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Abstract
This paper studies the Cauchy problem of the 3D incompressible micropolar
equations with a damping term σ |u|β–1u (σ > 0, 1 ≤ β < 3). It is shown that the
strong solutions exist globally for any 1≤ β < 3.
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1 Introduction
We consider the Cauchy problem of the 3D incompressible micropolar equations with a
nonlinear damping term σ |u|β–1u (σ > 0, 1 ≤ β < 3) (see [5]):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut + u · ∇u – (ν + κ)�u + σ |u|β–1u + ∇p = 2κ∇ × w,

wt + u · ∇w + 4κw – γ�w – μ∇divw = 2κ∇ × u,

divu = 0,

u(x, 0) = u0(x), w(x, 0) = w0(x),

(1.1)

where u ∈ R
3, w ∈ R

3, p ∈ R are the velocity field of fluid, the field of microrotation rep-
resenting the angular velocity of the rotation of the fluid particles and the scalar pressure,
respectively. The parameter ν is the kinematic viscosity; κ is the microrotation viscosity;
γ and μ are the angular viscosities; σ is the damping coefficient.

When w = 0 and κ = 0, the system (1.1) is reduced to the incompressible damped
Navier–Stokes equations which was studied firstly by Cai and Jiu [1]. They proved that the
corresponding equations admit a global weak solution for any β ≥ 1 and a global strong
solutions for β ≥ 7

2 . Moreover, the uniqueness was shown for any 7
2 ≤ β ≤ 5. We refer to

[3, 4, 6–8] for more results on the Navier–Stokes equations with a damping term.
Recently, the Cauchy problem (1.1) was considered by Ye [5]. It was proved that system

(1.1) admits global strong solution for any β ≥ 3. In this paper, we aim to study existence
of global solutions under some smallness condition of the initial data for any 1 ≤ β < 3.
Before stating our main results, we firstly state the local strong solutions to (1.1), which
can be proved by the similar technique as in [2]. Thus, we omit the details.
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Theorem 1.1 Suppose that 1 ≤ β < 3, (u0, w0) ∈ H1(R3) with div u0 = 0. Then there exist
a small positive time T0 and a unique strong solution (u, w) to the Cauchy problem (1.1) in
R

3 × (0, T0].

Now, our main results read as follows.

Theorem 1.2 Assume that (u0, w0) ∈ H1(R3) with div u0 = 0. (u, w)(x, t) is the correspond-
ing local strong to (1.1). For 1 ≤ β < 3, let T∗ > 0 be a maximal existence time of the solution.
If T∗ < ∞, then

lim
T→T∗ ‖u‖Ls(0,T ;Lr) = ∞, with

2
s

+
3
r

≤ 1, 3 < r < ∞. (1.2)

Theorem 1.3 Suppose (u0, w0) ∈ H1(R3) with div u0 = 0. If 1 ≤ β < 3, then there exists a
small positive constant ε0 depending only on μ, γ , σ , κ and ν , such that if

(‖w0‖2
L2 + ‖u0‖2

L2
)(‖∇w0‖2

L2 + ‖∇u0‖2
L2

) ≤ ε0, (1.3)

the Cauchy problem (1.1) admits a unique global strong solution, satisfying

(u, w) ∈ L∞(
0, T ; H1(

R
3)) ∩ L2(0, T ; H2(

R
3)),

|u| β–1
2 ∇u ∈ L2(0, T ; L2(

R
3)), ∇|u| β+1

2 ∈ L2(0, T ; L2(
R

3)).

Remark 1 When w = 0 and κ = 0, Theorem 1.1 and 1.2 generalize the previous results for
the 3D Navier–Stokes equations with a damping term (see [7, 8]).

2 The proof of Theorem 1.2
This section is devoted to the proof of Theorem 1.2. In what follows, C denotes a generic
positive constant depending only on μ, γ , σ , ν , κ and β . Let (u, w) be a strong solution of
(1.1) onR

3 ×(0, T) described in Theorem 1.1. As aforementioned, we shall prove Theorem
1.2 by contradiction arguments. So, from now on we assume otherwise that

∫ T∗

0
‖u‖s

Lr dt = M0 < ∞, (2.1)

with 2
s + 3

r ≤ 1, 3 < r < ∞.
First, multiplying (1.1)1 and (1.1)2 by u and w, respectively, integrating (by parts) the

resulting equations over R3, we have

1
2

d
dt

∫
(|u|2 + |w|2)dx + σ

∫

|u|β+1 dx + (ν + κ)
∫

|∇u|2 dx

+ γ

∫

|∇w|2 dx + 4κ

∫

|w|2 dx + μ|divw|2 dx

= –
∫

u · ∇u · u dx –
∫

u · ∇w · w dx + 2κ

∫

(∇ × w) · u dx + 2κ

∫

(∇ × u) · w dx

= 2κ

∫

(∇ × w) · u dx + 2κ

∫

(∇ × u) · w dx
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= 4κ

∫

(∇ × u) · w dx ≤ κ‖∇u‖2
L2 + 4κ‖w‖2

L2 , (2.2)

which integrate with respect to t,

∥
∥u(t)

∥
∥2

L2 +
∥
∥w(t)

∥
∥2

L2 +
∫ t

0

(
2ν‖∇u‖2

L2 + 2γ ‖∇w‖2
L2

)
dx ≤ ‖u0‖2

L2 + ‖w0‖2
L2 . (2.3)

Next, multiplying (1.1)1 by –�u and integrating (by parts) the resulting equations over
R

3. By Hölder’s, Young’s and the Gagliardo–Nirenberg inequalities, we have

1
2

d
dt

∫

|∇u|2 dx + σβ

∫

|u|β–1|∇u|2 dx + (ν + κ)
∫

|�u|2 dx

=
∫

u · ∇u · �u dx – 2κ

∫

(∇ × w) · �u dx

≤ ν + κ

4
‖�u‖2

L2 +
2

ν + κ

∫

|u|2|∇u|2 dx +
8κ2

ν + κ
‖∇w‖2

L2

≤ ν + κ

4
‖�u‖2

L2 +
C

ν + κ
‖u‖2

Lr ‖∇u‖2

L
2r

r–2
+

8κ2

ν + κ
‖∇w‖2

L2

≤ ν + κ

4
‖�u‖2

L2 +
8κ2

ν + κ
‖∇w‖2

L2 +
C

ν + κ
‖u‖2

Lr ‖∇u‖
2(r–3)

r
L2 ‖�u‖ 6

r
L2

≤ ν + κ

2
‖�u‖2

L2 +
8κ2

ν + κ
‖∇w‖2

L2 +
C

(ν + κ)2 ‖u‖ 2r
r–3
Lr ‖∇u‖2

L2 (2.4)

with arbitrary r > 3.
Similarly, multiplying (1.1)2 by –�w and integrating (by parts) the resulting equations

over R3, we have

1
2

d
dt

∫

|∇w|2 dx + γ

∫

|�w|2 dx + 4κ

∫

|∇w|2 dx + μ|∇divw|2 dx

=
∫

u · ∇w · �w dx – 2κ

∫

(∇ × u) · �w dx

≤ γ

4
‖�w‖2

L2 +
2
γ

∫

|u|2|∇w|2 dx +
8κ2

γ
‖∇u‖2

L2

≤ γ

2
‖�w‖2

L2 +
8κ2

γ
‖∇u‖2

L2 +
C
γ 2 ‖u‖ 2r

r–3
Lr ‖∇w‖2

L2 . (2.5)

Adding (2.4) and (2.5), by Gronwall’s inequality and (2.3), we have

‖∇u‖2
L2 + ‖∇w‖2

L2 +
∫ t

0

(‖�u‖2
L2 + ‖�w‖2

L2
) ≤ C

(‖∇u0‖2
L2 + ‖∇w0‖2

L2
)
. (2.6)

Therefore, if u ∈ Ls(0, T ; Lr) with 2
s + 3

r ≤ 1, we can take (u, w)|t=T∗ as the initial data, then
the local strong solutions (u, w) can be extended beyond T∗. This contradicts the assump-
tion that T∗ > 0 is the maximal existence time. The proof of Theorem 1.2 is complete.

3 The proof of Theorem 1.3
Throughout this section, we denote

C0 := ‖u0‖2
L2 + ‖w0‖2

L2 . (3.1)
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Let (u, w) be the strong solution to the problem (1.1) on R
3 × (0, T), then one has the

following estimates. First, we infer from (2.4) and (2.5) that

1
2

d
dt

∫
(|∇u|2 + |∇w|2)dx + σβ

∫

|u|β–1|∇u|2 dx + (ν + κ)
∫

|�u|2 dx

+ γ

∫

|�w|2 dx + 4κ

∫

|∇w|2 dx + μ|∇divw|2 dx

=
∫

u · ∇u · �u dx +
∫

u · ∇w · �w dx – 4κ

∫

(∇ × w) · �u dx

≤ 4κ‖∇w‖2
L2 +

(

κ +
ν

4

)

‖�u‖2
L2 +

γ

2
‖�w‖2

L2

+
1
ν

∫

|u|2|∇u|2 dx +
1

2γ

∫

|u|2|∇w|2 dx

≤ 4κ‖∇w‖2
L2 +

(

κ +
ν

4

)

‖�u‖2
L2 +

γ

2
‖�w‖2

L2 +
1
ν
‖u‖2

L∞‖∇u‖2
L2

+
1

2γ
‖u‖2

L∞‖∇w‖2
L2

≤ 4κ‖∇w‖2
L2 +

(

κ +
ν

4

)

‖�u‖2
L2 +

γ

2
‖�w‖2

L2

+ C‖u‖L6‖�u‖L2

(
1
ν
‖∇u‖2

L2 +
1

2γ
‖∇w‖2

L2

)

≤ 4κ‖∇w‖2
L2 +

(

κ +
ν

2

)

‖�u‖2
L2 +

γ

2
‖�w‖2

L2 +
C
ν3 ‖∇u‖6

L2

+
C
γ 3 ‖∇u‖2

L2‖∇w‖4
L2 . (3.2)

Then we obtain after integrating (3.2) with respect to t

sup
0≤s≤t

(‖∇u‖2
L2 + ‖∇w‖2

L2
)

+
∫ t

0

(‖�u‖2
L2 + ‖�w‖2

L2
)

ds

+
∫ t

0

(

σ
∥
∥|u| β–1

2 ∇u
∥
∥2

L2 +
4σ (β – 1)
(β + 1)2

∥
∥∇|u| β+1

2
∥
∥2

L2

)

ds

≤ ‖∇u0‖2
L2 + ‖∇w0‖2

L2 + C1

∫ t

0

(‖∇u‖6
L2 + ‖∇u‖2

L2‖∇w‖4
L2

)
ds

≤ ‖∇u0‖2
L2 + ‖∇w0‖2

L2 + C1 sup
0≤s≤t

(‖∇u‖4
L2 + ‖∇w‖4

L2
)
∫ t

0
‖∇u‖2

L2 ds

≤ ‖∇u0‖2
L2 + ‖∇w0‖2

L2 + C1C0 sup
0≤s≤t

(‖∇u‖4
L2 + ‖∇w‖4

L2
)
. (3.3)

Next, define the function A(t) as follows:

A(t) := sup
0≤s≤t

(‖∇u‖2
L2 + ‖∇w‖2

L2
)
. (3.4)
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Due to the regularity of u and w, one can deduce that A(t) is a continuous function on
[0, T]. According to (3.3), we have

A(t) ≤ ‖∇u0‖2
L2 + ‖∇w0‖2

L2 + C1C0A2(t). (3.5)

Now, by (3.5), one can prove that

A(t) ≤ 3
(‖∇u0‖2

L2 + ‖∇w0‖2
L2

)
. (3.6)

In fact, we assume that

(‖u0‖2
L2 + ‖w0‖2

L2
)(‖∇u0‖2

L2 + ‖∇w0‖2
L2

) ≤ ε0 (3.7)

and set

T∗ := max
{

t ∈ [0, T] : A(t) ≤ 3
(‖∇u0‖2

L2 + ‖∇w0‖2
L2

)
,∀s ∈ [0, t]

}
. (3.8)

Then we claim that

T = T∗.

Otherwise, we have T∗ ∈ (0, T). By the continuity of A(t), it follows from (3.5), (3.7)–(3.8)
that

A(T∗) ≤ ‖∇u0‖2
L2 + ‖∇w0‖2

L2 + C1C0A2(T∗)

≤ ‖∇u0‖2
L2 + ‖∇w0‖2

L2 + 3C1C0
(‖∇u0‖2

L2 + ‖∇w0‖2
L2

)
A(T∗)

≤ ‖∇u0‖2
L2 + ‖∇w0‖2

L2 +
1
2

A(T∗), (3.9)

here, we choose ε0 = 1
6C1

. Thus, from (3.9) we deduce that

A(T∗) ≤ 2
(‖∇u0‖2

L2 + ‖∇w0‖2
L2

)
. (3.10)

This contradicts (3.8). Hence, by virtue of the argument of continuity and (3.10), we can
easily get the desired (3.6).

Finally, we ready to give the proof of Theorem 1.2. In fact, due to Theorem 1.1, there is
a unique local strong solution (u, w) to Eqs. (1.1). Let T∗ be the maximal existence time
to the solution. We will show that T∗ = ∞. Otherwise, by contradiction, we take T∗ < ∞,
then, by Theorem 1.2, we get, for any (s, r) with 2

s + 3
r ≤ 1, 3 < r < ∞,

∫ T∗

0
‖u‖s

Lr dt = ∞, (3.11)

which together with Sobolev’s inequality ‖u‖L6 ≤ C‖∇u‖L2 leads to

∫ T∗

0
‖∇u‖4

L2 dt = ∞. (3.12)
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On the other hand, by Hölder’s inequality, the Gagliardo–Nirenberg inequality, (2.3) and
(3.7), we get

∫ T∗

0
‖∇u‖4

L2 dt ≤ sup
0≤t≤T∗

‖∇u‖2
L2

∫ T∗

0
‖∇u‖2

L2 dt

≤ C
(‖u0‖2

L2 + ‖w0‖2
L2

)(‖∇u0‖2
L2 + ‖∇w0‖2

L2
)

< +∞, (3.13)

contradicting (3.12). This contradiction shows that T∗ = ∞, and thus we obtain the global
strong solution of (1.1). This ends the proof of Theorem 1.3.
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