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1 Introduction

Specialists know that the intrinsic properties of different media can influence the am-
plitude of the thermal type stress. Considering that our work is dedicated to the porous
thermoelastic bodies, we believe that our approach can help the engineers specializing in
porous materials, at least in the applications that concern the geological layers or in the
production of granular bodies. The research in the field of theory of bodies with pores be-
gan with the publication of the study [1] by Goodman and Cowin. In this paper, as in the
study Cowin and Nunziato [2], the new theory is based on adding an extra degree of free-
dom which is meant to describe the mechanical behavior of solids with pores. For this kind
of solids, the interstices are voids of material, and the material itself is elastic. There are
many concrete situations in which this theory is useful, such as pressed powders, ceramics,
in manufacture of porous materials (such as polystyrene), in the study of geological mate-
rials, such as soils and rocks. At the beginning, in the works [1-3], this theory referred to
elastic environments in which the presence of temperature was not taken into account. It
was natural for the analysis to extend to address thermoelastic bodies with pores, and this
generalization has been approached in many studies, of which we mention only the work
[4] of Iesan. Then, the specialists extended the theory taking into account other effects. It
is worth mentioning in this sense the pioneering works of Eringen dedicated to a new and
very general concept, that of the microstructure of media, see, for instance, the studies [5]
and [6]. Several particular cases of this general theory have been considered, first by Erin-
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gen, then by a very large number of researchers. This includes the theory of micropolar
media, microstretch media, media with dipolar structure, and so on. The number of stud-
ies dedicated to these types of structures has continuously increased. We suggest only
some of them [7-19]. Given that our study addresses environments with dipolar struc-
ture, it can be deduced that it falls within the line mentioned above. On the other hand,
we have other generalizations in our study, namely the results obtained by Dafermos [20]
and Fichera [21] in the much simpler context of classical elastic media. We prove some
theorems in which we deduce the uniqueness of a finite energy solution, the existence of
such kind of solution, but also some estimates from which the stability of asymptotic type
of the solution with finite energy is obtained. The plane of our study is as follows. After we
highlight the basic equations and the specific initial and boundary relations for the mixed
problem from the context formulated above, we define the solutions with finite energy
and propose a method to obtain other types of solutions with finite energy. It is impor-
tant to specify that we prove the uniqueness of a solution in the most general situation in
which both the initial data and the boundary conditions are inhomogeneous. In the last
theorem we obtain the existence of at least one finite solution in the most general case
of inhomogeneous initial relations, starting from the particular previously demonstrated

case.

2 Basic equations and conditions
Suppose that a regular region Q from the Euclidian space is occupied at the initial time
¢t = 0 by a thermoelastic porous body having a dipolar structure. The boundary surface
of Q is denoted by %, and suppose that this surface is regular enough, so we can apply
the theorem of divergence. We also have that Q = Q U X, Q being the closure of Q2. The
evolution of our solid is described by reference to the usual system of axes Ox; (i = 1,2, 3).
We adopt the usual notation for tensors and vectors. A superposed dot on a function is
used for the derivative of a respective function with respect to a time variable. A comma
followed by an index designates the derivative (partial) regarding the corresponding with
respect to the respective spatial variable. The rule of Einstein summation is used whenever
the index is repeated.

The density of mass in the initial stare (undeformed) is denoted by pg. Also, the volume
fraction in the initial configuration is denoted by vy, while the density of a material matrix
has the notation yy. These two quantities are constant regarding the spatial variables, but

they depend on the temporal variable and satisfy the following relation:

Qo = YoVo-

To characterize the evolution of a thermoelastic porous body having a dipolar structure,
the following independent functions are used:

- vi(x,t) — components of the vector of displacement, regarding the initial state;

- ¢ij(x,t) — components of the dipolar displacement tensor;

- ¥ — the variation of temperature, between its present value 7" and the value in the

initial state Tg, that is,

O =T — To;
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- @ — the difference between the present v and the initial volume fraction vy, that is,

o =v-—v.
The components of the tensors of strain, namely ¢; and y;;, are functions of the above
variables v;(x, £), ¢jx (%, t), namely
1
€ = 5(1’;‘,1' +Vij) &j = Vji = Pij» Yijk = Bjii- 1)

We suppose that our media has zero flux rate and zero intrinsic equilibrated volume forces,
and also it has no initial tension and couple stress.

Our subsequent considerations are made only in a linear context, therefore we must
assume that the internal density of energy is a form of quadratic order, regarding all its
independent functions. As a consequence, the energy conservation principle is useful to
make explicit the internal density of energy in the form that follows:

1
v = EAijmneijemn + Gijmnez’jgmn + Fijmnrei/')/mnr

+ EBtjmngijgmn + Dzjmnrsijymnr + acljkmnryijkymnr
1 2
+ aie i + bikei i + Cion Vit m — a0 Qi — v )
1 1
— ey — Bey0 — Sy vk + Edijﬁp,i(/’,j + Sk

Using a suggestion given by Nunziato and Cowin [3], we can deduce

v . owv owv
T = —, = — Mjix = ——,
Y aei,» v 38,’1' o ayijk
av ow Y
i= T S:__y qi= —>
3<p,l' v 31},,‘

and we deduce the relations between the tensors of stress and the tensors of strain, in other
words, the constitutive relations

Tj = Aijmnemn + Gmm’jgmn + anrij)’mnr + Aijk Pk — 051'1'19,

tij = Gijmnemn + Bijmngmn + Dijmnrymnr + bijk(p,k - ;Bijﬁ:

Mji = Fijkmnemn + Dmm’jkgmn + Ci/'kmnrymnr + Cijkr¥,r — (Sijkl?;

hi = ajkejx + bireix + Cijtr Vir + dij0j — @iV, (3)
S = e + Bijgij + Cij Vi + ai,;i + ¢,

qi = Kijﬁ,jo

Taking into account that the strain tensor e; is symmetric (see Eq. (1);), we easily deduce
that the symmetry relations satisfied by the above constitutive coefficients are

Ajkmn = Akjmn = Amnjk: ijmn = ijmn; P}kmnr = ijmnr;
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Cjklmnr = Cmnrjkl» Ann = Ay Xmn = Upms Kmn = Kpm- (4)

Using the same procedure of Nunziato and Cowin [3], we can obtain the following main
equations (see also [22]):
- the equations of motion:

(ti]‘ + Tz'j),j + Qﬂ = Qi)i,

M + Tik + 0k = LimBiom- (5)
- the balance of the equilibrated forces:

hi; + ol = okg; (6)
- the balance of the energy:

0ToS = q;; + or. (7)

In the previous relations, the significance of the following notations remained unspecified:
S — the entropy per unit mass, k — the balancing inertia, I;; — the tensor of inertia, /; — an
equilibrium vector of stress, g; — the vector of heat flux, f;, g;, [ — body forces, r — the supply
of heat. In our following approaches we consider anisotropic material which is assumed
to be inhomogeneous.

The entropy production inequality can be used in order to obtain the positive semi-
definition of the thermal conductivity tensor «;;, namely

K[jl?,iﬁ,j > 0. (8)

It is easy to see that the main equations (5) and (7) are analogous to those from the theory
of classical thermoelasticity.

In [23], by using a variational approach, the authors gave a motivation for the new rela-
tion (6), the balance of equilibrated forces.

We find similar considerations in [22] and [24].

Considering the constitutive relations (3), we can transform the basic relations (5), (6),
and (7) into the next system of equations with partial derivatives with respect to the vari-
ables v, @puns @, and O :

(Aijmn + Eijrmn)Viymj + Emnij + Bijmn) Viymj — Prmn,j)

+ (Fijkim + Dijiim) im g + (@i + i) i; — (i + Bip)¥j + pfi = p¥is,
FittmnVimj + Dot Vi = Grmnj) + Crdjmnr@nrmj + Cijta®,ij — Sk

+ EtimnVimn + BiamnVnm — Gunn) + Dictomnr v + b — Bad = IiwPirs 9)
WiViki + bigeVixi — Biies) + Cir@jri + Ay — aidi + pl = pk¢,

. o : .o 1
Vi + Bi(Vij — ) + Sk + aipi + ¥ = ;Kijl’,ij +r,

which are satisfied for any (x) € 2 x (0, 00).
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We intend to construct a mixed problem attached to the system of equations (6). To this
aim we need to prescribe some initial and boundary relations. For ¢ = 0, we have the initial
data:

V() =12, 1,0 =V,  u0) =9y  u0) =9,
p(0)=¢°  ¢0)=¢', 2(0)=0° inB. (10)

Denoting by n = (n;) the normal of the surface ¥ which is a unit vector, outward oriented
regarding X, we can consider the following surface tractions:

t; = (tyj + ty)n, M = Myjih;, h = hin;, q = qin;,

such that, for ¢ € [0, £y), time #, can be 0o, we can prescribe the boundary data as follows:

up=u; onxy, ti=t; onZXf,
Dk = ¢_5jk on X, Mjx = Mj; on =35,
¢=¢ onXs, h=h onZz (11)

¥ =0 onXy, g=q onZXj.

Here X, X3, X3, X4 and their respective complements Xf, X5, Xf, Xf are subsurface of
the surface X such that

TUS =5 USi=S3US{=S,Us{=5,

NS = NE=53NT=5,N T =0

Also, V%, v}, 13(, D> 9% 91, 90, Vs ®jx» M, @, ¥, G, and & are given and regular func-
tions.

Let us denote by P the mixed problem in our context of thermoelastic dipolar bodies
with pores, consisting of the basic equations (9), the initial conditions (10), and the bound-
ary conditions (11). As such, an ordered array (v,,, ¢k, ¢, ?) is a solution of this problem if

it satisfies equations (9) and conditions (10) and (11).

3 Problem formulation and basic results

Let us denote by P the mixed problem in our context of thermoelastic dipolar bodies with
pores, consisting of the basic equations (9), the initial conditions (10), and the boundary
conditions (11). As such, an ordered array (v,,, $jx, ¢, ) is a solution of this problem if it
satisfies equations (9) and conditions (10) and (11).

We now present the regularity conditions necessary to obtain our subsequent results.
As usual, we will use the notation C"(D) for the set of all functions defined in all points
of the domain 2 having a derivative of order # on €2, and this is a continuous function on
the domain Q.

The norm of any function u from the space C"(2) is defined by

n
lullengy =D Y. max [t i,

m=0 k1,k2,....km

Page 5 of 14
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In the case of vector functions (in our situation, with thirteen components), we consider

the notation C"(£2), and any element from this set is from C"(£2). As a consequence, the
norm of a vector function f = (f;), i = 1, 13, from the space C"({) is defined by

13
fllery = Y Willeny-
i=1
Let us denote by H,(2) the completion of the space C"(2), and consider the scalar product

TEICED S /Q Sirioix&irinix AV
k=0

which induces a Hilbert space structure on the space H,(2) (see, for instance, [25]).
Analogously, if we denote by H,,(2) the completion of the space C"($2) and consider the
scalar product

13
F D, =) om@  f=(), 9=

k=1

we obtain a Hilbert space structure on the set H,(2).
Other sets of functions that we will use have the following meanings:

Cl(Q)={v,9 e CH(Q):9 =00n T4},
clQ) = {u=(v,9,9),ueC(Q):v;=00n %y,

¢;=0o0n 5,9 =0o0n f)g}.
Q) = {(fm,g,»k, L) : (foun i D) € C°(R), 7 € CO(R2);
if meas(Z;) = meas(E;) = meas(Z3) = 0,
then / pFdV = 0,/ plx x F)dV =0;
Q Q
if meas(Z;) = meas(Z,) = 0, meas(Z3) # 0, then / pFdV =0;
Q
if meas(Z,) = 0, then / prdV = 0};
Q
Cl(Q) = {(u = (Vo Bt 9), ) : (1, 9) € CH(RQ) x C1(R2) and
if meas(Z4) = 0, then / lajej + Bijey + CixYik + aip,i + c¥]dV = O}.
Q

We will now introduce some functionals that are necessary both for defining a finite energy
solution and for demonstrating the previously mentioned results.

E ((V: é.0),(w, ¥, X))

1

= E L{A;jmnezj(v, ¢)emn(w, 1/’) + Gl’jmn [eij(vr¢)5mn(w, W)
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+ € (W, ¥)Emn (Vs )| + Fijomnr [€5(V, D) Virnr (W, ¥) + €5(W, ¥) Vi (v, §) |

+ Bijinn&i(V, §)Emn(W, ) + Dy [V, ) Ve W, W) + £55(W, W) Ve (V, $) ]
+ Cijtonnr Vi (Vs ) Vimnr (W, W) + dijep x5 + [ e (@)p i + e5(W) x|

+ by [e5(®) i + £5(W) x| + Ciom [ Vi (D)0 + Vi (W) X |} AV

Ez(l}, T) = / Kz'jl?,iT:/ dv’
Q

Eyle,w) = /0 ’ /Q {(t = to)[Q¥miim + LB ion + 0K D5 — Agpmnnm9)és(0)
— Gijimn (€5(2)€mn(W) + &(W)en () = Fijunr (€5(2) Vimnr (W)
+ &i(W)Vimnr(2))
= Bijimn€ij(2)€mn(W) = Dijnnr (€52 Vinnr (W) + €5(W) Vinr (2)) (12)
= Cijtomnr Vi (@) Yomnr (W) — i (&5(W) i + €50 X k)
= by (&5(W)@x + €5 X k) = Ciiom (Vi WP + Vi) X )
+di(@ix; + @ixy) + o (Deg(w) + Tey(y)) + By (9é5(w) + Téy(y))
+c@T+0T) + 8 (975 (w) + Tye(y) + a0 + T
+ OV Wi + L i Viom + 0k DX + Tio /0 txljﬁ,,T,i dr} dv dt,

to .
Ey(y,w) = —/ / (t- to)(gfmv'vm + Lix@imViom + okl x + %T) dvV dt,
0 Ja 0

Es(¢,w) =to / [0V Wili=o + L Vioml =0 + 0k x li=0®° + €T |1=0°
Q

+ (ctmnemn (V°,9°) + Bunmn (V0 9°) + Sy Vi (V25 9°)

+amm)Tlizo] dV.

The first functional is defined for any pairs of functions (u,¢@,¢) € CI(Q), v, ¥, x) €
él(Q), and the second functional corresponds to the pair of functions (7', ), both from
Q).

The functionals E3(z, w), E4(y, w), and E5(¢, w) are defined for the elements

2= (V> Bjks ), 0) € C([0, 8); C1 (),
w= ((WWH 1/’//0 X)), T) € Coo([O: tO); 61(9)):
¥ = (f g b r) € C([0, to);CO(Q)),

¢ = (0, ¢0.0%0%), Vo dp € CH(Q),¢% 0% e C(Q),

respectively.
To obtain the proposed outcomes, we must force the functional E; to satisfy the follow-

ing condition.
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There is a positive constant ¢; so that, for any (w, ¥, x) € C1(Q), we have

El ((W: 'ﬁ: X): (W, '/’r X))

3
s [ 3 [0 R0 + 1 b 0) + it ]V (13)
Q m,n,r=1
Also, for any ¢ € C(R), there is positive constant ¢, so that E, satisfies the following
inequality:
Ey(9,9) > Cz/ K,'jl?'iﬁ,jdv. (14)
Q

Regarding the material properties, we must impose the conditions
c>0, To >0, p >0, I > 0. (15)

With a suggestion from [26, 27], we deduce that there is a positive constant c3 such that
E, satisfies the following inequality:

E ((V: .0).(v. 9, (ﬂ))

> C3 / [vam + ¢jk¢jk + O@mPm + VinVmn + ¢jk,l¢jk,l + ¢,mn§0,mn] dv: (16)
D

so that we are led to the conclusion that E1((v, ¥, x), (v, ¥, x)) is a coercive functional on
the Hilbert space Hi(Q).

In what follows the next identity will be useful which is satisfied by Es(z, w), by replacing
z with w:

B = [ ’ | {(t— to>[@wmwm + Dillon + kR
+ Ajjmnemn(W)e;(w) + 2Gjnnei(W)e,(w)
+ 2Fjjnnr €5 (W) Vinr (W) + Bijpun (W) & pin(W)
+ Dyjimnr&ii(W) Virr W) + Cijtomnr Visk (W) Viranr (W) (17)

+ 2ace;(W)Qk + 2bijkeii(W) i + 2Cijkm Vik(W)P,m
1 t

+ din,iX,j + CT2 + — / KijT,jT,i dT] dv
To Jo

to .. .
+ 0} / (pwmwm + L Wjm Wiom + pkx? + aT2)t=0 d\/} dt.
Q
A solution with finite energy, which we will introduce further, is more rigorously defined

in the context of Hilbert spaces.
In this regard, we introduce the following scalar product:

((Vm’ ¢jk! @, ﬂ): (WWH ij’ X T))l

to .
= / / [Vmwm + ¢jk1//jk + QX + VWi
0 Q
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t
+ d’jk‘/fjk + §0X + Vim,nWmn + ¢]’k,iwjk,i tOmXm t vT + / ﬂ,m T,m:| dth, (18)
0

and denote by H} the Hilbert space endowed with the norm induced by the scalar product
(18). The following scalar product defined by

((Vm» ¢jkr @, ﬁ)’ (Wm’ wjk) X T))z
= <(Vm7 biks ¢ D), Wi, ik X» T)>1 + <(Vm: ik ¢, 3), (Wi, Yk X T)>1

induces a norm, and we denote by H? the Hilbert space endowed with this norm.
Finally, on the set

{0, 9): (v = W Bt 9),9) € CHS), (W = Wi, Y1, X),9) € CHRQ)},

we define a scalar product which induces the norm

1
|(V: w, 19)|0 = { 2 A[mewm + Lk Wjm Wiom + ka2
+ Aljmnemn(v)élj(w) + Gijmn (elj(V)gmn(W) + eij(w)gmn(V))
+ oy (€50) Virinr W) + €5(W) Yy (V)) + By (V)E ()

+ Dijmnr (Sij (V) Ymnr (W) + gij(w) Ymnr (V)) + Cijkmnr Vijk (V) Ymnr (W)

+ agii (€5 (Vo + e5(W) x ) + by (e5(Mp.x + £5(W) xx)

1/2
+ Cijton (Vi )@ + Vie W) xom) + dijpix + €9?] dV} ,

and the spaces endowed with this norm will be denoted by Hj.
Considering hypotheses (13)—(16) and taking into account the previous identity (17), we
can deduce that there is a constant ¢4 > 0, which depends only on ¢, &, and T so that, for

all € H3, the next inequality occurs:

lo|* < caE3(w,0). (19)
For the mixed problem P, we consider an arbitrary solution u = (v,,, $jx, ¢) and use the
notation y = (4,9) in order to introduce the notion of finite energy solution by means of

the following definition.

Definition 1 We assume that the following two conditions are met:

E3(z,w) = Ea(y,w) + E5(8,w),  ¥Yw = (W, ¥ x), T) € Hy(Q), (20)
lim 1(s) = o, in Ho(€2). (21)

Then, we call the solution with finite energy of the problem P as being the ordered array
(Vi $jx> ), ) corresponding to the initial conditions ¢ = ((+9,), ( 3(),(/)0,190) and to the
following loads z = ((f,»), (gjx), L, ).
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Let us suppose that we have given such kind of solution of the above defined problem P.
Then we will be able to determine other solutions with finite energy.
In this sense, we introduce the following notations:

S, 5) = w0 (x) + /sfm(x,f)dt,
0

N

G s) = U2 + fo il 1) dr,
I(x,s) = x° i, 7 d,
(x,8) = x (x)+/0 (x,7)dT
;'(x’s) = %[amn (x)emn (VO) + Binn (x)gmn (Vo)
+ Sanr (%) Vimnr (vo) +c(x)0° + am(x)(pgn] + /s rix,t)dr.
0

With the help of the finite energy solution ((v,., ¢jx, ¢), '), we can obtain a new finite energy
solution. To this aim we will use the procedure proposed by Dafermos in the paper [20]
and obtain the following result.

Theorem 1 If y = ((Vi, djx, ¢), V) is a solution with finite energy for the problem P cor-
responding to the sources z = (f,u, gk, l,7) and to the inhomogeneous initial relations & =
(V?n, 2(, @°,90), then the ordered array 5 = (¥, qAS/k, @), 1§) defined by

s
5/:/ y(x,T)dt
0

satisfies the problem P as a solution with finite energy, but corresponding to the above
defined loads % = (f,,, ;g,-k,?, 7) and to the particular initial relations § = (0,0, ¢°,0).

If we adapt the procedure proposed by Dafermos in [20], we can prove that the mixed
problem P cannot admit more than one finite energy solution. This uniqueness result is

included in the following theorem.

Theorem 2 The mixed problem in the context of thermoelasticity of dipolar porous bodies
cannot admit more than one finite energy solution corresponding to some prescribed sources
and to some prescribed initial data.

In the next theorem we obtain a result regarding the existence for a finite energy solu-
tion and, also, an estimation of the respective solution, considering the simple situation
of homogeneous initial conditions. The demonstration is made following step by step the
procedure proposed by Dafermos in [20].

Theorem 3 Let us consider mixed problem P in the context of thermoelasticity of dipolar
porous bodies which corresponds to the particular case of null initial conditions, the loads
remaining arbitrary and of class Ly. Then the existence of at least one finite energy solution
¥ = (V> Djis 0, V) is ensured. Moreover, it can find a constant cs > 0 that depends only on t,
p, and Ty so that the solution satisfies the following inequality:

Iyl < csllzllLy (o) xLa(Q0)s
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where we used the notations

zZ= ((fm): (gjk)rl:r);
Q() = [0, lf()) x Q.

A final result of our study is the proof of a theorem on the existence of at least one
solution in the situation where initial relations have their most general form.

In other words, we will expand the existence result included in Theorem 2, starting from
the simple situations of the homogeneous initial conditions to the case of initial data in
their most general inhomogeneous form.

Let us consider the following system:

Ei(v,w) = L[(amnemn(w) + ﬂmngmn(a)) + 8mnr)’mnr(w)

+ ﬂmw,m + CT)T} — PVmWm _Ijkd)jrl/fkr - ka
+ OfnWm + PGk ik + ,olx] av, Yo=Wu ¥ x,T) € WI(Q), (22)

EQ(Tr ﬂ) = _/ {TO[amnemn(u) + ﬂmngmn + 5mrtrymnr(l't)
Q

+ @Y +al]|-or}9dV, VT e Wi(Q),
and the map

T(): Ho(2) — H(S2),

T
(Wm: ij; X T) g (er ¢jk7 @, 19)

Then the ordered array (w,,, ¥j, x, T) is named the solution for the above system (22).

This kind of solution will be used to obtain the existence result in the case of initial data
in their most general inhomogeneous form. But, to obtain this general result, we need the
auxiliary result included in the next theorem.

Theorem 4 Counsider an arbitrary system of sources z = (fu, gk, 1, 1), z € Hy(2) and the
general initial data § = (V°,, ]9(, @°,9°). Then the map T (z) is well defined and is a one-to-
one application. As such, it admits the inverse map T '(z) which transfers any element z
from the set T (Ho(2)) C H(R2), that is, the co-domain of T, to an element from the space
Hy(S2).

Moreover, for the solution obtained with the help of the map T, a positive constant cs can
be found such that the next inequality is satisfied:

| T |y )t @y = 61181+ Izlmg@xro(n }-

Proof First, we have to consider the fact that E; is subject to inequality (13). Then, we take
into account that E; (w, w) is a coercive application regarding the norm |||y, @) from the
space H;(€2). This affirmation can be deduced by using inequality (16). Next we can follow
step by step the procedure used by Fichera in his work [21]. d
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Finally, we will prove our main result on existence. To this aim, we generalize the map
T to the map 7, as follows:

7;(ZO> APRRD ,Zv—l) = T(ZO) o T(zl) OO0 T(Zv—l)r
Toloyosenny) t Ho(R2) = H(R),

which is defined for some arbitrary sources zo,z1,...,2Zy-1.

Let us denoted by H,,(B; y0,¥1,-- - ¥m-1) the co-domain of the map
7;0/0)_)/1; o )y\)—l) : HO(Q) - H(Q),
and we use abbreviated writing

Hm(Q) = Hm(Q;yO)yly« . ';ym—l),

so that for an arbitrary element § € H,,(2), we can consider the new norm
181, = |7,71(0,0,...,0)5] .

Taking into account the above new approaches, we can address the issue of the existence
of at least one solution having an energy finite in the situation in which the initial relations
have a nonhomogeneous initial data.

Theorem 5 Inthermoelasticity of dipolar porous bodies, the mixed problem P correspond-
ing to boundary conditions (11), to the sources

()
z= (fm:gjk: l; r) € Cv_l ([0: tO)’H(Q))! ze Ll ((Or tO)!H(Q));
and to the following initial data:

1 v—1
8= (vhy o9 0°) eHm(Q;z(O),(z) (0),...,( z )(0)) forv=1,2,....

m’

. . . ) qv
has at least one finite energy solution, y € Hi (), where we used the notation u = ‘;73‘ to
1
designate the generalized derivative of a fixed order v for the function u = u(z1,2s,...,2m)
regarding its variables (21,22, ..., Zm)-

Proof To obtain this result, we must follow step by step the procedure used by Fichera in
his work [21]. O

4 Conclusions

After we highlight the basic equations and the specific initial and boundary relations for
the mixed problem from the context formulated above, we define the solutions with finite
energy and propose a method to obtain other types of solutions with finite energy. It is im-
portant to specify that we prove the uniqueness of a solution in the most general situation
in which both the initial data and the boundary conditions are inhomogeneous. In the last
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theorem we obtain the existence of at least one finite solution in the most general case
of inhomogeneous initial relations, starting from the particular previously demonstrated
case. We emphasize once again that our results are generalizations of those obtained by
Fichera and Dafermos in the simple context of classical linear elasticity. It is interesting to
note that the results are similar to those of classical elasticity, even though in our context
the basic equations and conditions are much more complicated, because we considered
the presence of the temperature, the pores contribution, and the dipolar structure contri-
bution.
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