x) ≤ |x|βu(x), γ > 1,

where r > diam(�);
• W (�) := {φ ∈ C(� \ {0}) : |x|βφ ∈ C(�)} equipped with the L∞(�, |x|β dx) norm

‖u‖L∞(�,|x|β dx) := ess sup
{|x|β ∣

∣u(x)
∣
∣ : x ∈ �

}
.

Also, we need the following definition.

Definition 5.2 We say that u(t) ∈ USing
γ uniformly for t ∈ [0, T] if there exist ψ1,ψ2 ∈ USing

γ

such that ψ1(x) ≤ u(x, t) ≤ ψ2(x) for a.e. (x, t) ∈ � × [0, T].

Theorem 5.3 Let 0 ≤ g ∈ L∞(�, |x|β dx), 0 < λ < �N ,s, and θ > 0. Then the following prob-
lem has a unique weak energy solution uθ ∈ Xs

0(�) ∩ USing
γ for any 0 < γ ≤ 1 or γ > 1 with

2s(γ – 1) < γ + 1:

⎧
⎪⎪⎨

⎪⎪⎩

u + θ ((–�)su – λ u
|x|2s – 1

uγ ) = g in �,

u > 0 in �,

u = 0 in (RN \ �).

(63)

Moreover, there exists a positive constant λ∗ < �N ,s such that for any λ ∈ (0,λ∗), this unique
solution also belongs to W (�).

Proof We follow the proof of [30, Theorem 2.4]. For any ε > 0, consider the following
approximating problem:

⎧
⎪⎪⎨

⎪⎪⎩

uε,θ + θ ((–�)suε,θ – λ
uε,θ
|x|2s – 1

(uε,θ +ε)γ ) = g in �,

uε,θ > 0 in �,

uε,θ = 0 in (RN \ �).

(64)

The existence of a unique energy solution easily follows by the classical variational meth-
ods. Indeed, let Xs

0(�)+ := {u ∈ Xs
0(�)|u ≥ 0}, and consider the corresponding energy func-
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tional to problem (64):

Iε,θ (u) =
1
2

∫

�

u2 dx +
θCN ,s

4
‖u‖2

Xs
0(�) –

θλ

2

∫

�

u2

|x|2s dx

–
θ

1 – γ

∫

�

(u + ε)1–γ dx –
∫

�

gu dx, u ∈ Xs
0(�)+.

Note that the last term is well-defined since g ∈ L∞(�, |x|β dx) ⊂ L2(�). Using the Hardy
inequality, we can show that this functional Iε,θ : Xs

0(�)+ → R is weakly lower semicon-
tinuous, coercive, and strictly convex. Since Xs

0(�)+ is a closed subspace of the reflexive
space Xs

0(�)+, the existence of a unique minimizer is obvious by the classical theory (e.g.,
see [57, Chap. 1]). Therefore, as a consequence, we get the existence of a unique energy
solution to problem (64).

Let 0 < ε1 ≤ ε2. We want to show that uε2,θ ≤ uε1,θ a.e. in �. This easily follows by sub-
tracting the weak formulations of uεi ,θ , i = 1, 2, and using (uε2,θ – uε1,θ )+ as a test function,
which, together with the Hardy inequality, implies (uε2,θ – uε1,θ )+ ≡ 0 a.e. in �. Now let
w ∈ Xs

0(�) ∩ USing
γ be the unique energy solution to

⎧
⎪⎪⎨

⎪⎪⎩

(–�)sw = λ w
|x|2s + w–γ in �,

w > 0 in �,

w = 0 in (RN \ �).

Note that for general γ > 1, we only know that w ∈ Xs
loc(�). However, since 2s(γ –1) < γ +1,

thanks to Remark 6, we also get w ∈ Xs
0(�).

Now define u := Mw for some M > 1. Because of the same singular behavior of w and g
near the origin, noting that g is bounded near the boundary ∂� and w behaves as cδs near
the boundary, we can choose M large enough (independent of ε) such that

u + θ

(

(–�)su – λ
u

|x|2s –
1

(u + ε)γ

)

= Mw + θ

(
M
wγ

–
1

(Mw + ε)γ

)

≥ Mw + θ

(
1

(Mw)γ
–

1
(Mw + ε)γ

)

> gin �.

Since Aθ : Xs
0(�) ∩ USing

γ → X–s(�), Aθ (u) := u + θ ((–�)su – λ u
|x|2s – u–γ ) is a strictly

monotone operator for 0 < λ < �N ,s (this strict monotonicity is an easy consequence of
[30, Lemma 3.1] and the Hardy inequality), and thus uε,θ ≤ u. Therefore uθ ≤ u, where
uθ := limε→0+ uε,θ . This implies that uθ is a very weak (distributional) solution to problem
(63), that is,

∫

�

uθφ dx + θ

(∫

RN
uθ (–�)sφ dx – λ

∫

�

uθ

|x|2s φ dx –
∫

�

φ

uγ

θ

dx
)

=
∫

�

gφ dx (65)

for any φ ∈ T (�). In fact, we want to show that uθ is an energy solution. For this purpose,
let u := mw for some m > 0. If we choose m small enough such that

mγ +1
(

1 +
wγ +1

θ

)

≤ 1 + mγ gwγ

θ
in �
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(which is possible by taking into consideration the behavior of w and g near the origin and
the boundary ∂�), then u will be a subsolution to problem (63), and by similar arguments
as before we obtain u ≤ uθ a.e. in �. Thus u ≤ uθ ≤ u, which implies that uθ ∈ USing

γ . On
the other hand, by invoking the Hardy inequality, because of the restrictions 0 < γ ≤ 1 or
γ > 1 with 2s(γ – 1) < γ + 1, a density argument shows that (65) holds for all φ ∈ Xs

0(�)
(see Remark 6). This means that uθ ∈ Xs

0(�) is the unique energy solution to problem (63).
Now let g ∈ Lm(�), m > N

2s , which is possible if mβ < N or, equivalently, α > N–2s
2 – N

m .
Since λ = λ(α) given by (9) is a continuous decreasing function for α ∈ [0, N–2s

2 ), this recent
condition is equivalent to 0 < λ < λ∗ for some λ∗ < �N ,s. Thus the comparison principle
for the fractional Laplacian operator, together with Theorem 4.3, gives u(x) ≤ C|x|–β a.e.
in R

N . Now the interior regularity theory for the fractional Laplacian, which follows from
[37, Proposition 1.1], implies that u ∈ C(�̃ \ Bε(0)) for any �̃ � � and any ε > 0 small
enough. Moreover, by following the proof of [49, Theorem 1.4] we obtain the continuity
of u up to the boundary of �. This completes the proof. �

Thanks to the Hardy inequality, following the idea of [30, Theorem 4.1], that is. applying
the semidiscretization in time with implicit Euler method and also invoking the result of
Theorem 5.3, we obtain the following existence result to problem (61).

Theorem 5.4 Let s ∈ (0, 1), let either 0 < γ ≤ 1 or γ > 1 with 2s(γ – 1) < γ + 1, and let
0 < λ < �N ,s. Also, assume that u0 ∈ Xs

0(�) ∩ USing
γ and 0 ≤ f (x, t) ≤ |x|γβ , 0 ≤ t ≤ T . Then

there is a unique positive weak solution in A(�T ) ∩ USing
γ to problem (61). Moreover, u

belongs to C([0, T], Xs
0(�)), u(t) ∈ USing

γ uniformly for t ∈ [0, T], and for any t ∈ [0, T],

∫ t

0

∫

�

∣
∣
∣
∣
∂u
∂τ

∣
∣
∣
∣

2

dx dτ +
CN ,s

2
∥
∥u(x, t)

∥
∥2

Xs
0(�) – λ

∫

�

u2(x, t)
|x|2s dx

–
1

1 – γ

∫

�

u1–γ (x, t) dx

=
∫ t

0

∫

�

f (x, t)
∂u
∂τ

dx dτ +
CN ,s

2
∥
∥u0(x)

∥
∥2

Xs
0(�) – λ

∫

�

u2
0

|x|2s dx

–
1

1 – γ

∫

�

u1–γ
0 (x) dx.

(66)

In addition, if 0 < λ < λ∗ (λ∗ is as in Theorem 5.3) and u0 ∈D(L)
L∞(�,|x|β dx)

, where

D(L) :=
{

v ∈ Xs
0(�) ∩ USing

γ ∩ W (�)|L(v) := (–�)sv – λ
v

|x|2s –
1
vγ

∈ L∞(
�, |x|β dx

)
}

,

then the solution obtained above belongs to C([0, T]; W (�)).

Remark 8 By invoking [42, Proposition 5.3] it is straightforward to obtain that if λ > �N ,s,
then problem (61) has no solution. Moreover, a similar complete blowup phenomenon
occurs as in the stationary case.

Finally, the following theorem is on stabilization to problem (61). By stabilization we
mean that if û(x) is the unique solution to a stationary problem with the datum of f (x),
then u(x, t), the solution to the parabolic problem, converges to û(x) as t → ∞.
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Theorem 5.5 Let s ∈ (0, 1), let either 0 < γ ≤ 1 or γ > 1 with 2s(γ – 1) < γ + 1, and let
0 < λ < λ∗. Also assume that u0 ∈ D(L)

L∞(�,|x|β dx)
and 0 ≤ f (x, t) = f (x) ≤ |x|γβ , 0 ≤ t ≤ T .

Then if u(x, t) is the unique positive weak solution to problem (61), then

u(x, t) → û(x) in L∞(
�, |x|β dx

)
as t → +∞,

where û is the unique weak solution to (1) with μ ≡ 1.

Since proofs of the theorems in this section are essentially the same as those of the cor-
responding ones in [30], we give them in the Appendix.

Appendix
Here we give the proofs of Theorems 5.4 and 5.5.

Proof of Theorem 5.4 We follow the proofs of [30, Theorem 4.1, Theorem 4.2, and Propo-
sition 2.8].

Let ηt = T
n and for 0 ≤ k ≤ n, define tk = kηt and

fk(x) :=
1
ηt

∫ tk

tk–1

f (x, τ ) dτ , ∀x ∈ �.

Also, define

fηt (x, t) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x), 0 ≤ t < t1,

f2(x), t1 ≤ t < t2,
...

...

fn(x), tn–1 ≤ t < tn.

Clearly, we have fηt (·, t) ∈ L∞(�, |x|β dx) ⊂ L2(�), t ∈ [0, T], and for 1 < p < +∞,

‖fηt ‖Lp(�×(0,T)) ≤ (|�|T) 1
p ‖f ‖Lp(�×(0,T)), (67)

Now let θ = ηt , and let g = ηt fk + uk–1 ∈ L∞(�, |x|β dx) in problem (63). Then Theorem 5.3
implies the existence of a solution uk ∈ Xs

0(�) ∩ USing
γ to the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uk –uk–1
ηt

+ ((–�)suk – λ
uk

|x|2s – 1
uγ

k
) = fk in �,

uk > 0 in �,

uk = 0 in (RN \ �),

(68)

where the above iteration starts from the initial condition u0(x) of problem (61).
Now, for 1 ≤ k ≤ n and t ∈ [tk–1, tk), inspired by the implicit Euler method, we define

⎧
⎨

⎩

uηt (x, t) := uk(x),

ũηt (x, t) := uk (x)–uk–1(x)
ηt

(t – tk–1) + uk–1(x).
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The functions uηt and ũηt satisfy

∂ũηt

∂t
+

(

(–�)suηt – λ
uηt

|x|2s –
1

uγ
ηt

)

= fηt . (69)

Now in what follows, we establish some uniform estimates in ηt for uηt and ũηt .
Multiplying (68) by ηtuk , integrating over RN , summing from k = 1 to n′ ≤ n, and using

Young’s inequality, (67), and embedding (6), we get, for a constant C > 0,

n′
∑

k=1

∫

�

(uk – uk–1)uk dx + ηt

n′
∑

k=1

(
CN ,s

2
‖uk‖2

Xs
0(�) – λ

∫

�

(uk)2

|x|2s dx –
∫

�

1
uγ –1

k

dx
)

= ηt

n′
∑

k=1

∫

�

fkuk dx

≤ ηt

n′
∑

k=1

∫

�

|fk|2
2

dx + ηt

n′
∑

k=1

∫

�

|uk|2
2

dx

≤ T |�|
2

‖f ‖2
L∞(�×(0,T)) +

Cηt

2

n′
∑

k=1

‖uk‖2
Xs

0(�).

(70)

For the first term in the left-hand side of (70), similarly to (2.7) in the proof of [31, Theo-
rem 0.9], we have the equality

n′
∑

k=1

∫

�

(uk – uk–1)uk dx =
1
2

n′
∑

k=1

∫

�

|uk – uk–1|2 dx

+
1
2

∫

�

|un′ |2 dx –
1
2

∫

�

|u0|2 dx.

(71)

Now, let w ∈ Xs
0(�) ∩ USing

γ solve

⎧
⎪⎪⎨

⎪⎪⎩

(–�)sw = λ w
|x|2s + 1

wγ in �,

w > 0 in �,

w = 0 in (RN \ �),

and define u = mw, m > 0, and u = Mw, M > 0. By a direct computation we have

(–�)su – λ
u

|x|2s –
1

uγ
=

mγ +1 – 1
mγ wγ

and

(–�)su – λ
u

|x|2s –
1

uγ =
Mγ +1 – 1

Mγ wγ
.
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Since w behaves as c1|x|–β near the origin and behaves as c2δ
s near the boundary ∂�, we

can choose m > 0 small enough and M > 0 large enough such that

⎧
⎨

⎩

(–�)su – λ
u

|x|2s – 1
uγ ≤ –|x|γβ in �,

u = 0 in (RN \ �),

and

⎧
⎨

⎩

(–�)su – λ u
|x|2s – 1

uγ ≥ |x|γβ in �,

u = 0 in (RN \ �).

Since u0 ∈ USing
γ , we can choose u and u such that it satisfies the above inequalities and

u ≤ u0 ≤ u. By the monotonicity of the operator (–�)su–λ u
|x|2s –u–γ , applying it iteratively,

we get u ≤ uk ≤ u for all k. This implies for a.e. (x, t) ∈ [0, T] × �,

u(x) ≤ uηt , ũηt (x, t) ≤ u(x). (72)

Thus uηt , ũηt ∈ USing
γ uniformly for t ∈ [0, T]. Now we can estimate the singular term in

(70) as follows:

ηt

n′
∑

n=1

∫

�

1
uγ

k
dx ≤

⎧
⎨

⎩

T
∫

�
u1–γ dx < +∞, 0 < γ ≤ 1,

T
∫

�
u1–γ dx < +∞, γ > 1 with 2s(γ – 1) < γ + 1.

(73)

By the definition of uηt and ũηt , noting that uk ∈ L∞(�, |x|β dx) for all k, we obtain that

uηt , ũηt are bounded in L∞(
[0, T]; L∞(

�, |x|β dx
))

. (74)

On the other hand, for t ∈ [tk–1, tk), we have

∥
∥ũηt (t, ·)∥∥Xs

0(�) =
∥
∥
∥
∥

(t – tk–1)
ηt

uk +
ηt – t + tk–1

ηt
uk–1

∥
∥
∥
∥

Xs
0(�)

≤ ‖uk‖Xs
0(�) + ‖uk–1‖Xs

0(�).

Integrating both sides of (70) over (tk–1, tk) and using the above estimates, the Hardy In-
equality, and (71), we get that

uηt , ũηt are bounded in L2([0, T]; Xs
0(�)

)
.

Now we want to obtain another a priori estimate.
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Multiplying (68) by uk – uk–1, integrating over RN , summing from k = 1 to n′ ≤ n, and
using Young’s inequality, we get

ηt

n′
∑

k=1

∫

�

(
uk – uk–1

ηt

)2

dx +
n′

∑

k=1

∫

RN

(
(–�)suk(x)

)
(uk – uk–1)(x) dx

– λ

n′
∑

k=1

∫

�

uk(uk – uk–1)
|x|2s dx –

n′
∑

k=1

∫

�

uk – uk–1

uγ

k
dx

= ηt

n′
∑

k=1

∫

�

fk(uk – uk–1)
ηt

dx

≤ ηt

2

n′
∑

k=1

(∫

�

|fk|2 dx +
∫

�

(
uk – uk–1

ηt

)2

dx
)

,

(75)

which implies

ηt

2

n′
∑

k=1

∫

�

(
uk – uk–1

ηt

)2

dx +
n′

∑

k=1

∫

RN

(
(–�)suk(x)

)
(uk – uk–1)(x) dx

– λ

n′
∑

k=1

∫

�

uk(uk – uk–1)
|x|2s dx –

n′
∑

k=1

∫

�

uk – uk–1

uγ

k
dx

≤ |�|T
2

sup
0≤t≤T

∥
∥f (·, t)

∥
∥2

L2(�).

(76)

By using the convexity of the term – 1
1–γ

∫

�
u1–γ dx we get

1
1 – γ

∫

�

(
u1–γ

k–1 – u1–γ

k
)

dx ≤ –
∫

�

uk – uk–1

uγ

k
dx. (77)

Also, we have

CN ,s

2
(‖uk‖2

Xs
0(�) – ‖uk–1‖2

Xs
0(�)

) ≤
∫

RN

(
(–�)suk(x)

)
(uk – uk–1)(x) dx (78)

and

∫

�

(uk)2 – (uk–1)2

|x|2s dx ≤
∫

�

uk(uk – uk–1)
|x|2s dx. (79)

Therefore (76), together with (77), (78), and (79), gives

ηt

2

n′
∑

k=1

∫

�

(
uk – uk–1

ηt

)2

dx +
CN ,s

2
(‖un′ ‖2

Xs
0(�) – ‖u0‖2

Xs
0(�)

)

– λ

∫

�

(un′ )2 – (u0)2

|x|2s dx +
1

1 – γ

∫

�

(
(u0)1–γ – (un′ )1–γ

)
dx

≤ |�|T
2

sup
0≤t≤T

∥
∥f (·, t)

∥
∥2

L2(�).

(80)
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Integrating both sides of (80) over (tk–1, tk) and using (73) and the Hardy inequality, we
get

ηt

2

∫ T

0

∫

�

∣
∣
∣
∣
∂ũηt

∂t

∣
∣
∣
∣

2

dx dt < +∞,

which implies

∂ũηt

∂t
is bounded in L2(� × (0, T)

)
uniformly in ηt . (81)

Also, using the definition of uηt and ũηt , we obtain that

uηt and ũηt are bounded in L∞(
[0, T]; Xs

0(�)
)

uniformly in ηt . (82)

Moreover, there exists a constant C > 0 (independent of ηt) such that

‖uηt – ũηt ‖L∞([0,T];L2(�)) ≤ max
1≤k≤n

‖uk – uk–1‖L2(�) ≤ C(ηt)
1
2 . (83)

Now (74) and (82) imply that

uηt and ũηt are bounded inL∞(
[0, T]; Xs

0(�) ∩ L∞(
�, |x|β dx

))
uniformly in ηt .

Therefore, up to a subsequence, as ηt → 0+ (i.e., n → ∞),

ũηt → u and uηt → v star-weakly in L∞(
[0, T]; Xs

0(�) ∩ L∞(
�, |x|β dx

))
,

∂ũηt

∂t
⇀

∂u
∂t

weakly in L2(� × (0, T)
)
,

(84)

where u, v ∈ L∞([0, T]; Xs
0(�) ∩ L∞(�, |x|β dx)), and ∂u

∂t ∈ L2(� × (0, T)). From (83) we de-
duce that u ≡ v. Also, from (72) we get that u ≤ u ≤ u. Thus u ∈A(�T ) ∩ USing

γ .
Now we want to show that u is a candidate to the weak solution to (61). By the definition

of ũηt we see that for a.e. x ∈ �, ũηt (·, x) ∈ C([0, T]). By (81) we get that ∂ũηt
∂t is bounded in

L2(� × (0, T)) uniformly in ηt . Also, {uηt } is a bounded family in Xs
0(�). Now let

V :=
{

u ∈ C
(
[0, T]; Xs

0(�)
)

:
∂u
∂t

∈ L2(� × (0, T)
)
}

,

which embeds compactly in C([0, T]; L2(�)) by invoking the Aubin–Lions–Simon lemma.
Therefore we obtain that {uηt } is compactly embedded in the space C([0, T]; L2(�)). Now
using u ≤ ũηt ≤ u, we deduce that {uηt } is compactly embedded in C([0, T]; Lp(�)), 1 < p <
∞. Thus, up to a subsequence, as ηt → 0+,

ũηt → u in C
(
[0, T]; L2(�)

)
. (85)

Therefore from (85) and (83) we obtain that, as ηt → 0+,

uηt → u in L∞(
[0, T]; L2(�)

)
. (86)
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Plugging the test function φ = uηt – u into (69), we obtain

∫ T

0

∫

�

(
∂ũηt

∂t
+

(

(–�)suηt – λ
uηt

|x|2s –
1

uγ
ηt

))

(uηt – u) dx dt =
∫ T

0

∫

�

fηt (uηt – u) dx dt.

Also, since (86) implies that
∫ T

0
∫

�
∂u
∂t (ũηt – u) dx dt → 0 as ηt → 0+, we get

∫ T

0

∫

�

(
∂ũηt

∂t
–

∂u
∂t

)

(ũηt – u) dx dt +
∫ T

0

〈
(–�)suηt , uηt – u

〉
dt

– λ

∫ T

0

∫

�

uηt (uηt – u)
|x|2s dx dt –

∫ T

0

∫

�

uηt – u
uγ

ηt
dx dt

=
∫ T

0

∫

�

fηt (uηt – u) dx dt + oηt (1).

(87)

Here 〈·, ·〉 denotes the duality pairing between X–s(�) and Xs
0(�). By (72) we know that

uγ
ηt ≤ uγ . Also, since u ≤ u ≤ u, applying the dominated convergence theorem, from (86)

we get

∫ T

0

∫

�

uηt – u
uγ

ηt
dx dt ≤

∫ T

0

∫

�

uηt – u
uγ

dx dt = oηt (1).

Similarly, using the dominated convergence theorem, from (67) and (86) we obtain

∫ T

0

∫

�

fηt (uηt – u) dx dt = oηt (1).

Now noting that ũηt (x, 0) = u(x, 0) = u0 in a.e. � and applying the integration-by-parts
formula, we have

2
∫ T

0

∫

�

(
∂ũηt

∂t
–

∂u
∂t

)

(ũηt – u) dx dt =
∫

�

(ũηt – u)2(T) dt.

Therefore, using (87) and the facts that
∫ T

0 〈(–�)su, uηt – u〉dt = oηt (1) and
∫ T

0
∫

�

u(uηt –u)
|x|2s dx dt = oηt (1), which follow from (86), we obtain

1
2

∫

�

(ũηt – u)2(T) dt +
∫ T

0

〈
(–�)suηt – (–�)su, uηt – u

〉
dt

– λ

∫ T

0

∫

�

(uηt – u)2

|x|2s dx dt = oηt (1).

Now (86), together with the Hardy inequality, gives

∫ T

0

∥
∥(ũηt – u)(t, ·)∥∥2

Xs
0(�) dt = oηt (1).

The above relations imply that, as ηt → 0+,

(–�)suηt → (–�)su in L2([0, T]; X–s(�)
)
. (88)
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Using (72) and the fractional Hardy–Sobolev inequality, we obtain the following inequal-
ities for any φ ∈ Xs

0(�):

∫

�

∣
∣
∣
∣

φ

uγ
ηt

∣
∣
∣
∣dx

≤
⎧
⎨

⎩

∫

�

|φ|
|uγ | dx ≤ C(

∫

�

φ2

δ2sγ dx) 1
2 < +∞, 0 < γ ≤ 1,

∫

�

|φ|
|uγ | dx ≤ (

∫

�
1

δ
2s γ –1

γ +1
dx) 1

2 (
∫

�

φ2

δ2s dx) 1
2 < +∞, γ > 1, 2s γ –1

γ +1 < 1.

Therefore the dominated convergence theorem implies

1
uγ

ηt
→ 1

uγ
in L∞(

[0, T]; X–s(�)
)

as ηt → 0+. (89)

Now we want to show that u satisfies (61) in the weak sense. We already know that

∫ T

0

∫

�

∂ũηt

∂t
φ dx dt +

∫ T

0

∫

RN
(–�)suηt φ dx dt – λ

∫ T

0

∫

�

uηt φ

|x|2s dx dt

–
∫ T

0

∫

�

φ

uγ
ηt

dx dt =
∫ T

0

∫

�

fηt φ dx dt

for any φ ∈A(�T ). Now passing to the limit as ηt → 0+ and using (67), (84), (88), and (89),
we obtain

∫ T

0

∫

�

∂u
∂t

φ dx dt +
∫ T

0

∫

RN
(–�)suφ dx dt – λ

∫ T

0

∫

�

uφ

|x|2s dx dt

–
∫ T

0

∫

�

φ

uγ
dx dt =

∫ T

0

∫

�

f φ dx dt.

This means that u is the weak solution to (61).
Now we show the uniqueness. Let u(·, t), v(·, t) ∈ Xs

0(�) ∩USing
γ be weak solutions. Then,

for any t ∈ [0, T], we have

∫

�

∂(u – v)
∂t

(u – v)(x, t) dx +
∫

RN

(
(–�)s(u – v)

)
(u – v)(x, t) dx

– λ

∫

�

(u – v)2(x, t)
|x|2s dx –

∫

�

(
1

uγ
–

1
vγ

)

(u – v)(x, t) dx = 0.

By the Hardy inequality this implies

∂

∂t

(∫

�

1
2

(u – v)2(x, t) dx
)

=
�N ,s – λ

�N ,s
· CN ,s

2
∥
∥(u – v)(·, t)

∥
∥2

Xs
0(�)

+
∫

�

(
1

uγ
–

1
vγ

)

(u – v)(x, t) dx ≤ 0.

Therefore the function E : [0, T] → R, E(t) :=
∫

�
1
2 (u – v)2(x, t) dx, is decreasing. On the

other hand, since u �≡ v, we get 0 < E(t) ≤ E(0) = 0, which implies E(t) ≡ 0 for all t ∈ [0, T].
This completes the proof of uniqueness.
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Now we prove that u ∈ C([0, T]; Xs
0(�)). From (85) we already know that u ∈ C([0, T];

L2(�)), which implies that the map ũ : [0, T] → Xs
0(�), [ũ(t)](x) := u(x, t), is weakly con-

tinuous. Moreover, from (84) we know that u ∈ L∞([0, T]; Xs
0(�)), which implies that

ũ(t) ∈ Xs
0(�) and

∥
∥ũ(t)

∥
∥

Xs
0(�) ≤ lim inf

t→t0

∥
∥ũ(t)

∥
∥

Xs
0(�) (90)

for all t0 ∈ [0, T].
Now we continue as follows. Multiplying (68) by uk –uk–1, integrating overRN , summing

from k = n′′ to n′ (n′ was considered in (75)), and using (79), (78), and (77), we get

ηt

2

n′
∑

k=n′′

∫

�

(
uk – uk–1

ηt

)2

dx +
CN ,s

2
(‖un′ ‖2

Xs
0(�) – ‖un′′–1‖2

Xs
0(�)

)

– λ

∫

�

(un′ )2 – (un′′ )2

|x|2s dx +
1

1 – γ

∫

�

(
u1–γ

n′′–1 – u1–γ

n′
)

dx

≤
n′

∑

k=n′′

∫

�

fηt (uk – uk–1) dx.

(91)

For any t1 ∈ [t0, T], we choose n′′ and n′ in such a way that n′′ηt → t1 and n′ηt → t0 as
ηt → 0+. Using (67), (83), (86), and (89) together with (91), we get

∫ t1

t0

∫

�

(
∂u
∂t

)2

dx dt +
CN ,s

2
∥
∥u(x, t1)

∥
∥2

Xs
0(�) – λ

∫

�

u2(x, t1)
|x|2s dx

–
1

1 – γ

∫

�

u1–γ (t1) dx

≤
∫ t1

t0

∫

�

f
∂u
∂t

dx dt +
CN ,s

2
∥
∥u(x, t0)

∥
∥2

Xs
0(�) – λ

∫

�

u2(x, t0)
|x|2s dx

–
1

1 – γ

∫

�

u1–γ (t0) dx.

(92)

Noting that u ∈ L∞([0, T]; Lp(�)) for 1 < p < ∞, we have

lim sup
t1→t+

0

∥
∥u(·, t1)

∥
∥

Xs
0(�) ≤ ∥

∥u(·, t0)
∥
∥

Xs
0(�). (93)

Therefore (93), together with (90), gives limt→t+
0
‖u(·, t)‖Xs

0(�) = ‖u(·, t0)‖Xs
0(�), which im-

plies that u is right continuous on [0, T].
Now it suffices to prove the left continuity. Let t1 > t0 and 0 < r ≤ t1 – t0. Define

[
φr(u)

]
(x, t) :=

u(x, t + r) – u(x, t)
r

.
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Using φr(u) as the test function in (61), integrating over (t0, t1) × R
N , and using (77),

(78),and (79), we get

∫ t1

t0

∫

�

∂u
∂t

φr(u) dx dt +
CN ,s

2r

∫ t1

t0

∫

RN

(∣
∣(–�)

s
2 u(x, t + r)

∣
∣2 –

∣
∣(–�)

s
2 u(x, t)

∣
∣2)dx dt

–
λ

r

∫ t1

t0

∫

�

u2(x, t + r) – u2(x, t)
|x|2s dx dt

–
1

r(1 – γ )

∫ t1

t0

∫

�

(
u1–γ (x, t + r) – u1–γ (x, t)

)
dx dt

≥
∫ t1

t0

∫

�

f φr(u) dx dt.

Then an easy calculation gives

∫ t1

t0

∫

�

∂u
∂t

φr(u) dx dt +
CN ,s

2r

(∫ t1+r

t1

∫

RN

∣
∣(–�)

s
2 u(x, t)

∣
∣2 dx dt

–
∫ t0+r

t0

∫

RN

∣
∣(–�)

s
2 u(x, t)

∣
∣2 dx dt

)

–
λ

r

(∫ t1+r

t1

∫

�

u2(x, t)
|x|2s dx dt –

∫ t0+r

t0

∫

�

u2(x, t)
|x|2s dx dt

)

–
1

r(1 – γ )

(∫ t1+r

t1

∫

�

u1–γ (x, t) dx dt –
∫ t0+r

t0

∫

�

u1–γ (x, t) dx dt
)

≥
∫ t1

t0

∫

�

f φr(u) dx dt.

(94)

Since u(t) ∈ Xs
0(�) is right continuous on [0, T], using the dominated convergence theo-

rem, as r → 0+, we get:

1
r

∫ t1+r

t1

∫

RN

∣
∣(–�)

s
2 u(x, t)

∣
∣2 dx dt →

∫

RN

∣
∣(–�)

s
2 u(x, t1)

∣
∣2 dx,

1
r

∫ t0+r

t0

∫

RN

∣
∣(–�)

s
2 u(x, t)

∣
∣2 dx dt →

∫

RN

∣
∣(–�)

s
2 u(x, t0)

∣
∣2 dx,

1
r

∫ t1+r

t1

∫

�

u2(x, t)
|x|2s dx dt →

∫

�

u2(x, t1)
|x|2s dx,

1
r

∫ t0+r

t0

∫

�

u2(x, t)
|x|2s dx dt →

∫

�

u2(x, t0)
|x|2s dx,

1
r

∫ t1+r

t1

∫

�

u1–γ (x, t) dx dt →
∫

�

u1–γ (x, t1) dx,

1
r

∫ t0+r

t0

∫

�

u1–γ (x, t) dx dt →
∫

�

u1–γ (x, t0) dx.
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Putting the results together in (94), as r → 0+, we obtain

∫ t1

t0

∫

�

(
∂u
∂t

)2

dx dt +
CN ,s

2
∥
∥u(x, t1)

∥
∥2

Xs
0(�) – λ

∫

�

u2(x, t1)
|x|2s dx

–
1

1 – γ

∫

�

u1–γ (t1) dx

≥
∫ t1

t0

∫

�

f
∂u
∂t

dx dt +
CN ,s

2
∥
∥u(x, t0)

∥
∥2

Xs
0(�) – λ

∫

�

u2(x, t0)
|x|2s dx

–
1

1 – γ

∫

�

u1–γ (t0) dx.

(95)

Therefore (95) and (92) give the equality. Since the maps t �→ ∫

�
u1–γ (x, t) dt and t �→

∫

�

u2(x,t)
|x|2s dx are continuous, we have u ∈ C([0, T]; Xs

0(�)). Moreover, we obtain (66) by tak-
ing t1 = t and t0 = 0.

Finally, we want to show that the solution obtained belongs to C([0, T]; W (�)) if the
initial function u0 ∈D(L)

L∞(�,|x|β dx)
. We will use the m-accretive operator theory. Let u0 ∈

D(L)
L∞(�,|x|β dx)

, θ > 0, f1, f2 ∈ L∞(�, |x|β dx), and 0 < λ < λ∗. Also, let u, v ∈ Xs
0(�) ∩USing

γ ∩
W (�) be the unique solutions to

u + θL(u) = f1 in �,

v + θL(v) = f2 in �.

Note that the existence and uniqueness is guaranteed by Theorem 5.3. Subtracting the
weak formulations of these two equations and using w := (|x|β (u – v) –‖f1 – f2‖L∞(�,|x|β dx))+

as a test function, we obtain

∫

�

w2|x|β dx + θ

∫

�

(
L(u) – L(v)

)
w dx ≤ 0.

Since we can easily check that
∫

�
(L(u) – L(v))w dx ≥ 0, we have w ≡ 0 a.e. in � or, equiv-

alently, |x|β (u – v) ≤ ‖f1 – f2‖L∞(�,|x|β dx). Reversing the roles of u and v gives

‖u – v‖L∞(�,|x|β dx) ≤ ‖f1 – f2‖L∞(�,|x|β dx).

This proves that L is m-accretive in W (�). Now the rest of the proof van be obtained by
invoking [58, Theorem 4.2], as explained in [31, Proposition 0.1]. �

Proof of Theorem 5.5 We follow the proof of [30, Theorem 2.12].
Let u, u ∈D(L)

L∞(�,|x|β dx)
be the sub- and supersolutions, respectively, to (1) with μ ≡ 1

such that u ≤ u0 ≤ u, which is possible because of u0 ∈ D(L)
L∞(�,|x|β dx)

. Let u be a weak
solution of (61), and let v1 and v2 be the unique solutions to (61) with initial condi-
tions u and u, respectively. Since λ ∈ (0,λ∗) and u, u ∈D(L)

L∞(�,|x|β dx)
, Theorem 5.4 gives

v1, v2 ∈ C([0, T]; W (�)). Taking u0 = u (respectively, u0 = u), we consider the sequence
{uk} (respectively, {uk}) which is nondecreasing (respectively, nonincreasing) as solutions
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to the iteration given by (68). Moreover, we consider the sequence {uk} obtained in itera-
tion (68) and starting with the initial condition u0. Then by the choice of ηt we have

uk ≤ uk ≤ uk ,

which implies

v1(t) ≤ u(t) ≤ v2(t). (96)

Now consider the maps t �→ v1(x, t) and t �→ v2(x, t), which are nondecreasing and nonin-
creasing, respectively (by similar reasoning as that in [59, Lemma 10.6] or in the proof of
[30, Theorem 2.10]). Also, let v1(t) → ṽ1 and v2(t) → ṽ2 as t → ∞. Moreover, if S(t) de-
notes the semigroup on W (�) generated by the given evolution equation ut + L(u) = f (x),
then we clearly have

ṽ1 = lim
t′→∞

S
(
t′ + t

)
(u) = S(t) lim

t′→∞
S
(
t′)(u) = S(t) lim

t′→∞
v1

(
t′) = S(t)ṽ1.

Similarly, we get

ṽ2 = S(t)ṽ2.

Thus ṽ1 and ṽ2 are stationary solutions to (61), that is, solve (1) with μ ≡ 1. On the other
hand, by the uniqueness of solutions to the stationary problem, ṽ1 = ṽ2 = û. Now applying
the Dini theorem (see [60, Theorem 7.13]) gives

⎧
⎨

⎩

v1(t) → û,

v2(t) → û,
in L∞(

�, |x|β dx
)

as t → ∞.

Finally, using (96), we conclude that u(t) → û in L∞(�, |x|β dx) as t → ∞. �
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