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Abstract
The aim of this work is to prove the well posedness of some posed linear and
nonlinear mixed problems with integral conditions. First, an a priori estimate is
established for the associated linear problem and the density of the operator range
generated by the considered problem is proved by using the functional analysis
method. Subsequently, by applying an iterative process based on the obtained results
for the linear problem, the existence, uniqueness of the weak solution of the
nonlinear problems is established.

MSC: 35B45; 35K61

Keywords: Energy inequality; Integral boundary conditions; Strong solution; Weak
solution; Second order parabolic equation

1 Introduction and statement of the problem
Some problems related to physical and technical issues can be effectively described in
terms of nonlocal problems with integral conditions in partial differential equations.
These nonlocal conditions arise mainly when the values on the boundary cannot be mea-
sured directly, while their average values are known. The problem of parabolic equa-
tion with integral condition is stated as follows: Let us consider the rectangular domain
Q = ]0, 1[× ]0, T[, then the problem is to find a solution σ (x, t) of the following non-
classical boundary value problem:

£σ =
∂σ

∂t
–

∂

∂x

(
a
∂σ

∂x

)
= g

(
x, t,σ ,

∂σ

∂x

)
, for (x, t) ∈ ]0, 1[× ]0, T[, (1.1)

with the initial condition

lσ = σ (x, 0) = ϕ(x), for x ∈ [0, 1], (1.2)

and the Dirichlet boundary condition

σ (0, t) = 0, for t ∈ [0, T], (1.3)
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and the nonlocal condition

∫ α

0
σ (x, t) dx +

∫ 1

β

σ (x, t) dx = 0, 0 ≤ α ≤ β < 1 ∀t ∈ [0, T]. (1.4)

In addition, we assume that the function a(x, t) and its derivatives satisfy the conditions

⎧⎪⎪⎨
⎪⎪⎩

0 < a0 ≤ a(x, t) ≤ a1 ∀(x, t) ∈ Q,

c2 ≤ ∂a
∂t (x, t) ≤ c1, ∀(x, t) ∈ Q,

| ∂a
∂x (x, t)| ≤ b, ∀(x, t) ∈ Q,

(1.5)

where the functions g(x, t,σ , ∂σ
∂x ), ϕ(x) are given, and we assume that the following match-

ing conditions are satisfied:

⎧⎨
⎩

ϕ(0) = 0,∫ α

0 ϕ(x) dx +
∫ 1
β

ϕ(x) dx = 0.

We also assume that there exists a positive constant d such that

∣∣∣∣g
(

x, t,σ1,
∂σ1

∂x

)
– g

(
x, t,σ2,

∂σ2

∂x

)∣∣∣∣ ≤ d
(

|σ1 – σ2| +
∣∣∣∣∂σ1

∂x
–

∂σ2

∂x

∣∣∣∣
)

,

for all (x, t) ∈ Q.
This type of problem can be found in various physic problems such as heat conduction

[1–4], plasma physics [5], thermoelasticity [6], electrochemistry [7], chemical diffusion [8]
and underground water flow [9–11]. Several research papers such as found in [1–4, 7, 12–
18] have studied and solved the parabolic equation by combining the integral condition
with Dirichlet condition or Newmann condition, or with purely integral conditions, us-
ing various methods. For hyperbolic equations, the unicity and existence of the solution
have been studies in [13, 19–22] and the mixed-type equations in [23–27]. The elliptic
equations were considered in [28, 29] and [30].

The linear problem associated to the problem stated in (1.1)–(1.4), for α = β = 0, has
been studied in [18] and for β = 1 in [16]. Meanwhile in [31] the solved problem is for the
case α + β = 1. It is worth mentioning that in [32] the author studied the same case where
∂
∂x (a ∂σ

∂x ) was replaced by the Bessel operator.
In the present paper the motivation is to study and find a solution to the stated problem

without imposing any conditions on the constants α and β in the interval [0, 1]. In addition,
the nonlinear problem of the parabolic equation with integral condition defined on two
parts of the boundary is solved.

First, an a priori estimate is established for the associated linear problem and the den-
sity of the operator range generated by the considered problem is proved by using the
functional analysis method. Subsequently, by applying an iterative process based on the
obtained results for the linear problem, the existence and uniqueness of the weak solution
of the nonlinear problems is established.

The rest of the paper is organized as follows. In Sect. 2, the associated linear problem is
stated. Section 3 deals with the proof of the uniqueness of the solution using an a priori
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estimate. Section 4 gives the solvability of the considered linear problem. Finally, in Sect. 5,
on the basis of the obtained results in Sects. 3 and 4, and on the use of an iterative process,
we prove the existence and uniqueness of the solution of the nonlinear problem.

2 Statement of the associated linear problem
In this section we introduce the linear problem and the different function spaces needed
to investigate the mixed nonlocal problem given by the equation.

£u =
∂u
∂t

–
∂

∂x

(
a
∂u
∂x

)
= f (x, t), (2.1)

and the conditions given by (1.2)–(1.4).
The given problem (2.1), (1.2)–(1.4) can be considered as finding a solution of the oper-

ator equation Lu = (£u, lu) = F =(f ,ϕ), where the operator L has as a domain of definition
D(L) consisting of functions u ∈ L2(Q) such that ∂u

∂t , ∂u
∂x , ∂2u

∂x∂t (x, t) ∈ L2(Q) and satisfying
the conditions (1.3) and (1.4).

The operator L is an operator acting on E intoF, where E is the Banach space of functions
u ∈ L2(Q), with a finite norm

‖u‖2
E =

∫
Q

(1 – x)2
[∣∣∣∣∂u

∂t

∣∣∣∣
2

+
∣∣∣∣∂

2u
∂x2

∣∣∣∣
2]

dx dt + sup
t

∫ 1

0

[
(1 – x)2

∣∣∣∣∂u
∂x

∣∣∣∣
2

+ |u|2
]

dx. (2.2)

F is the Hilbert space of functions F = (f ,ϕ), f ∈ L2(Q), ϕ ∈ H1(0, 1) with the finite norm

‖F‖2
F

=
∫

Q
(1 – x)2∣∣f (x, t)

∣∣2 dx dt +
∫ 1

0

[
(1 – x)2

∣∣∣∣dϕ

dx

∣∣∣∣
2

+ |ϕ|2
]

dx. (2.3)

Then we show that the operator L has a closure L and later on, in Sect. 3, we establish an
energy inequality of the following type (see Theorem 3.1):

‖u‖E ≤ k‖Lu‖F ∀u ∈ D(L). (2.4)

Definition 2.1 A solution of the operator equation Lu = F = (f ,ϕ) is called a strong solu-
tion of problem (2.1)–(1.4).

Since the points of the graph of the operator L are limits of sequences of points of the
graph of L, we can extend the a priori estimate (2.4) to be applied to strong solutions by
taking the limits, that is, we have the inequality

‖u‖E ≤ c‖Lu‖F, ∀u ∈ D(L). (2.5)

From this inequality, we deduce the uniqueness of a strong solution, if it exists, and that
the range of the operator L coincides with the closure of the range of L.

Proposition 2.1 The operator L : E −→ F admits a closure L.

Proof Let un ∈ D(L) be a sequence such that

lim
n−→∞un = 0 in E (2.6)
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and

lim
n−→∞Lun = F = (f ,ϕ) in the space F , (2.7)

we then must show that f = 0, ϕ = 0.
Since (2.6) holds, we have

lim
n−→∞un = 0 in D′(Q), (2.8)

where D′(Q) is the space of distribution on Q. By virtue of the continuity of derivation of
D′(Q) in D′(Q), (2.8) implies that

lim
n−→∞£un = 0 in D′(Q),

According to (2.7), we have

lim
n−→∞£un = f in L2

ρ(Q), (2.9)

where L2
ρ(Q) is a Banach space with norm ‖u‖2

L2
ρ (Q) =

∫
Q

(1–x)2

2 |u|2 dx dt. Then

lim
n−→∞£un = f in D′(Q).

By virtue of the uniqueness of the limit in D′(Q), we conclude that f = 0.
According to (2.7), we also conclude that

lim
n−→∞lun = ϕ in H1

ρ(0, 1),

where H1
ρ(0, 1) is a Banach space with norm ‖u‖2

H1
ρ (0,1) =

∫ 1
0 ( (1–x)2

2 | ∂u
∂x |2 + |u|2) dx. By the

fact that the canonical injection from H1
ρ(0, 1) into D′(0, 1) is continuous, we deduce that

lim
n−→∞lun = ϕ in D′(0, 1), (2.10)

Moreover, since (2.6) holds and

‖lun‖H1
ρ (0,1) ≤ ‖un‖E

we have

lim
n−→∞lun = 0 in H1

ρ(0, 1),

Hence

lim
n−→∞lun = 0 in D′(0, 1), (2.11)

By virtue of the uniqueness of the limit in D′(0, 1), we conclude, from (2.10) and (2.11),
that ϕ = 0. This proves Proposition 2.1 �
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The following a priori estimate gives the uniqueness of the solution of the posed linear
problem.

3 An energy inequality and its application
In this section, the uniqueness of the solution will be proved using an energy inequality
method.

Theorem 3.1 There exists a positive constant K , such that for each function u ∈ D(L) we
have

‖u‖E ≤ K‖Lu‖F. (3.1)

Proof Let

Mu = λ
(1 – x)2

2
∂u
∂t

+ λ(1 – x)
∫ x

0

∂u
∂t

dζ – xeδ(x–1)
∫ 1

x
g(ζ , t) dζ ,

where

g(ζ , t) = k
∫ ζ

0

∂u
∂t

dμ – (k – λ)
∫ ζ

α

∂u
∂t

dμ + (k – λ)
∫ ζ

β

∂u
∂t

dμ,

and λ, k and δ are a positives scalar parameters such that

3 <
λ

k
< 4e–δ with δ > ln

(
4
3

)
. (3.2)

Taking the scalar product in L2(Qs), where Qs = [0, 1] × [0, s] of Eq. (2.1) and the operator
e–ctMu, with 0 ≤ s ≤ T , c > 0, we have

�(u, u) = Re
∫

Qs
e–ctf (x, t)Mu dx dt

= Re
∫

Qs
e–ct ∂u

∂t
Mu dx dt – Re

∫
Qs

e–ct ∂

∂x

(
a(x, t)

∂u
∂x

)
Mu dx dt. (3.3)

Substituting Mu by its expression in the first term in the right-hand side of (3.3), we obtain

Re
∫

Qs
e–ct ∂u

∂t
Mu dx dt = λ

∫
Qs

(1 – x)2

2
e–ct

∣∣∣∣∂u
∂t

∣∣∣∣
2

dx dt

– Re
∫

Qs
xeδ(x–1)e–ct ∂u

∂t

∫ 1

x
g(ζ , t) dζ dx dt

+ Re
∫

Qs
λ(1 – x)e–ct ∂u

∂t

∫ x

0

∂u
∂t

dζ dx dt. (3.4)

Integrating by parts the second term in the right-hand side of the last equality of (3.4) with
respect to x, using the fact that ∂u

∂t = 1
k xeδ(x–1) ∂g

∂x , then

Re
∫ 1

0
xeδ(x–1) ∂u

∂t

∫ 1

x
g(ζ , t) dζ dx =

1
k

Re
∫ 1

0
xeδ(x–1) ∂g

∂x

∫ 1

x
g(ζ , t) dζ dx
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integrating by parts with respect to x, we obtain

Re
∫ 1

0
xeδ(x–1) ∂u

∂t

∫ 1

x
g(ζ , t) dζ dx

=
1
k

Re
∫ 1

0
xeδ(x–1) ∂g

∂x

∫ 1

x
g(ζ , t) dζ dx

=
1
k

xeδ(x–1)g
∫ 1

x
g(ζ , t) dζ dx|x=1

x=0 +
1
k

∫
Qs

xeδ(x–1)e–ct∣∣g(x, t)
∣∣2 dx

–
1
k

Re
∫ 1

0
(1 + δx)eδ(x–1)g

∫ 1

x
g(ζ , t) dζ dx,

using this equality

d
dx

∣∣h(x)
∣∣2 =

d
dx

h(x)h(x) =
dh(x)

dx
h(x) + h(x)

dh(x)
dx

=
dh(x)

dx
h(x) + h(x)

dh(x)
dx

= 2 Re

(
h(x)

dh(x)
dx

)
. (3.5)

The last term in the previous equality becomes

–
1
k

Re
∫ 1

0
(1 + δx)eδ(x–1)g

∫ 1

x
g(ζ , t) dζ dx

=
1

2k

∫ 1

0
(1 + δx)eδ(x–1) d

dx

∣∣∣∣
∫ 1

x
g(ζ , t) dζ

∣∣∣∣
2

dx

+
1

2k
((1 + δx)eδ(x–1)

∣∣∣∣
∫ 1

x
g(ζ , t) dζ

∣∣∣∣
2 ∣∣∣∣

x=1

x=0

–
1

2k

∫ 1

0

(
2δ + δ2x

)
eδ(x–1)

∣∣∣∣
∫ 1

x
g(ζ , t) dζ

∣∣∣∣
2

dx

= –
e–δ

2k

∫ s

0
e–ct

∣∣∣∣
∫ 1

0
g(ζ , t) dζ

∣∣∣∣
2

dt –
1

2k

∫ 1

0

(
2δ + δ2x

)
eδ(x–1)

∣∣∣∣
∫ 1

x
g(ζ , t) dζ

∣∣∣∣
2

dx.

Then

Re
∫

Qs
xeδ(x–1)e–ct ∂u

∂t

∫ 1

x
g(ζ , t) dζ dx dt

=
1
k

Re
∫

Qs
xeδ(x–1)e–ct ∂g

∂x

∫ 1

x
g(ζ , t) dζ dx dt

=
1
k

∫
Qs

xeδ(x–1)e–ct∣∣g(x, t)
∣∣2 dx dt –

1
2k

∫
Qs

(
2δ + δ2x

)
eδ(x–1)e–ct

∣∣∣∣
∫ 1

x
g(ζ , t) dζ

∣∣∣∣
2

dx dt

–
e–δ

2k

∫ s

0
e–ct

∣∣∣∣
∫ 1

0
g(ζ , t) dζ

∣∣∣∣
2

dt. (3.6)
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Similarly integrating by parts the last term of (3.4) with respect to x, we obtain

Re
∫

Qs
λ(1 – x)e–ct ∂u

∂t

∫ x

0

∂u
∂t

dζ dx dt

=
λ

2k2

∫
Qs

e–ct∣∣g(x, t)
∣∣2 dx dt

+
λ

2k2

∫ s

0
e–ct∣∣g(0, t)

∣∣2 dt –
λ

k2 Re
∫

Qs
e–ctg(0, t)g(x, t) dx dt, (3.7)

From (3.7) and (3.6), equality (3.4) becomes

Re
∫

Qs
e–ct ∂u

∂t
Mu dx dt

= λ

∫
Qs

(1 – x)2

2
e–ct

∣∣∣∣∂u
∂t

∣∣∣∣
2

dx dt +
λ

2k2

∫
Qs

e–ct∣∣g(x, t)
∣∣2 dx dt

+
λ

2k2

∫
Qs

e–ct∣∣g(0, t)
∣∣2 dx dt +

e–δ

2k

∫ s

0
e–ct

∣∣∣∣
∫ 1

0
g(ζ , t) dζ

∣∣∣∣
2

dt

–
1
k

∫
Qs

xeδ(x–1)e–ct∣∣g(x, t)
∣∣2 dx dt

+
1

2k

∫
Qs

(
2δ + δ2x

)
eδ(x–1)e–ct

∣∣∣∣
∫ 1

x
g(ζ , t) dζ

∣∣∣∣
2

dx dt

–
λ

k2 Re
∫

Qs
e–ctg(0, t)g(x, t) dx dt. (3.8)

Similarly, substituting Mu by its expression in the last term in the right-hand side of (3.3),
integrating by parts with respect to x, using the Dirichlet condition (1.3) and the integral
condition (1.4) we get

– Re
∫

Qs
e–ct ∂

∂x

(
a(x, t)

∂u
∂x

)
Mu dx dt

= λRe
∫

Qs

(1 – x)2

2
e–cta(x, t)

∂u
∂x

∂2u
∂x∂t

dx dt

+ Re
∫

Qs

(
λ – kxeδ(x–1))a(x, t)e–ctu

∂u
∂t

dx dt

+ λRe
∫

Qs

∂a(x, t)
∂x

e–ctu
∫ x

0

∂u
∂t

dζ dx dt

– Re
∫

Qs

(
x
∂a
∂x

+ 2a(1 + δx)
)

eδ(x–1)e–ctug(x, t) dx dt

+ Re
∫

Qs

(
(1 + δx)

∂a
∂x

+
(
2δ + δ2x

)
a
)

eδ(x–1)e–ctu
∫ 1

x
g(ζ , t) dζ dx dt. (3.9)
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Integrating by parts the first two terms with respect to t in (3.9), using the condition (1.2)
we have

λRe
∫

Qs

(1 – x)2

2
e–cta

∂u
∂x

∂2u
∂x∂t

dx dt

=
λ

2

∫
Qs

(
ca –

∂a
∂t

)
(1 – x)2

2
e–ct

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx dt

+
λ

2

∫ 1

0

(1 – x)2

2
e–csa(x, s)

∣∣∣∣∂u
∂x

∣∣∣∣
2 ∣∣∣∣

t=s
dx –

λ

2

∫ 1

0

(1 – x)2

2
a(x, 0)

∣∣∣∣dϕ

dx

∣∣∣∣
2

dx,

Re
∫

Qs

(
λ – kxeδ(x–1))e–cta(x, t)u

∂u
∂t

dx dt

=
∫

Qs

(
ca –

∂a
∂t

)(
λ – kxeδ(x–1))e–ct|u|2 dx dt

+
∫ 1

0

(
λ – kxeδ(x–1))e–csa(x, s)|u|2|t=s dx –

∫ 1

0

(
λ – kxeδ(x–1))a(x, 0)|ϕ|2 dx,

then from the above equalities and equalities (3.8) and (3.9), (3.3) becomes

λ

2

∫
Qs

(1 – x)2

2
e–ct

∣∣∣∣∂u
∂t

∣∣∣∣
2

dx dt +
λ

2

∫
Qs

(
ca –

∂a
∂t

)
(1 – x)2

2
e–ct

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx dt

+
1

2k

∫
Qs

(
λ

k
– 2xeδ(x–1)

)
e–ct∣∣g(x, t)

∣∣2 dx dt +
λ

2k2

∫
Qs

e–ct∣∣g(0, t)
∣∣2 dx dt

+
1

2k
e–δ

∫ s

0
e–ct

∣∣∣∣
∫ 1

0
g(x, t)

∣∣∣∣
2

dx dt +
1
2

∫
Qs

(
ca –

∂a
∂t

)(
λ – kxeδ(x–1))e–ct|u|2 dx dt

+
1

2k

∫
Qs

(
2δ + δ2x

)
eδ(x–1)e–ct

∣∣∣∣
∫ 1

x
g(ζ , t) dζ

∣∣∣∣
2

dx dt

+
λ

2

∫ 1

0

(1 – x)2

2
e–csa(x, s)

∣∣∣∣∂u
∂x

∣∣∣∣
2 ∣∣∣∣

t=s
dx

+
1
2

∫ 1

0

(
λ – kxeδ(x–1))e–csa(x, s)|u|2|t=s dx

+ λRe
∫

Qs

∂a(x, t)
∂x

e–ctu
∫ x

0

∂u
∂t

dζ dx dt

– Re
∫

Qs

(
x
∂a
∂x

+ 2a(1 + δx)
)

eδ(x–1)e–ctug(x, t) dx dt

–
λ

2k2 Re
∫ s

0
e–ctg(0, t)

∫ 1

0
g(x, t) dx dt

+ Re
∫

Qs

(
(1 + δx)

∂a
∂x

+
(
2δ + δ2x

)
a
)

eδ(x–1)e–ctu
∫ 1

x
g(ζ , t) dζ dx dt

= Re
∫

Qs
e–ctf Mu dx dt +

λ

2

∫ 1

0

(1 – x)2

2
a(x, 0)

∣∣∣∣dϕ

dx

∣∣∣∣
2

dx

+
1
2

∫ 1

0

(
λ – kxeδ(x–1))a(x, 0)|ϕ|2 dx. (3.10)
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Using the Young inequality in the last four terms in the left-hand side of (3.10), and using
the facts that

∫
Qs

e–ct|u|2 dx dt ≤ 8
∫

Qs

(1 – x)2

2
e–ct

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx dt

and

∫
Qs

e–ct
∣∣∣∣
∫ x

0

∂u
∂t

dζ

∣∣∣∣
2

dx dt ≤ 8
∫

Qs

(1 – x)2

2
e–ct

∣∣∣∣∂u
∂t

∣∣∣∣
2

dx dt,

we get

–λRe
∫

Qs
e–ct ∂a(x, t)

∂x
u

∫ x

0

∂u
∂t

dζ dx dt

≤ 8λε1b2
∫

Qs

(1 – x)2

2
e–ct

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx dt +
2λ

ε1

∫
Qs

(1 – x)2

2
e–ct

∣∣∣∣∂u
∂t

∣∣∣∣
2

dx dt,

Re
∫

Qs

(
x
∂a
∂x

+ 2a(1 + δx)
)

e–ctug(x, t) dx dt

≤ 8(2a1(1 + δ) + b)2

2ε2

∫
Qs

(1 – x)2

2
e–ct

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx dt +
ε2

2

∫
Qs

e–ct∣∣g(x, t)
∣∣2 dx dt,

Re
∫

Qs

(
(1 + δx)

∂a
∂x

+
(
2δ + δ2x

)
a
)

eδ(x–1)e–ctu
∫ 1

x
g(ζ , t) dζ dx dt

≤ 8((2δ + δ2)a1 + (1 + δ)b)2

2ε3

∫
Qs

(1 – x)2

2
e–ct

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx dt

+
ε3

2

∫
Qs

eδ(x–1)e–ct
∣∣∣∣
∫ 1

x
g(ζ , t) dζ

∣∣∣∣
2

dx dt,

λ

2k2 Re
∫ s

0
g(0, t)

∫ 1

0
g(x, t) dx dt ≤ λε4

4k2

∫ s

0

∣∣g(0, t)
∣∣2 dt +

λ

4ε4k2

∫ s

0

∣∣∣∣
∫ 1

0
g(x, t) dx

∣∣∣∣
2

dt.

We choose ε1 = 8, ε2 = 2, ε3 = δ
k , and ε4 = 2 and c > 0 such that

c >
256b2

a0
+ 8

k
λa0

(
2a1(1 + δ) + b

)2 + 8
k

λδa0

[(
2δ + δ2)a1 + (1 + δ)b

]2 + c2, (3.11)

therefore by combining the previous inequalities with (3.10), we get the following expres-
sion:

λ

4

∫
Qs

(1 – x)2

2
e–ct

∣∣∣∣∂u
∂t

∣∣∣∣
2

dx dt + M
∫

Qs

(1 – x)2

2
e–ct

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx dt

+
λ – k

2
(ca0 – c2)

∫
Qs

e–ct|u|2 dx dt +
(

λ

2k2 –
3

2k

)∫
Qs

e–ct|g|2 dx dt

+
λa0

2

∫ 1

0

(1 – x)2

2
e–cs

∣∣∣∣∂u
∂x

∣∣∣∣
2

|t=s dx + λa0

∫ 1

0
e–cs|u|2|t=s dx

≤ Re
∫

Qs
e–ctf Mu dx dt +

λa1

2

∫ 1

0

(1 – x)2

2

∣∣∣∣dϕ

dx

∣∣∣∣
2

dx + a1

∫ 1

0
|ϕ|2 dx, (3.12)
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where

M =
λ

2
(ca0 – c2) – 64λb2 – 4k

(
2a1(1 + δ) + b

)2 – 4
k
δ

[(
2δ + δ2)a1 + (1 + δ)b

]2.

Substituting Mu by its expression in the first term in the right-hand side of (3.12), we
obtain

Re
∫

Qs
e–ctf Mu dx dt

= λRe
∫

Qs

(1 – x)2

2
e–ctf

∂u
∂t

dx dt

+ λRe
∫

Qs
(1 – x)e–ctf

∫ x

0

∂u
∂t

dx dt + Re
∫

Qs
e–ctxf

∫ 1

x
g(x, ζ ) dζ dx dt, (3.13)

each term in the right-hand side of (3.13), can be, respectively, controlled by

λRe
∫

Qs
e–ct (1 – x)2

2
f
∂u
∂t

dx dt

≤ 2λ

∫
Qs

(1 – x)2

2
e–ct|f |2 dx dt +

λ

8

∫
Qs

(1 – x)2

2
e–ct

∣∣∣∣∂u
∂t

∣∣∣∣
2

dx dt,

λRe
∫

Qs
(1 – x)e–ctf

∫ x

0

∂u
∂t

dx dt

≤ λ

16

∫
Qs

e–ct (1 – x)2

2

∣∣∣∣∂u
∂t

∣∣∣∣
2

dx dt + 64λ

∫
Qs

e–ct (1 – x)2

2
|f |2 dx dt,

(3.14)

and

Re
∫

Qs
xeδ(x–1)e–ctf

∫ 1

x
g(x, ζ ) dζ dx dt

≤ λ

32

∫
Qs

(1 – x)2

2
e–ct

∣∣∣∣∂u
∂t

∣∣∣∣
2

dx dt
(

λ2 – 3k
4k2

)∫
Qs

exp(–ct)|g(x, t|2 dx dt

+
(

2k2

λ2 – 3k
+

k2

128λ

)∫
Qs

exp(–ct)
(1 – x)2

2
|f |2 dx dt.

The combination of the previous inequalities with (3.12) yields

∫
Qs

(1 – x)2

2

∣∣∣∣∂u
∂t

∣∣∣∣
2

dx dt +
∫

�s

(1 – x)2

2

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx dt

+
∫ 1

0

(1 – x)2

2

∣∣∣∣∂u
∂x

∣∣∣∣
2

|t=s dx +
∫ 1

0
|u|2|t=s dx

≤ σ

(∫
Q

(1 – x)2

2
|f |2 dx dt +

∫ 1

0

(
(1 – x)2

2

∣∣∣∣∂ϕ

∂x

∣∣∣∣
2

+ |ϕ|2
)

dx
)

, (3.15)

where

σ =
max(( 2k2

λ2–3k + k2

128λ
+ 66λ), λa1

2 )
min(M, λ–k

2 e–δ(ca0 – c2), λ
32 , λ–k

2 e–δa0, λa0
2 )

exp(cT).
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From Eqs. (1.1) and (3.15), we deduce that

∫
Qs

(1 – x)2

2

[∣∣∣∣∂u
∂t

∣∣∣∣
2

+
∣∣∣∣∂

2u
∂x2

∣∣∣∣
2]

dx dt +
∫

�s

(1 – x)2

2

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx dt

+
∫ 1

0

(
(1 – x)2

2

∣∣∣∣∂u
∂x

∣∣∣∣
2

+ |u|2
)

dx
∣∣∣∣
t=s

≤ K2
[∫

Q

(1 – x)2

2
|f |2 dx dt +

∫ 1

0

(
(1 – x)2

2

∣∣∣∣∂ϕ

∂x

∣∣∣∣
2

+ |ϕ|2
)

dx
]

. (3.16)

If we drop the second term in the last inequality and by taking the least upper bound of
the left side with respect to s from 0 to T , we get the desired estimate (3.1) with K2 =
σ + 4+2σ+4b2σ

a2
0

.
Then the uniqueness of the strong solution results from the desired estimate (3.1) and

(2.5) holds. �

This last inequality implies the following corollaries.

Corollary 3.1 If a strong solution of (2.1)–(1.4) exists, it is unique and continuously de-
pends on F = (f ,ϕ).

Proof First, If u1 and u2 are two solutions of (2.1)–(1.4), then u = u1 – u2 is a solution of
the problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

£σ = ∂u
∂t – ∂

∂x (a ∂u
∂x ) = 0 for (x, t) ∈ ]0, 1[× ]0, T[,

lu = u(x, 0) = 0, for x ∈ [0, 1],

u(0, t) = 0, for t ∈ [0, T],∫ α

0 σ (x, t) dx +
∫ 1
β

σ (x, t) dx = 0, 0 ≤ α ≤ β < 1,∀t ∈ [0, T],

then from Theorem 3.1„ we deduce that ‖u‖E ≤ 0, which implies that u1 = u2. �

Corollary 3.2 The range R(L) of L is closed in F and R(L) = R(L).

Proof First, we prove that R(L) is closed. Let T ∈ R(L), then there exists a sequence
Un ∈ D(L) such that LUn −→

n→∞
T , in F. since ‖U‖E ≤ c‖LU‖F, ∀U ∈ D(L). Then ‖Un‖E ≤

c‖LUn‖F, ∀Un ∈ D(L), we deduce that the convergence of LUn in F implies the conver-
gence of Un in E, say Un −→

n→∞
U , in E. Since L is closed, (Un) is a sequence in D(L) and

Un −→
n→∞

U , in E, and LUn −→
n→∞

T , in F, we have U ∈ D(L) and LU = T , that is, T ∈ R(L)

Hence, R(L) is closed in F.
Now, to prove that R(L) = R(L), we observe that L is an extension of L; therefore, �(L) ⊂

�(L), where �(L) is the graph of L, hence R(L) ⊆ R(L), which implies R(L) ⊆ R(L) = R(L).
On the other hand, let T ∈ R(L), that is, LU = T for some U ∈ D(L), which means that
(U , LU) ∈ �(L) = �(L), therefore, there exists a sequence (Un, LUn)n∈N in �(L) such that
(Un, LUn) −→

n→∞
(U , T) in E× F, which implies that LUn −→

n→∞
T but Un ∈ D(L), ∀n ∈ N,

then we have T ∈ R(L) and hence R(L) ⊂ R(L) �
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Corollary 3.2 shows that, to prove that problem (1.1)–(1.4) has a strong solution for
arbitrary F , it suffices to prove that the set R(L) is dense in F.

4 Solvability of the linear problem
In order to prove the solvability of problem (2.1)–(1.4) it is sufficient to show that R(L) is
dense in F. The proof is based on the following lemma.

Lemma 4.1 Suppose that the function a and its derivatives are bounded.
Let u ∈ D0(L) = {u ∈ D(L), u(x, 0) = 0}. If, for u ∈ D0(L) and some functions w ∈ L2(Q), we

have
∫

Q
θ (x)f ω dx dt = 0, (4.1)

where

θ (x) =

⎧⎪⎪⎨
⎪⎪⎩

x2

α2 , x ∈ (0,α),

w, x ∈ (α,β),
(1–x)2

(1–β)2 , x ∈ (β , 1),

then w vanishes almost everywhere in �.

Proof Equality (4.1), can be written as follows:

∫
Q

∂u
∂t

ρ dx dt =
∫

Q
A(t)uρ dx dt, (4.2)

where

ρ = θ (x)w

and

A(t)u =
∂

∂x

(
a(x, t)

∂u
∂x

)
.

We introduce the smoothing operators J–1
ε = (I – ε ∂

∂t )–1 and (J–1
ε )∗ = (I + ε ∂

∂t )–1 from
L2(0, T) into the space H1(0, T) with respect to t, then these operators provide the so-
lution of the problems:

⎧⎨
⎩

uε(t) – ε ∂uε

∂t = u(t), uε(0) = 0,

v∗
ε (t) + ε

∂v∗
ε

∂t = v(t), v∗
ε (T) = 0.

We also have the following properties: If g ∈ D(L), then J–1
ε g ∈ D(L) and we have

⎧⎨
⎩

lim‖J–1
ε g – g‖L2(0,T) = 0, for ε → 0,

lim‖(J–1
ε )∗g – g‖L2(0,T) = 0, for ε → 0.
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Substituting the function u in (4.2) by the smoothing function uε and using the relation

A(t)uε = J–1
ε A(t)u – εJ–1

ε Bε(t)uε ,

where

Bε(t)uε =
∂A(t)
∂t

uε =
∂

∂x

(
∂a
∂t

∂uε

∂x

)
,

we obtain

–
∫

�

u
∂ρ∗

ε

∂t
dx dt =

∫
�

(
A(t)u – εBε(t)uε

)
ρ∗

ε dx dt. (4.3)

Since the operator A(t) has a continuous inverse in L2(0, 1) defined by

A–1(t)g =
∫ x

0

dζ

a

∫ ζ

0
g(η) dη + C1(t)

∫ x

0

dζ

a
,

where the functions C1(t) satisfy the following expression:

C1(t) =
∫ 1

0
K (x)

a
∫ x

0 g(η) dη dx∫ 1
0

K (x)
a dx

,

the function K(x) is given by

K(x) =

⎧⎪⎪⎨
⎪⎪⎩

x – α, (0,α),

0, (α,β),

x – 1, (β , 1).

Then we have
∫ α

0 A–1(t)u dx +
∫ 1
β

A–1(t)u dx = 0, hence, the function J–1
ε u = uε can be rep-

resented in the form

uε = J–1
ε A–1(t)A(t)u,

then

Bε(t)g =
∂2a
∂t∂x

J–1
ε

C1(t) +
∫ ζ

0 g(η) dη

a
+

∂a
∂t

J–1
ε

g
a

–
∂a
∂t

J–1
ε

∂a
∂x
a

C1(t) +
∫ ζ

0 g(η) dη

a
.

Consequently, equality (4.3) becomes

–
∫

�

u
∂ρ∗

ε

∂t
dx dt =

∫
�

A(t)uhε dx dt, (4.4)

where

hε = ρ∗
ε – εB∗

ε (t)ρ∗
ε
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and

B∗
ε (t)ρ∗

ε =
1
a
(
J–1
ε

)∗ ∂a
∂t

ρ∗
ε –

∫ x

0

(
1
a
(
J–1
ε

)∗ ∂2a
∂t∂ζ

ρ∗
ε –

1
a2

∂a
∂ζ

(
J–1
ε

)∗ ∂a
∂t

ρ∗
ε

)
dζ

+
∫ 1

0
K
a dx +

∫ 1
x

K
a dζ∫ 1

0
K
a dx

∫ 1

0

(
1
a
(
J–1
ε

)∗ ∂2a
∂t∂ζ

ρ∗
ε –

1
a2

∂a
∂ζ

(
J–1
ε

)∗ ∂a
∂t

ρ∗
ε

)
dx.

The left-hand side of (4.4) is a continuous linear functional of u, hence the function hε has
the derivatives ∂hε

∂x , ∂2hε

∂x2 ∈ L2(Q) and the following conditions are satisfied:

hε(0, t) = hε(α, t) = hε(β , t) = hε(1, t) = 0,
∂hε

∂x
(1, t) = 0.

For a sufficiently small ε and the operator (J–1
ε )∗ ∂a

∂t
a is bounded in L2(Q), we have

‖ε (J–1
ε )∗ ∂a

∂t
a ‖L2(�) < 1, hence, the operator I – ε

(J–1
ε )∗ ∂a

∂t
a has a bounded inverse in L2(Q), we

deduce that ∂ρ∗
ε

∂x , ∂2ρ∗
ε

∂x2 ∈ L2(Q) and the following conditions are satisfied:

⎧⎨
⎩

ρ∗
ε (0, t) = ρ∗

ε (α, t) = ρ∗
ε (β , t) = ρ∗

ε (1, t) = 0,
∂ρ∗

ε

∂x (α, t) = ∂ρ∗
ε

∂x (β , t) = ∂ρ∗
ε

∂x (1, t) = 0.
(4.5)

We introduce the function v such that

v =

⎧⎪⎪⎨
⎪⎪⎩

x
α

w + 1
α

∫ x
α

w dζ , x ∈ (0,α),

w, x ∈ (α,β),

v = 1–x
1–β

w – 1
1–β

∫ x
β

w dζ , x ∈ (β , 1),

then the function ρ(x) can be expressed as follows:

ρ(x) =

⎧⎪⎪⎨
⎪⎪⎩

x2

α2 w = x
α

v – 1
α

∫ x
α

v, x ∈ (0,α),

w = v, x ∈ (α,β),
(1–x)2

(1–β)2 w = 1–x
1–β

v + 1
1–β

∫ x
β

v, x ∈ (β , 1).

Then we deduce that
⎧⎨
⎩

v(0, t) = v(α, t) = v(β , t) = v(1, t) = 0,
∫ α

0 v dx +
∫ 1
β

v dx = 0,
∂v
∂x (α, t) = ∂v

∂x (β , t) = ∂v
∂x (1, t) = 0,

and

∂ρ

∂x
= H(x)

∂v
∂x

, where H(x) =

⎧⎪⎪⎨
⎪⎪⎩

x
α

, x ∈ (0,α),

1, x ∈ (α,β)
1–x
1–β

, x ∈ (β , 1).

Putting

u =
∫ t

0
exp(cτ )v dt,
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in (4.2) and integrating with respect to x and t, using (4.5) we obtain

Re
∫

Q
A(t)uρ dx dt

= –
∫

�

H(x)
2

(
ca –

∂a
∂t

)
e–ct)

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx dt –
∫ 1

0

H(x)
2

ae–ct
∣∣∣∣∂u
∂x

∣∣∣∣
2

dx|t=T

and

Re
∫ s

0

∫ α

0

∂u
∂t

ρ dx dt =
∫ s

0

∫ α

0
ectH(x)|v|2 dx dt,

as we choose

c >
a3

a0

then we get

∫
Q

exp(ct)H(x)|v|2 dx dt = 0,

so v = 0 a.e., which implies ω = 0. �

Theorem 4.1 The range R(L) of the operator L is dense in F.

Proof Since F is a Hilbert space, we have R(L) = F if and only if the relation

∫
Q

(1 – x)2f g dx dt +
∫ 1

0
(1 – x)2 dϕ

dx
dψ

dx
dx +

∫ 1

0
ϕψ dx = 0, (4.6)

for an arbitrary u ∈ D(L) and (g,ψ) ∈ F, implies that g = 0 and ψ = 0.
Putting u ∈ D0(L) in (4.6), we conclude from Lemma 4.1 that (1 – x)2g = θ (x)ω = 0, a.e.

then g = 0.
Taking u ∈ D(L) in (4.6) yields

∫ 1

0
(1 – x)2 dϕ

dx
dψ

dx
dx +

∫ 1

0
ϕψ dx = 0, (4.7)

Since the two terms in the previous equality vanish independently and since the range of
the trace operator is everywhere dense in Hilbert space with the norm

∫ 1

0
(1 – x)2

∣∣∣∣dϕ

dx

∣∣∣∣
2

dx +
∫ 1

0
|ϕ|2 dx,

hence, ψ = 0. Thus R(A) = F. �

5 Study of the nonlinear problem
This section is devoted to the proof of the existence, uniqueness of the solution of the
problem (1.1)–(1.4).
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If the solution of problem (1.1)–(1.4) exists, it can be expressed in the form θ = w + U ,
where U is a solution of the homogeneous problem

£U =
∂U
∂t

–
∂

∂x

(
a
∂U
∂x

)
= 0, (5.1)

U0 = U(x, 0) = ϕ(x), (5.2)

U(0, t) = 0, (5.3)
∫ α

0
U(x, t) dx +

∫ 1

β

U(x, t) dx = 0, (5.4)

and w is a solution of the problem

£w =
∂w
∂t

–
∂

∂x

(
a
∂w
∂x

)
= F

(
x, t, w,

∂w
∂x

)
, (5.5)

w(x, 0) = 0, (5.6)

w(0, t) = 0, (5.7)
∫ α

0
w(x, t) dx +

∫ 1

β

w(x, t) dx = 0, (5.8)

where F(x, t, w, ∂w
∂x ) = f (x, t, w + U , ∂(w+U)

∂x ) satisfying the condition

∣∣F(x, t, u1, v1) – F(x, t, u2, v2)
∣∣ ≤ d

(|u1 – u2| + |v1 – v2|
)

for all x, t ∈ Q. (5.9)

According to Theorem 3.1 and Lemma 4.1, the problem (5.1)–(5.4) has a unique solution
that depends continuously on U0 ∈ V 1,0(0, 1) where V 1,0(0, 1) is a Hilbert space with the
scalar product

(u, v)V 1,0(0,1) =
∫ 1

0
(1 – x)2 ∂u

∂x
∂v
∂x

dx +
∫ 1

0
uv dx

and with the associated norm

‖u‖2
V 1,0(0,1) =

∫ 1

0
(1 – x)2

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx +
∫ 1

0
|u|2 dx.

We shall prove that the problem (5.5)–(5.8) has a weak solution by using an approximation
process and passing to the limit.

Assume that v and w ∈ C1(Q), and the following conditions are satisfied:

⎧⎨
⎩

v(x, T) = 0,
∫ α

0 v(x, t) dx +
∫ 1
β

v(x, t) dx = 0,

w(x, 0) = 0, w(0, t) = 0.
(5.10)

Taking the scalar product in L2(Q) of Eq. (5.5) and the integrodifferential operator

Nv = λ(1 – x)
∫ x

0
v dζ – x

∫ 1

x
g(ζ , t) dζ ,
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where

g(ζ , t) = k
∫ ζ

0
v dμ – (k – λ)

∫ ζ

α

v dμ + (k – λ)
∫ ζ

β

v dμdζ ,

by taking the real part, we obtain

H(w, v) = Re
∫

Q
F
(

x, t, w,
∂w
∂x

)
Nv dx dt

= Re
∫

Q

∂w
∂t

Nv dx dt – Re
∫

Q

∂

∂x

(
a
∂w
∂x

)
Nv dx dt. (5.11)

Substituting the expression of Nv in the first integral of the right-hand side of (5.11), inte-
grating by parts with respect to t, using the condition (5.10), we get

Re
∫

Q

∂w
∂t

Nv = – Re
∫

Q
w

(
λ(1 – x)

∫ x

0

∂v
∂t

dζ + x
∫ 1

x

∂g
∂t

dζ

)
dx dt. (5.12)

Substituting the expression of Nv in the second integral of the right hind-side of (5.11),
integrating by parts with respect to x, using the condition (5.10), we get

– Re
∫

Q

∂

∂x

(
a
∂w
∂x

)
Nv dx dt

= Re
∫

Q

[
(2λ – kx)a – λ(1 – x)

∂a
∂x

]
wv – λRe

∫
Q

(1 – x)aw
∂v
∂x

dx dt

– Re
∫

Q

[
2a + x

∂a
∂x

]
wg dx dt + λRe

∫
Q

∂a
∂x

w
∫ ζ

0
v dμdx dt

– Re
∫

Q

∂a
∂x

w
∫ 1

x
g dζ dx dt. (5.13)

Insertion of (5.12), (5.13) into (5.11) yields

H(w, v) = – Re
∫

Q
w

(
λ(1 – x)

∫ x

0

∂v
∂t

dζ – x
∫ 1

x

∂g
∂t

dζ

)
dx dt

– λRe
∫

Q
(1 – x)aw

∂v
∂x

dx dt + Re
∫

Q

[
(2λ – kx)a – λ(1 – x)

∂a
∂x

]
wv

– Re
∫

Q

[
2a + x

∂a
∂x

]
wg dx dt + λRe

∫
Q

∂a
∂x

w
∫ ζ

0
v dμdx dt

– Re
∫

Q

∂a
∂x

w
∫ 1

x
g dζ dx dt,

where

H(w, v) = λRe
∫

Q
v
∫ 1

x
(1 – ζ )F

(
ζ , t, w,

∂w
∂ζ

)
dζ

– Re
∫

Q
g
∫ x

0
ζF

(
ζ , t, w,

∂w
∂ζ

)
dζ dx dt, (5.14)

obtained by integrating by parts the right-hand side of (5.11) with respect to x.
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Definition 5.1 By a weak solution of problem (5.5)–(5.8) we mean a function w ∈ L2(0, T :
V 1,0(0, 1)) satisfying the identity (5.14) and the integral condition (5.8).

We will construct an iteration sequence in the following way.
Starting with w0 = 0, the sequence (wn)n∈N is defined as follows: given wn–1, then, for

n ≥ 1, we solve the problem

£wn =
∂wn

∂t
–

∂

∂x

(
a
∂wn

∂x

)
= F

(
x, t, wn–1,

∂wn–1

∂x

)
, (5.15)

wn(x, 0) = 0, (5.16)

wn(0, t) = 0, (5.17)
∫ α

0
wn(x, t) dx +

∫ 1

β

wn(x, t) = 0. (5.18)

From Theorem 3.1 and Lemma 4.1, we deduce that, for fixed n, each problem (5.15)–(5.18)
has a unique solution wn(x, t). If we set Vn(x, t) = wn+1(x, t) – wn(x, t), we obtain the new
problem

£Vn =
∂Vn

∂t
–

∂

∂x

(
a
∂Vn

∂x

)
= σn–1, (5.19)

Vn(x, 0) = 0, (5.20)

Vn(0, t) = 0, (5.21)
∫ α

0
Vn(x, t) dx +

∫ 1

β

Vn(x, t) = 0, (5.22)

where

σn–1 = F
(

x, t, wn,
∂wn

∂x

)
– F

(
x, t, wn–1,

∂wn–1

∂x

)
. (5.23)

Theorem 5.1 Assume that the condition (5.9) holds, for the linearized problem (5.19)–
(5.22), there exists a positive constant k, such that

‖Vn‖L2(0,T :V 1,0(0,1)) ≤ k‖Vn–1‖L2(0,T :V 1,0(0,1)). (5.24)

Proof We denote

M
∂Vn

∂t
=

(1 – x)2

2
∂Vn

∂t
+ λ(1 – x)

∫ x

0

∂Vn

∂t
dζ – xeδ(x–1)

∫ 1

x
g(ζ , t) dζ ,

where

g(ζ , t) = k
∫ ζ

0

∂Vn

∂t
dμ – (k – λ)

∫ ζ

α

∂Vn

∂t
dμ + (k – λ)

∫ ζ

β

∂Vn

∂t
dμdζ ,

and λ, k and δ are scalars parameters such that

3 <
λ

k
< 4e–δ with δ > ln

(
4
3

)
.
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We consider the quadratic form obtained by multiplying Eq. (5.19) by e–ctM ∂Vn
∂t , with the

constant c satisfying (3.11), integrating over Qs = [0, 1] × [0, s], with 0 ≤ s ≤ T , taking the
real part, we obtain

�(Vn, Vn) = Re
∫

Qs

e–ctσn–1M
∂Vn

∂t
dx dt

= Re
∫

Qs

e–ctx2(1 – x)2 ∂Vn

∂t
M

∂Vn

∂t
dx dt

– Re
∫

Qs

e–ct ∂

∂x

(
a
∂Vn

∂x

)
M

∂Vn

∂t
dx dt. (5.25)

Integrating with respect to x and t, using the conditions (5.20), (5.21) and (5.22) we get

λ

2

∫
Qs

(1 – x)2

2
exp(–ct)

∣∣∣∣∂Vn

∂t

∣∣∣∣
2

dx dt +
λ

2

∫
Qs

(
ca –

∂a
∂t

)
(1 – x)2

2
e–ct

∣∣∣∣∂Vn

∂x

∣∣∣∣
2

dx dt

+
1

2k

∫
Qs

(
λ

k
– 2xeδ(x–1)

)
e–ct∣∣g(x, t)

∣∣2 dx dt +
λ

2k2

∫
Qs

e–ct∣∣g(0, t)
∣∣2 dx dt

+
1

2k
e–δ

∫ s

0
e–ct

∣∣∣∣
∫ 1

0
g(x, t)

∣∣∣∣
2

dx dt

+
1
2

∫
Qs

(
ca –

∂a
∂t

)(
λ – kxeδ(x–1))e–ct|Vn|2 dx dt

+
1

2k

∫
Qs

(
2δ + δ2x

)
eδ(x–1)e–ct

∣∣∣∣
∫ 1

x
g(ζ , t) dζ

∣∣∣∣
2

dx dt

+
λ

2

∫ 1

0

(1 – x)2

2
e–csa(x, s)

∣∣∣∣∂Vn

∂x

∣∣∣∣
2 ∣∣∣∣

t=s
dx

+
1
2

∫ 1

0

(
λ – kxeδ(x–1))e–csa(x, s)|Vn|2

∣∣
t=s dx

+ λRe
∫

Qs

∂a(x, t)
∂x

e–ctVn

∫ x

0

∂u
∂t

dζ dx dt

– Re
∫

Qs

(
x
∂a
∂x

+ 2a(1 + δx)
)

eδ(x–1)e–ctVng(x, t) dx dt

–
λ

2k2 Re
∫ s

0
e–ctg(0, t)

∫ 1

0
g(x, t) dx dt

– Re
∫

Qs

(
(1 + δx)

∂a
∂x

+
(
2δ + δ2x

)
a
)

eδ(x–1)e–ctVn

∫ 1

x
g(ζ , t) dζ dx dt

= Re
∫

Qs
e–ctσn–1M

∂Vn

∂t
dx dt.

Following the same procedure as performed in establishing the proof of Theorem 3.1, we
get

∫ T

0

∫ 1

0

(
(1 – x)2

2

∣∣∣∣∂Vn

∂x

∣∣∣∣
2

+ |Vn|2
)

dx ≤ K
∫

Q

(1 – x)2

2
|σn–1|2 dx dt,
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where

K =
max(( 2k2

λ2–3k + k2

128λ
+ 66λ))

min(M, λ–k
2 e–δ(ca0 – c2))

ecT ,

using (5.9), the above inequality becomes

‖Vn‖2
L2(0,T :V 1,0(0,1)) ≤ k2‖Vn–1‖2

L2(0,T :V 1,0(0,1)), (5.26)

where

k2 = 2d2
2k2

λ2–3k + k2

128λ
+ 66λ

min(M, λ–k
2 e–δ(ca0 – c2))

ecT .

From the criterion of convergence of the series, we see that the series
∑
n≥1

Vn(x, t) converges

if

d2 <
1
2

min(M, λ–k
2 e–δ(ca0 – c2))

2k2

λ2–3k + k2
128λ

+ 66λ
e–cT .

Since Vn(x, t) = wn+1(x, t) – wn(x, t), it follows that the sequence wn(x, t) defined by

wn(x, t) =
k=n–1∑

k=1

Vk + w0(x, t)

converges to an element w ∈ L2(0, T : V 1,0(0, 1)). Now to prove that this limit function w
is a solution of the problem under consideration (5.19)–(5.22), we should show that w
satisfies (5.8) and (5.14).

For problem (5.15)–(5.18), we have

H(wn – w, v) + H(w, v)

= λRe
∫

Q
v
∫ 1

x
(1 – η)

(
F
(

η, t, wn–1,
∂wn–1

∂η

)
– F

(
η, t, w,

∂w
∂η

)
dη

)
dx dt

– Re
∫

Q
g
∫ x

0
η

(
F
(

η, t, wn–1,
∂wn–1

∂η

)
– F

(
η, t, w,

∂w
∂η

))
dη dx dt

+ λRe
∫

Q
v
∫ 1

x
(1 – ζ )F

(
ζ , t, w,

∂w
∂ζ

)
dζ

– Re
∫

Q
g
∫ x

0
ζF

(
ζ , t, w,

∂w
∂ζ

)
dζ dx dt. (5.27)

From Eq. (5.15),we have

H(wn – w, v) = Re
∫

Q

∂(wn – w)
∂t

(
λ(1 – x)

∫ x

0
v dζ – x

∫ 1

x
g(ζ , t) dζ

)
dx dt

– Re
∫

Q

∂

∂x

(
a
∂(wn – w)

∂x

)(
λ(1 – x)

∫ x

0
v dζ – x

∫ 1

x
g(ζ , t) dζ

)
dx dt.
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Integrating by parts each term in the previous equality with respect to t and x using the
condition (5.10), we obtain

H(wn – w, v)

= – Re
∫

Q
(wn – w)

(
λ(1 – x)

∫ x

0

∂v
∂t

dζ – x
∫ 1

x

∂g
∂t

(ζ , t) dζ

)
dx dt

– λRe
∫

Q
(1 – x)a(wn – w)

∂v
∂x

dx dt

+ Re
∫

Q

[
(2λ – kx)a – λ(1 – x)

∂a
∂x

]
(wn – w)v dx dt

– Re
∫

Q

[
2a + x

∂a
∂x

]
(wn – w)g dx dt + λRe

∫
Q

∂a
∂x

(wn – w)
∫ ζ

0
v dμdx dt

– Re
∫

Q

∂a
∂x

(wn – w)
∫ 1

x
g dζ dx dt, (5.28)

where each term of the left-hand side of (5.28) is controlled by

– Re
∫

Q
(wn – w)

(
λ(1 – x)

∫ x

0

∂v
∂t

dζ – x
∫ 1

x

∂g
∂t

(ζ , t) dζ

)
dx dt

≤ 2
√

2 max(λ, 1)
(∫

Q
|wn – w|2 dx dt

) 1
2
(∫

Q
(1 – x)2

∣∣∣∣∂v
∂t

∣∣∣∣
2

dx dt +
∫

Q

∣∣∣∣∂g
∂t

∣∣∣∣
2

dx dt
) 1

2
,

Re
∫

Q

[
(2λ – kx)a – λ(1 – x)

∂a
∂x

]
(wn – w)v dx dt

≤ (
(2λ – k)a1 + λb

)(∫
Q

|wn – w|2 dx dt
) 1

2
(∫

Q
|v|2 dx dt

) 1
2

– λRe
∫

Q
(1 – x)a(wn – w)

∂v
∂x

dx dt

≤ λa1

(∫
Q

|wn – w|2 dx dt
) 1

2
(∫

Q
(1 – x)2

∣∣∣∣ ∂v
∂x

∣∣∣∣
2

dx dt
) 1

2
,

– Re
∫

Q

[
2a + x

∂a
∂x

]
(wn – w)g dx dt

≤ (2a1 + b)
∫

Q
|wn – w|2 dx dt

1
2

(∫
Q

|g|2 dx dt
) 1

2
,

λRe
∫

Q

∂a
∂x

(wn – w)
∫ ζ

0
v dμdx dt

≤ λb
∫

Q
|wn – w|2 dx dt

1
2

(∫
Q

|v|2 dx dt
) 1

2
+ Re

∫
Q

∂a
∂x

(wn – w)
∫ 1

x
g dζ dx dt

≤ b
(∫

Q
|wn – w|2 dx dt

) 1
2
(∫

Q

∣∣∣∣∂g
∂t

∣∣∣∣
2

dx dt
) 1

2
.
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From the previous inequalities, we deduce that

∣∣H(wn – w, v)
∣∣ ≤ C‖wn – w‖L2(0,T :V 1,0(0,1))

[∫
Q

(
(1 – x)2

(∣∣∣∣ ∂v
∂x

∣∣∣∣
2

+
∣∣∣∣∂v
∂t

∣∣∣∣
2)

+ |v|2
)

dx dt

+
∫

Q

(∣∣∣∣∂g
∂t

∣∣∣∣
2

+ |g|2
)

dx dt
] 1

2
, (5.29)

where

C = max
{

2
√

2 max(λ, 1), (2λ – k)a1 + λb,λa1, (2a1 + b)
}

.

Using the condition (5.9) and the Cauchy–Schwarz inequality in the first two terms in the
left-hand side in (5.27), we get

λRe
∫

Q
v
∫ 1

x
(1 – ζ )

[
F
(

η, t, wn–1,
∂wn–1

∂η

)
– F

(
ζ , t, w,

∂w
∂ζ

)]
dζ

– Re
∫

Q
g
∫ x

0
ζ

[
F
(

η, t, wn–1,
∂wn–1

∂η

)
– F

(
ζ , t, w,

∂w
∂ζ

)]
dζ dx dt

≤ (λ + 1)d‖wn – w‖L2(0,T :V 1
0 (0,1))

(∫
Q

|v|2 dx dt +
∫

Q
|g|2 dx dt

) 1
2

. (5.30)

From (5.29), (5.30) and passing to the limit in (5.27) as n → +∞, we deduce that

H(w, v) = λRe
∫

Q
v
∫ 1

x
(1 – ζ )F

(
ζ , t, w,

∂w
∂ζ

)
dζ

– Re
∫

Q
g
∫ x

0
ζF

(
ζ , t, w,

∂w
∂ζ

)
dζ dx dt.

Now we show that (5.8) holds. Since lim
n→+∞‖wn – w‖L2(0,T :V 1,0(0,1)) = 0,

lim
n→+∞

∣∣∣∣
∫ α

0
(wn – w) dx +

∫ 1

β

(wn – w) dx
∣∣∣∣
2

≤ lim
n→+∞

∫ 1

0
|wn – w|2 dx. (5.31)

So

∫ α

0
w dx +

∫ 1

β

w dx = 0. �

Let us now prove the uniqueness of the solution.

Theorem 5.2 If condition (5.9) is satisfied, then the solution of problem (5.5)–(5.8) is
unique.

Proof Suppose that w1, w2 ∈ L2(0, T : V 1,0(0, 1)) are two solutions of (5.5)–(5.8), the func-
tion v = w1 – w2 is in L2(0, T : V 1,0(0, 1)) and satisfies

∂v
∂t

–
∂

∂x

(
a

∂v
∂x

)
= G(x, t), (5.32)
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v(x, 0) = 0, (5.33)

v(0, t) = 0, (5.34)
∫ α

0
v dx +

∫ 1

β

v dx = 0, (5.35)

where G(x, t) = F(x, t, w1, ∂w1
∂x ) – F(x, t, w2, ∂w2

∂x ).
Taking the inner product in L2(Q) of Eq. (5.32) and the integro-differential operator

M
∂v
∂t

=
(1 – x)2

2
∂v
∂t

+ λ(1 – x)
∫ x

0

∂v
∂t

dζ – x
∫ 1

x
g(ζ , t) dζ ,

where λ satisfied (3.2) and following the same procedure as done in establishing the proof
of Theorem 3.1, we get

‖v‖2
L2(0,T :V 1,0(0,1)) ≤ k2‖v‖2

L2(0,T :V 1,0(0,1)),

where

k2 =
2( 2k2

λ2–3k + k2

128λ
+ 66λ)

min(M, λ–k
2 e–δ(ca0 – c2))

d2ecT .

Since k2 < 1, we have v = 0, which implies that w1 = w2 ∈ L2(0, T : V 1,0(0, 1)). �
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