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Abstract
In the present paper, we consider the following singularly perturbed problem:

{
–ε2�u + V(x)u – ε2�(u2)u = ε–α (Iα ∗ G(u))g(u), x ∈R

N ;

u ∈ H1(RN),

where ε > 0 is a parameter, N ≥ 3, α ∈ (0,N), G(t) =
∫ t
0 g(s)ds, Iα :RN →R is the Riesz

potential, and V ∈ C(RN ,R) with 0 < minx∈RN V(x) < lim|y|→∞ V(y). Under the general
Berestycki–Lions assumptions on g, we prove that there exists a constant ε0 > 0
determined by V and g such that for ε ∈ (0,ε0] the above problem admits a
semiclassical ground state solution ûε with exponential decay at infinity. We also
study the asymptotic behavior of {ûε} as ε → 0.
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1 Introduction
In this paper, we consider the following singularly perturbed quasilinear Choquard equa-
tion:⎧⎨

⎩–ε2�u + V (x)u – ε2�(u2)u = ε–α(Iα ∗ F(u))f (u), x ∈R
N ;

u ∈ H1(RN ),
(1.1)

where ε > 0 is a parameter, N ≥ 3, α ∈ (0, N), and Iα : RN → R is the Riesz potential defined
by

Iα(x) =
�( N–α

2 )
�( α

2 )2απN/2|x|N–α
, x ∈ R

N \ {0},

G(t) =
∫ t

0 g(s) ds, V : RN →R and g : R→ R satisfy the following basic assumptions:
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(V1) V ∈ C(RN ,R) and 0 < V0 := minx∈RN V (x) < V∞ := lim|y|→∞ V (y);
(G1) g ∈ C(R,R), G(t) = o(t(N+α)/N ) as t → 0, and there exists a constant C0 > 0 such that

∣∣g(t)t
∣∣ ≤ C0

(|t|(N+α)/N + |t|2(N+α)/(N–2)), ∀t ∈R;

(G2) G(t) = o(t2(N+α)/(N–2)) as |t| → ∞;
(G3) There exists s0 > 0 such that G(s0) 	= 0.

Note that (V1) was introduced by Rabinowitz in [23], and (G1)–(G3) were almost nec-
essary and sufficient conditions and regarded as the Berestycki–Lions type conditions to
Choquard equations, which were introduced by Moroz and Van Schaftingen in [19] for
the study of (1.1) with ε = 1. Without loss of generality, in this paper we assume that

0 ∈ �0 :=
{

x ∈R
N : V (x) = V0 = min

x∈RN
V (x)

}
. (1.2)

If the nonlocal term (Iα ∗ F(u))f (u) is replaced with a local nonlinear term h(x, u), then
(1.1) reduces to the well-known quasilinear Schrödinger equation introduced in [3, 4, 12]
to study a model of self-trapped electrons in quadratic or hexagonal lattices. If the term
�(u2)u is absent, then (1.1) is usually called the nonlinear Choquard equation, which was
introduced by Pekar [22], and it describes the quantum mechanics of a polaron at rest. We
refer to [1, 2, 6, 7, 9, 10, 13–20, 25] and the references therein in either cases for ε = 1.

This paper was motivated by some recent works of Yang, Zhang, and Zhao [28] and
Yang, Tang, and Gu [26, 27], and Zhang and Ji [29], in which quasilinear Choquard equa-
tions were considered. In particular, for ε = 1, Yang, Zhang, and Zhao [28] in 2018 first
considered the existence of nontrivial solutions for the quasilinear Choquard equation
(1.1), where N ≥ 3, α ∈ (0, N), and f (u) = |u|p–2u with 2 < p < 2(N + α)/(N – 2), by using
variational and perturbation method. Later, this result was extended partly by [26, 29].

As ε → 0, the existence and asymptotic behavior of the solutions of the singularly per-
turbed equation (1.1) are known as the semi-classical problem, which was used to describe
the transition between of quantum mechanics and Newtonian mechanics, see Floer and
Weinstein [11] for the pioneering work. In [27], Yang, Tang, and Gu considered singularly
perturbed equation (1.1) under (V1), (G1), (G2) and the following assumption:

(G3′) g ∈ C1(R,R), g(t) = 0 for t ≤ 0, and g(t)
t3 is positive and increasing in (0,∞).

Based on the dual approach and the Nehari manifold method, the existence, multiplicity,
and concentration behavior of positive solutions were obtained.

Different from those in the previous papers [26–29], in this paper, we consider the ex-
istence and concentration of ground state solutions for the more generalized quasilinear
Choquard equation (1.1) under the general “Berestycki–Lions assumptions” on the non-
linearity g which are almost necessary. To state our result, we introduce the following
conditions:

(V2) V ∈ C1(RN ,R) and t �→ NV (tx)+∇V (tx)·(tx)
tα is nonincreasing on (0,∞) for all

x ∈R
N \ {0};

(G4) g(t) = o(t) as t → 0.
Obviously, (G1)–(G4) are much weaker than those used in [26–29]. Our result is as fol-
lows.
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Theorem 1.1 Assume that V and g satisfy (V1), (V2), and (G1)–(G3). Then there exists
a number ε0 > 0 determined by V and g , see (3.23), such that for all ε ∈ (0, ε0], (1.1) has a
ground state solution ûε . If (G4) holds also, then the following statements hold:

(i) For ε ∈ (0, ε0], the function |ûε| achieves its maximum at a point xε , which satisfies

lim
ε→0

V (xε) = V0 = min
x∈RN

V (x);

(ii) There exist �0 > 0 and κ0 > 0 independent of ε ∈ (0, ε0] such that the maximum
point xε of |ûε| satisfies the inequality

∣∣ûε(x)
∣∣ ≤ �0 exp

(
–

κ0

ε
|x – xε|

)
, ∀x ∈R

N , ε ∈ (0, ε0];

(iii) For any sequence εn → 0, the sequence ûεn (εnx + xεn ) converges in H1(RN ) to a
ground state solution u of the following autonomous equation:

–�u + V0u – �
(
u2)u =

(
Iα ∗ F(u)

)
f (u). (1.3)

The rest of the paper is organized as follows. In Sect. 2, we give variational setting and
preliminary lemmas. Section 3 is devoted to the proof of the existence of ground state
solutions. In the last section, we establish the concentration of ground state solutions and
prove Theorem 1.1.

Next, we give some notations. H1(RN ) is the usual Sobolev space with the standard scalar
product and the norm

(u, v) =
∫
RN

(∇u · ∇v + uv) dx, ‖u‖ = (u, u)1/2, ∀u, v ∈ H1(
R

N)
.

Ls(RN ) (1 ≤ s < ∞) denotes the Lebesgue space with the norm ‖u‖s = (
∫
RN |u|s dx)1/s. We

use C1, C2, . . . to indicate positive constants possibly different in different places.

2 Variational setting and preliminary lemmas
Observe that formally (1.1) is the Euler–Lagrange equation associated with the following
functional:

Iε(u) =
ε2

2

∫
RN

(
1 + 2u2)|∇u|2 dx +

1
2

∫
RN

V (x)u2 dx –
1
2

∫
RN

(
Iα ∗ G(u)

)
G(u) dx. (2.1)

It is well known that Iε is not well defined in general in H1(RN ). To overcome this difficulty,
we employ an argument developed by Colin and Jeanjean [9] (see also [14]). We make the
change of variables by v = f –1(u), where f is defined by

f ′(t) =
1√

1 + 2|f (t)|2 on [0, +∞), f (–t) = –f (t) on (–∞, 0]. (2.2)

After the change of variables from Iε , we obtain the following functional:

Jε(v) = Iε(u) = Iε

(
f (v)

)
=

ε2

2

∫
RN

|∇v|2 dx +
∫
RN

V (x)f 2(v) dx –
1
2

∫
RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
dx, (2.3)
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which is well defined on the space H1(RN ). Then the critical points of (2.3) are weak so-
lutions of the equation

–ε2�v =
1√

1 + 2|f (v)|2
[(

Iα ∗ G
(
f (v)

))
g
(
f (v)

)
– V (x)f (v)

]
, x ∈R

N . (2.4)

Note that if v is a critical point of (2.3), then u = f (v) is a weak solution of (1.1) (see [9,
pp. 217–218]). Replacing v(εx) with v(x), one easily sees that (2.4) is equivalent to

–�v =
1√

1 + 2f 2(v)
[(

Iα ∗ G
(
f (v)

))
g
(
f (v)

)
– V (εx)f (v)

]
, x ∈R

N . (2.5)

The energy functional associated with problem (2.5) is given by


ε(v) =
1
2

∫
RN

|∇v|2 dx +
1
2

∫
RN

V (εx)f 2(v) dx –
1
2

∫
RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
dx. (2.6)

Lemma 2.1 The function f (t) and its derivative satisfy the following properties:
(f1) f is uniquely defined, C∞ and invertible, and 0 < f ′(t) ≤ 1 for all t ∈R;
(f2) |f (t)| ≤ |t| and |f (t)| ≤ 21/4|t|1/2 for all t ∈R;
(f3) f (t)/t → 1 as t → 0 and f (t)/

√
t → 21/4 as t → +∞;

(f4) f (t)/2 ≤ tf ′(t) ≤ f (t) for all t > 0 and f (t) ≤ tf ′(t) ≤ f (t)/2 for all t ≤ 0;
(f5) There exists a positive constant θ0 such that

∣∣f (t)
∣∣ ≥

⎧⎨
⎩θ0|t|, |t| ≤ 1,

θ0|t|1/2, |t| > 1.

From (G1), Hardy–Littlewood–Sobolev inequality, and (f2) of Lemma 2.1, we deduce
that, for some p ∈ (2, 2∗) and any ε > 0,

∫
RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
dx

=
�( N–α

2 )
�( α

2 )2απN/2

∫
RN

∫
RN

G(f (v))G(f (v))
|x – y|N–α

dx dy ≤ C1
∥∥G

(
f (v)

)∥∥2
2N/(N+α)

≤ ε
(∥∥f (v)

∥∥2(N+α)/N
2 +

∥∥f (v)
∥∥2(N+α)/(N–2)

2·2∗
)

+ Cε

∥∥f (v)
∥∥(N+α)p/N

2p

≤ ε
(‖v‖2(N+α)/N

2 + 2(N+α)/2(N–2)‖v‖2(N+α)/(N–2)
2∗

)
+ Cε2(N+α)p/(4N)‖v‖(N+α)p/N

p ,

∀v ∈ H1(
R

N)
. (2.7)

As in [25, Lemma 2.1, Lemma 2.2], we have the following result.

Lemma 2.2 Assume that (V1) and (V2) hold. Then, for all t ≥ 0 and y ∈R
N ,

h(t, y) :=
(
α + NtN+α

)
V (y) – (N + α)tN V (ty) +

(
tN+α – 1

)∇V (y) · y ≥ 0. (2.8)

Moreover, |∇V (y) · y| → 0 as |y| → ∞.
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For all ε > 0, we define a functional on H1(RN ) as follows:

Pε(v) :=
N – 2

2
‖∇v‖2

2 +
1
2

∫
RN

[
NV (εx) + ∇V (εx) · εx

]
f 2(v) dx

–
N + α

2

∫
RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
dx, (2.9)

which is associated with the Pohoz̆aev identity Pε(v) = 0 of (2.5), and set

Mε :=
{

v ∈ H1(
R

N) \ {0} : Pε(v) = 0
}

. (2.10)

By elemental calculations, we can get the following inequality:

h1(t) := 2 + α – (N + α)tN–2 + (N – 2)tN+α > h1(1) = 0, ∀t ∈ [0, 1) ∪ (1, +∞). (2.11)

In what follows, we define vt(x) := v(tx) for all x ∈R
N and t > 0 along any v ∈ H1(RN ) \ {0}.

Lemma 2.3 Assume that (V1), (V2), (G1), and (G2) hold. Then


ε(v) ≥ 
ε(vt) +
1 – tN+α

N + α
Pε(v) +

h1(t)
2(N + α)

‖∇v‖2
2, ∀v ∈ H1(

R
N)

, t > 0. (2.12)

Proof Observe that


ε(vt) =
tN–2

2
‖∇v‖2

2 +
tN

2

∫
RN

V (tεx)f 2(v) dx

–
tN+α

2

∫
RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
dx. (2.13)

By (2.6), (2.8), (2.9), and (2.13), we have


ε(v) – 
ε(vt)

=
1 – tN–2

2
‖∇v‖2

2 +
1
2

∫
RN

[
V (εx) – tN V (tεx)

]
f 2(v) dx

–
1 – tN+α

2

∫
RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
dx

=
1 – tN+α

N + α

{
N – 2

2
‖∇v‖2

2 +
1
2

∫
RN

[
NV (εx) + ∇V (εx) · εx

]
f 2(v) dx

–
N + α

2

∫
RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
dx

}

+
2 + α – (N + α)tN–2 + (N – 2)tN+α

2(N + α)
‖∇v‖2

2

+
1
2

∫
RN

{[
α + NtN+α

N + α
V (εx) – tN V (tεx)

]
–

1 – tN+α

N + α
∇V (εx) · εx

}
f 2(v) dx

≥ 1 – tN+α

N + α
Pε(u) +

h1(t)
2(N + α)

‖∇v‖2
2.

This shows that (2.12) holds. �
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Lemma 2.3 and (2.11) give the following consequence.

Corollary 2.4 Assume that (V1), (V2), (G1), and (G2) hold. Then, for v ∈Mε ,


ε(v) = max
t>0


ε(vt). (2.14)

Lemma 2.5 Assume that V satisfies (V1) and (V2). Then there exist constants γ1,γ2 > 0
independent of ε > 0 such that

NV (y) + ∇V (y) · y ≥ γ1, ∀y ∈R
N (2.15)

and

αV (y) – ∇V (y) · y ≥ γ2, ∀y ∈R
N . (2.16)

Proof By (2.8), we have limt→∞ h(t, x)/tN+α ≥ 0 for any y ∈R
N , and so

NV (y) + ∇V (y) · y ≥ 0, ∀y ∈R
N . (2.17)

Let Vmax := maxx∈RN V (x) ∈ (0,∞). Using (V1), (2.8), and (2.17), we have

NV (y) + ∇V (y) · y ≥ (N + α)tN V (ty) + ∇V (y) · y – αV (y)
tN+α

≥ (N + α)[tN V (ty) – V (y)]
tN+α

≥ (N + α)[tN V0 – Vmax]
tN+α

, ∀y ∈R
N , t > 0. (2.18)

Choose t = s1 = (2Vmax/V0)1/N , so that (2.18) gives

NV (y) + ∇V (y) · y ≥ (N + α)[sN
1 V0 – Vmax]

sN+α
1

≥ (N + α)Vmax

(
2Vmax

V0

)(N+α)/N

:= γ1, ∀y ∈R
N .

This completes the proof of (2.15). We next prove that (2.16) holds also. Note that (2.8)
yields that

αV (y) – ∇V (y) · y ≥ (N + α)tN

1 – tN+α

[
V (ty) – tN V (y)

]

≥ (N + α)tN

1 – tN+α

[
V0 – tN Vmax

]
, ∀y ∈R

N , 0 < t < 1. (2.19)
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Choose t = s2 = (V0/2Vmax)1/α ∈ (0, 1), then (2.19) implies that

αV (y) – ∇V (y) · y ≥ (N + α)sN
2

1 – sN+α
2

[
V0 – sN

2 Vmax
]

=
N + α

( 2Vmax
V0

)N/α – V0
2Vmax

V0

2
:= γ2, ∀y ∈ R

N .

This completes the proof of (2.16), and also of the lemma. �

To show Mε 	= ∅, we define a set � as follows:

� :=
{

v ∈ H1(
R

N)
:
∫
RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
dx > 0

}
. (2.20)

Lemma 2.6 Assume that (V1), (V2) and (G1)–(G3) hold. Then � 	= ∅ and Mε ⊂ �.

{
v ∈ H1(

R
N) \ {0} : Pε(v) ≤ 0

} ⊂ �. (2.21)

Proof In view of the proof of [19, The proof of Claim 1 in Proposition 2.1], (G3) implies
� 	= ∅. If v ∈ H1(RN ) \ {0} and Pε(v) ≤ 0, then it follows from (2.9) and (2.15) that

–
N + α

2

∫
RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
dx

= Pε(v) –
N – 2

2
‖∇v‖2

2 –
1
2

∫
RN

[
NV (εx) + ∇V (εx) · εx

]
f 2(v) dx

≤ –
N – 2

2
‖∇v‖2

2 < 0,

which implies v ∈ �. �

Arguing as in the proof of [25, Lemma 2.8], we get the following result.

Lemma 2.7 Assume that (V1), (V2), and (G1)–(G3) hold. Then, for any v ∈ �, there exists
unique tv > 0 such that vtv ∈Mε .

From Corollary 2.4, Lemmas 2.6 and 2.7, we have Mε 	= ∅ and the following lemma.

Lemma 2.8 Assume that (V1), (V2), and (G1)–(G3) hold. Then

inf
v∈Mε


ε(v) := mε = inf
v∈�

max
t>0


ε(vt).

Lemma 2.9 Assume that (V1), (V2), and (G1)–(G3) hold. Then there exists �0 > 0 inde-
pendent of ε such that mε = infv∈Mε 
ε(v) ≥ �0.

Proof Let A(v) :=
∫
RN [|∇v|2 + f 2(v)] dx for any v ∈ H1(RN ). Since Pε(v) = 0 for all v ∈Mε ,

by (2.7), (2.9), (2.15), and Sobolev embedding theorem, one has, for any v ∈Mε ,

min{N – 2,γ1}
2

A(v) ≤ 1
2

∫
RN

{
(N – 2)|∇v|2 +

[
NV (εx) + ∇V (εx) · εx

]
f 2(v)

}
dx

=
N + α

2

∫
RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
dx
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≤ min{N – 2,γ1}
4

∥∥f (v)
∥∥2(N+α)/N

2 + C1‖v‖2(N+α)/(N–2)
2∗

≤ min{N – 2,γ1}
4

[
A(v)

](N+α)/N + C2
[
A(v)

](N+α)/(N–2), (2.22)

which implies that there exists ρ0 > 0 independent of ε such that

∫
RN

[|∇v|2 + f 2(v)
]

dx ≥ ρ0, ∀v ∈Mε . (2.23)

Let {vn} ⊂Mε be such that 
ε(vn) → mε . From (2.23) and (2.12) with t → 0, we have

mε + o(1) = 
ε(vn) –
1

N + α
Pε(vn)

=
(2 + α)

2(N + α)
‖∇vn‖2

2 +
1

2(N + α)

∫
RN

[
αV (εx) – ∇V (εx) · εx

]
f 2(vn) dx (2.24)

≥ ρ0

2(N + α)
min{2 + α,γ2} := �0.

This shows that mε = infv∈Mε 
ε(v) ≥ �0. The proof is complete. �

Following the idea of [8, Lemma 2.14], we can prove the following lemma by using
Lemma 2.3, the deformation lemma, and intermediary theorem for continuous functions.

Lemma 2.10 Assume that (V1), (V2), and (G1)–(G3) hold. If v̄ ∈Mε and 
ε(v̄) = mε , then
v̄ is a critical point of 
ε .

3 Existence of ground state solutions for (2.5)
From now on in the paper, we always assume that (V1), (V2), and (G1)–(G3) hold without
further mentioning. In view of Lemma 2.10, to obtain the existence of a critical point of 
ε ,
it suffices to prove that mε can be attained. To this end, we have to overcome the difficulty
caused by the lack of the compactness of Sobolev embeddings. For this, we shall compare
mε with the minimax level of the following autonomous problems:

–�v =
1√

1 + 2|f (v)|2
[(

Iα ∗ G
(
f (v)

))
g
(
f (v)

)
– bf (v)

]
, x ∈R

N , (3.1)

where b is a positive constant. To do that, we first seek for a ground state solution of (3.1)
which minimizes the value of the functional 
̂b(v) on the Pohoz̆aev manifold M̂b, where


̂b(v) =
1
2

∫
RN

(|∇v|2 + bf 2(v)
)

dx –
1
2

∫
RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
dx (3.2)

and

M̂b :=
{

u ∈ H1(
R

N) \ {0} : P̂b(v) = 0
}

(3.3)

with

P̂b(v) =
N – 2

2
‖∇v‖2

2 +
Nb
2

∥∥f (v)
∥∥2

2 –
N + α

2

∫
RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
dx. (3.4)
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Lemma 3.1 m̂b := infv∈M̂b

̂b(v) is attained for any b > 0.

Proof In view of Lemma 2.9, we have m̂b > 0. Let {vn} ⊂ M̂b be such that 
̂b(vn) → m̂b.
Note that


̂b(v) = 
̂b(vt) +
1 – tN+α

N + α
P̂b(v) +

2 + α – (N + α)tN–2 + (N – 2)tN+α

2(N + α)
‖∇v‖2

2

+
α – (N + α)tN + NtN+α

2(N + α)
b
∥∥f (v)

∥∥2
2, ∀v ∈ H1(

R
N)

, t > 0. (3.5)

By elemental calculations, we can get the following inequality:

h2(t) := α – (N + α)tN + NtN+α > h2(1) = 0, ∀t ∈ [0, 1) ∪ (1, +∞). (3.6)

Then (2.11), (3.5), and (3.6) yield


̂b(v) ≥ 
̂b(vt) +
1 – tN+α

N + α
P̂b(v), ∀v ∈ H1(

R
N)

, t > 0. (3.7)

Since P̂b(vn) = 0, then (3.5) with t → 0 gives

m̂b + o(1) = 
̂b(vn) =
(2 + α)

2(N + α)
‖∇vn‖2

2 +
α

2(N + α)
b
∥∥f (vn)

∥∥2
2, (3.8)

which, together with (f2) of Lemma 2.1, implies that both {‖∇vn‖2} and {‖f (vn)‖} are
bounded. Moreover, using (f5) of Lemma 2.1 and Sobolev embedding inequality, we have

∫
RN

v2
n dx =

∫
|vn|≤1

v2
n dx +

∫
|vn|>1

v2
n dx ≤ 1

θ2
0

∫
|vn|≤1

∣∣f (vn)
∣∣2 dx +

∫
RN

|vn|2∗
dx

≤ 1
θ2

0

∥∥f (vn)
∥∥2

2 + S–2∗/2‖∇vn‖2∗
2 . (3.9)

Hence, {vn} is bounded in H1(RN ). Since P̂b(vn) = 0, using (2.7), (2.23), and Lions’ concen-
tration compactness principle, one can easily prove that there exist δ > 0 and {yn} ⊂ R

N

such that
∫

B1(yn) |vn|2 dx > δ/2. Let v̂n(x) = vn(x + yn). Then


̂b(v̂n) → m̂b, P̂b(v̂n) = 0, (3.10)

and there exists v̂ ∈ H1(RN ) \ {0} such that v̂n ⇀ v̂ in H1(RN ), v̂n → v̂ in Ls
loc(RN ) for

s ∈ [1, 2∗), v̂n → v̂ a.e. on R
N . Let wn = v̂n – v̂. By a standard argument, we have


̂b(v̂n) = 
̂b(v̂) + 
̂b(wn) + o(1) and P̂b(v̂n) = P̂b(v̂) + P̂b(wn) + o(1). (3.11)

Set

�b(v) := 
̂b(v) –
1

N + α
P̂b(v) =

(2 + α)
2(N + α)

‖∇v‖2
2 +

α

2(N + α)
b
∥∥f (v)

∥∥2
2. (3.12)
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Then (2.6), (3.4), (3.10), (3.11), and (3.12) give

P̂b(wn) = –P̂b(v̂) + o(1), �b(wn) = m̂b – �b(v̂) + o(1). (3.13)

If there exists a subsequence {wni} of {wn} such that wni = 0, then we have


̂b(v̂) = m̂b, P̂b(v̂) = 0. (3.14)

Thus, we assume that wn 	= 0 for all n ∈ N.
We claim that P̂b(v̂) ≤ 0. Otherwise, if P̂b(v̂) > 0, then (3.13) implies P̂b(wn) < 0 for large

n. Arguing as in Lemmas 2.6 and 2.7, there exists tn > 0 such that (wn)tn ∈ M̂b for large n.
From (3.2), (3.4), (3.7), (3.12), and (3.13), we obtain

m̂b – �b(v̂) + o(1) = �b(wn) = 
̂b(wn) –
1

N + α
P̂b(wn)

≥ P̂b
(
(wn)tn

)
–

tN
n

N + α
P̂b(wn) ≥ m̂b –

tN
n

N + α
P̂b(wn) ≥ m̂b,

which is absurd because of �b(v̂) > 0. Hence, P̂b(v̂) ≤ 0 and the claim holds. Since v̂ 	= 0
and P̂b(v̂) ≤ 0, arguing as in Lemmas 2.6 and 2.7, there exists t̂ > 0 such that v̂t̂ ∈ M̂b.
From (3.2), (3.4), (3.7), (3.10), (3.12), and the weak semicontinuity of norm, we derive that

m̂b = lim
n→∞

[

̂b(v̂n) –

1
N + α

P̂b(v̂n)
]

= lim
n→∞

[
(2 + α)

2(N + α)
‖∇ v̂n‖2

2 +
α

2(N + α)
b
∥∥f (v̂n)

∥∥2
2

]

≥ (2 + α)
2(N + α)

‖∇ v̂‖2
2 +

α

2(N + α)
b
∥∥f (v̂)

∥∥2
2

= 
̂b(v̂) –
1

N + α
P̂b(v̂) ≥ 
̂b(v̂t̂) –

t̂N

N + α
P̂b(v̂) ≥ m̂b,

which implies again the validity of (3.14) in this case. Clearly, (3.14) proves the lemma. �

In view of Lemmas 2.10 and 3.1, we have the following theorem.

Lemma 3.2 For all b > 0, (3.1) has a ground state solution v̂ ∈ H1(RN ) \ {0} such that


̂b(v̂) = m̂b = inf
v∈M̂b


̂b(v) = inf
v∈�

max
t>0


̂b(vt).

Using (1.2), (2.6), (2.9), (2.10), (3.2), (3.3), and (3.4), we know that 
0 = 
̂V0 , P0 = P̂V0

and M0 = M̂V0 . Let

V̂ :=
1
2

(V∞ + V0) =
1
2
(
V∞ + V (0)

)
. (3.15)

Applying Lemma 3.2, there exist v̂0 ∈M0 and v̂ ∈ M̂V̂ such that


′
0(v̂0) = 0, 
0(v̂0) = m0 = inf

v∈M0

0(v) = inf

v∈H1(RN )\{0}
max

t>0

0(vt) > 0 (3.16)
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and


̂′
V̂ (v̂) = 0, 
̂V̂ (v̂) = m̂V̂ = inf

v∈M̂V̂


̂V̂ (v) = inf
v∈H1(RN )\{0}

max
t>0


̂V̂ (vt) > 0. (3.17)

In view of Lemma 2.7, there exists t0 > 0 such that

v̂t0 ∈M0, 
0(v̂t0 ) ≥ m0. (3.18)

For v ∈ H1(RN ), we define the following functional:


∗(v) :=
1
2

∫
RN

(|∇v|2 + Vmaxf 2(v)
)

dx –
1
2

∫
RN

(
Iα ∗ G

(
f (v)

))
G

(
f (v)

)
dx. (3.19)

Using (G1) and (G2), it is easy to check that there exists T0 > 1 such that


∗
(
(v̂0)t

)
< 0, ∀t ≥ T0. (3.20)

In view of Lemma 2.7 and (3.20), for any ε > 0, there exists tε ∈ (0, T0) such that

(v̂0)tε ∈Mε , 
ε

(
(v̂0)tε

) ≥ mε . (3.21)

Lemma 3.3 m̂V̂ ≥ m0 + δ0, where δ0 = (V∞ – V0)tN
0 ‖f (v̂)‖2

2/4 > 0 is independent of ε > 0.

Proof By (3.17) and (3.18), one has

m̂V̂ = 
̂V̂ (v̂) ≥ 
̂V̂ (v̂t0 ) = 
0(v̂t0 ) +
V̂ – V0

2
tN
0

∫
RN

f 2(v̂) dx

≥ m0 +
V∞ – V0

4
tN
0
∥∥f (v̂)

∥∥2
2 = m0 + δ0,

as desired. �

Now, we choose R0 > 0 sufficiently large such that

V (x) ≥ V̂ ,
[
1 + TN+α

0
]
Vmax

∫
|x|>R0

f 2(v̂0) dx ≤ δ0, ∀|x| > R0, (3.22)

where T0 > 0 is given by (3.20), and δ0 > 0 in Lemma 3.3. By (V1) and (V3), there exists
ε0 > 0 small enough such that, for all ε ∈ [0, ε0],

∥∥f (v̂0)
∥∥2

2 sup
|x|≤R0

[(
NTN+α

0 + α
)∣∣V (εx) – V (0)

∣∣ +
(
1 + TN+α

0
)∣∣∇V (εx) · (εx)

∣∣] ≤ δ0. (3.23)

Lemma 3.4 m0 ≥ mε – 3δ0/4 for all ε ∈ [0, ε0].

Proof Note that (2.15) and (2.16) lead to

–NV (y) < –NV (y) + γ1 ≤ ∇V (y) · y ≤ αV (y) – γ2 < αV (y), ∀y ∈R
N . (3.24)
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Since P0(v̂0) = 0 by (3.16), then (2.1), (2.9), (2.12), and (3.21)–(3.24) yield that

m0 = 
0(v̂0) = 
ε(v̂0) +
1
2

∫
RN

[
V (0) – V (εx)

]
f 2(v̂0) dx

≥ 
ε

(
(v̂0)tε

)
+

1 – tN+α
ε

N + α
Pε(v̂0) +

1
2

∫
RN

[
V (0) – V (εx)

]
f 2(v̂0) dx

= 
ε

(
(v̂0)tε

)
+

1 – tN+α
ε

N + α
P0(v̂0) +

1
2

∫
RN

[
V (0) – V (εx)

]
f 2(v̂0) dx

+
1 – tN+α

ε

2(N + α)

∫
RN

{
N

[
V (εx) – V (0)

]
+ ∇V (εx) · (εx)

}
f 2(v̂0) dx

= 
ε

(
(v̂0)tε

)
+

1
2(N + α)

∫
RN

{
α
[
V (0) – V (εx)

]
+ ∇V (εx) · (εx)

}
f 2(v̂0) dx

–
tN+α
ε

2(N + α)

∫
RN

{
N

[
V (εx) – V (0)

]
+ ∇V (εx) · (εx)

}
f 2(v̂0) dx

≥ mε –
1 + TN+α

0
2

Vmax

∫
|x|>R0

f 2(v̂0) dx

–
‖f (v̂0)‖2

2
2(N + α)

sup
|x|≤R0

[(
NTN+α

0 + α
)∣∣V (εx) – V (0)

∣∣ +
(
1 + TN+α

0
)∣∣∇V (εx) · (εx)

∣∣]

≥ mε –
3δ0

4
, ∀ε ∈ [0, ε0],

as desired. �

Next, we extend Theorem 3.2 to the case ε > 0.

Lemma 3.5 mε is achieved for all ε ∈ (0, ε0].

Proof In view of Lemmas 2.7 and 2.9, we have Mε 	= ∅ and mε > 0 for all ε ∈ (0, ε0]. For any
fixed ε ∈ (0, ε0], let {vn} ⊂Mε be such that 
ε(vn) → mε . Since Pε(vn) = 0, then it follows
from (2.23) and (2.24) that

mε + o(1) = 
ε(vn) ≥ (2 + α)
2(N + α)

‖∇vn‖2
2 +

γ2

2(N + α)
∥∥f (vn)

∥∥2
2,

which, together with (3.9), implies that {vn} is bounded in H1(RN ). Passing to a subse-
quence, we have vn ⇀ v̂ in H1(RN ). Then vn → v̂ in Ls

loc(RN ) for 2 ≤ s < 2∗ and vn → v̂ a.e.
in R

N . Now, we prove that v̂ 	= 0.
Arguing by contradiction, suppose that v̂ = 0, then vn → 0 in Ls

loc(RN ) for 2 ≤ s < 2∗ and
vn → 0 a.e. inR

N . Using Lemma 2.7, we know that there exists tn > 0 such that (vn)tn ∈ M̂V̂

for n ∈N. We claim that there exist two constants 0 < T1 < T2 such that

T1 ≤ tn ≤ T2, ∀n ∈N. (3.25)
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Indeed, if tn → 0, from Lemma 3.2 and the boundedness of {‖vn‖} we then deduce that

0 < m̂V̂ ≤ 
̂V̂
(
(vn)tn

)
=

tN–2
n
2

‖∇vn‖2
2 +

V̂ tN
n

2
∥∥f (vn)

∥∥2
2 –

tN+α
n
2

∫
RN

(
Iα ∗ G

(
f (vn)

))
G

(
f (vn)

)
dx = o(1),

which is absurd. Hence, the first inequality holds in (3.25). Moreover, we can verify that

β0 := lim inf
n→∞

∫
RN

(
Iα ∗ G

(
f (vn)

))
G

(
f (vn)

)
dx > 0. (3.26)

Otherwise, if (3.26) does not hold, then there exists a subsequence {vnk } of {vn} such that

lim
n→∞

∫
RN

(
Iα ∗ G

(
f (vnk )

))
G

(
f (vnk )

)
dx = 0. (3.27)

Then (2.9), (2.15), (2.23), and (3.27) yield

0 = Pε(vnk ) ≥ N – 2
2

‖∇vnk ‖2
2 +

γ1

2
∥∥f (vnk )

∥∥2
2 + o(1) ≥ 1

2
min{N – 2,γ1}ρ0 + o(1).

This contradiction shows that (3.26) holds. By (3.2), (3.26), the boundedness of {vn}, and
Sobolev embedding theorem, we have


̂V̂
(
(vn)t

) ≤ tN–2

2
‖∇vn‖2

2 +
V̂ tN

2
∥∥f (vn)

∥∥2
2 –

tN+α

2
β0

≤ C1
(
tN–2 + tN)

–
tN+α

2
β0, ∀t > 0, n ∈N,

which implies that there exists T2 > 0 such that


̂V̂
(
(vn)t

)
< 0, ∀t > T2, n ∈N. (3.28)

Since 
̂V̂ ((vn)tn ) ≥ m̂V̂ > 0 due to (3.17), then (3.28) yields that tn ≤ T2 for all n ∈ N. This
shows that (3.25) holds. Thus it follows from (2.1), (2.14), (3.2), (3.22), and (3.25) that

mε + o(1) = 
ε(vn) ≥ 
ε

(
(vn)tn

)
≥ 
̂V̂

(
(vn)tn

)
+

tN
n
2

∫
RN

[
V (εtnx) – V̂

]
f 2(vn) dx

≥ m̂V̂ –
V̂ TN

2
2

∫
|x|≤R0/(εT1)

f 2(vn) dx = m̂V̂ + o(1),

which, together with Lemmas 3.3 and 3.4, implies

mε ≥ m̂V̂ ≥ m0 + δ0 ≥ mε +
δ0

4
.

This contradiction shows that the claim is true, that is, v̂ 	= 0. Let wn = vn – v̂. As in the
proof of (3.14), we can deduce that 
ε(v̂) = mε and Pε(v̂) = 0. This completes the proof. �

In view of Lemmas 2.8, 2.10, and 3.5, we easily obtain the following result.



Yang Boundary Value Problems         (2021) 2021:86 Page 14 of 18

Proposition 3.6 For every ε ∈ (0, ε0], (2.5) has a ground state solution v̂ε such that


ε(v̂ε) = mε = inf
v∈�

max
t>0


ε

(
v(·/t)

)
> 0. (3.29)

4 Concentration of ground state solutions
In this section, we always assume that (V1), (V2), and (G1)–(G4) hold, and consider the
concentration of ground state solutions for (2.5) and give the proof of Theorem 1.1. For
this purpose, for every ε ∈ (0, ε0], let v̂ε be a ground state solution of (2.5) obtained in
Proposition 3.6, which satisfies (3.29). Moreover, when ε = 0, we denote by v̂0 the ground
state solution of (1.3), that is, the ground state solution constructed in Theorem 3.2 when
b = V0. Therefore, as in Sect. 1, we put for all ε ∈ [0, ε0]

Lmε =
{

v ∈ H1(
R

N) \ {0} : 
′
ε(v) = 0,
ε(v) = mε

}
and set

ϒ =
{

v ∈Lmε : ε ∈ [0, ε0]
}

.

Lemma 4.1 There exists K0 > 0 independent of ε such that �0 ≤ mε ≤ K0 for all ε ∈ [0, ε0].

Proof From (2.13), (3.20), Lemmas 2.7 and 2.9, we derive that

�0 ≤ mε ≤ max
{

ε

(
(v̂0)t

)
: t ∈ (0, T0]

}
≤ TN–2

0
2

‖∇ v̂0‖2
2 +

VmaxTN
0

2
∥∥f (v̂0)

∥∥2
2 + C1TN+α

0
(‖v̂0‖2(N+α)/N

2 + ‖v̂0‖2(N+α)/(N–2)
2∗

)
:= K0, ∀ε ∈ [0, ε0],

where v̂0 ∈ H1(RN ) and T0 > 0 are given by (3.16) and (3.20), respectively. �

Lemma 4.2 There exists K1 > 0 independent of ε such that ‖v‖ ≤ K1 for all v ∈ ϒ .

Proof For any vε ∈Lmε with ε ∈ [0, ε0], by (2.16) and Lemma 4.1, one has

K0 ≥ mε = 
ε(vε) –
1

N + α
Pε(vε) ≥ (2 + α)

2(N + α)
‖∇vε‖2

2 +
γ2

2(N + α)
∥∥f (vε)

∥∥2
2. (4.1)

As in the proof of (3.9), we have

∫
RN

v2
ε dx ≤ 1

θ2
0

∥∥f (vε)
∥∥2

2 + S–2∗/2‖∇vε‖2∗
2 . (4.2)

The lemma thus follows from (4.1) and (4.2). �

Lemma 4.3 lim supε→ε̄ mε ≤ mε̄ for every ε̄ ∈ [0, ε0].

Proof Fix ε̄ ∈ [0, ε0] and v̂ε̄ ∈Lmε̄
. Arguing by contradiction, suppose that lim supε→ε̄ mε >

mε̄ . Let ε0 = lim supε→ε̄ mε – mε̄ . Clearly ε0 > 0. From Lemma 2.7, for any ε > 0, there exists
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t̄ε > 0 such that (v̂ε̄)t̄ε ∈Mε , and so


ε

(
(v̂ε̄)t̄ε

) ≥ mε , 
ε

(
(v̂ε̄)t̄ε

) ≥ 
ε

(
(v̂ε̄)t

)
, ∀t > 0. (4.3)

It is easy to check that there exists a constant T̄ > 0 such that 0 < t̄ε ≤ T̄ for some T̄ = Tûε̄
>

0, moreover, for any bounded set � ⊂R
N ,

lim
ε→ε̄

sup
x∈�

[∣∣V (εx) – V (ε̄x)
∣∣ +

∣∣∇V (εx) · (εx) – ∇V (ε̄x) · (ε̄x)
∣∣] = 0. (4.4)

Choose R1 > R0 such that

(
1 + T̄N+α

)
Vmax

∫
|x|≥R1

f 2(v̂ε̄) dx ≤ ε0

2
. (4.5)

Noting that Pε̄(v̂ε̄) = 0, then it follows from (2.12), (3.24), (4.3), (4.4), and (4.5) that

mε̄ = 
ε̄(v̂ε̄) = 
ε(v̂ε̄) +
1
2

∫
RN

[
V (ε̄x) – V (εx)

]
f 2(v̂ε̄) dx

≥ 
ε

(
(v̂ε̄)t̄ε

)
+

1 – t̄N+α
ε

N + α
Pε(v̂ε̄) +

1
2

∫
RN

[
V (ε̄x) – V (εx)

]
f 2(v̂ε̄) dx

≥ mε +
1 – t̄N+α

ε

N + α
Pε̄(v̂ε̄) +

1
2

∫
RN

[
V (ε̄x) – V (εx)

]
f 2(v̂ε̄) dx

+
1 – t̄N+α

ε

N + α

∫
RN

[
NV (εx) + ∇V (εx) · (εx) – NV (ε̄x) – ∇V (ε̄x) · (ε̄x)

]
f 2(v̂ε̄) dx

≥ mε –
1 + T̄N+α

N + α

∫
|x|≤R1

[
N

∣∣V (εx) – V (ε̄x)
∣∣

+
∣∣∇V (εx) · (εx) – ∇V (ε̄x) · (ε̄x)

∣∣]f 2(v̂ε̄) dx

–
1
2

∫
|x|≤R1

∣∣V (ε̄x) – V (εx)
∣∣f 2(v̂ε̄) dx –

(
1 + T̄N+α

)
Vmax

∫
|x|≥R1

f 2(v̂ε̄) dx

≥ mε –
1 + T̄N+α

N + α

∥∥f (v̄ε̄)
∥∥2

2 sup
|x|≤R1

[
N

∣∣V (εx) – V (ε̄x)
∣∣

+
∣∣∇V (εx) · (εx) – ∇V (ε̄x) · (ε̄x)

∣∣]
–

1
2
∥∥f (v̄ε̄)

∥∥2
2 sup

|x|≤R1

[∣∣V (εx) – V (ε̄x)
∣∣] –

ε0

2
,

and so mε̄ +ε0 = lim supε→ε̄ mε ≤ mε̄ + ε0
2 . This contradiction shows lim supε→ε̄ mε ≤ mε̄ . �

Lemma 4.4 If v ∈ ϒ , then v ∈ C(RN ,R) and lim|x|→∞ v(x) = 0. Moreover, there is α0 > 0
independent of x ∈R

N and v ∈ ϒ such that

∣∣v(x)
∣∣ ≤ α0

∫
B1(x)

∣∣v(y)
∣∣dy, ∀x ∈R

N , v ∈ ϒ . (4.6)

Proof By a standard argument, we can prove that

Iα ∗ G
(
f (v)

) ∈ L∞(
R

N)
, ∀v ∈ H1(

R
N)

. (4.7)
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Using (4.7), Lemma 4.2, and the standard bootstrap argument (see [21]), we can deduce
that, for any s ≥ 2, there exists Cs > 0 independent of v ∈ ϒ such that

v ∈ W 1,s(
R

N)
, ‖v‖W 1,s(RN ) ≤ Cs, ∀v ∈ ϒ ,

which, together with Sobolev imbedding theorem, implies that there is C∞ > 0 indepen-
dent of v ∈ ϒ such that

‖v‖∞ ≤ C∞, ∀v ∈ ϒ . (4.8)

By (4.7), Lemma 2.1, (G1), and (G4), there exists a constant �1 > V0 such that

∣∣(Iα ∗ G
(
f (v)

))
g
(
f (v)

)∣∣ ≤ �1|v|, ∀|v| ≤ C∞. (4.9)

In view of (4.8), (4.9), Lemma 4.2, and [21, Lemma 1], we have v ∈ C(RN ,R) and
lim|x|→∞ v(x) = 0. Since v ∈ Lmε is a solution of (2.5) for some ε > 0, then (4.9) and
Lemma 4.2 yield that

�|v| =
v · �v

|v| =
V (εx)f (v)v – (Iα ∗ G(f (v)))g(f (v))v

|v| ≥ –�1|v|, ∀x ∈ R
N , (4.10)

which implies that |v| is a sub-solution of the equation (–� – �1)w = 0, and hence (4.6)
follows from the sub-solution estimate (see [24, Theorem C.1.2]). �

Lemma 4.5 For every vε ∈ Lmε ⊂ ϒ , there exists yε ∈ R
N such that |vε(yε)| =

maxx∈RN |vε(x)|. Let ṽε(x) := vε(x + yε), and let εn ∈ (0, ε0] such that lim supn→∞ εn = ε̄.
Then we have

(i) If ε̄ > 0, then {vεn} has a convergence subsequence, whose limit belongs to ϒ ;
(ii) If ε̄ = 0, then {ṽεn} has a convergence subsequence, whose limit is not zero.

Proof For {εn} ⊂ [0, ε0] and vεn ∈ Lmεn , Lemma 4.2 implies that {vεn} is bounded in
H1(RN ). By a standard argument, we can get

lim sup
n→∞

sup
y∈RN

∫
B1(y)

|vεn |2 dx > 0. (4.11)

By Lemma 4.4, there exists yε ∈R
N such that |vε(yε)| = maxx∈RN |vε(x)|. This, together with

(4.11), gives

lim sup
n→∞

∣∣vεn (yεn )
∣∣2 ≥ 1

CN
lim sup

n→∞
sup

y∈RN

∫
B1(y)

|vεn |2 dx > 0, (4.12)

where CN is the volume of the unit N-ball.
(i) If ε̄ ∈ (0, ε0], then passing to a subsequence, we may assume that εn → ε̄ ∈ (0, ε0] and

vεn ⇀ v̂ in H1(RN ). Similar to the proof of Lemma 3.5, we can conclude that vεn → v̂ in
H1(RN ), 
′

ε̄(v̂) = 0, and 
ε̄(v̂) = limn→∞ 
εn (vεn ) = mε̄ . This implies that v̂ ∈Lmε̄
⊂ ϒ .
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(ii) If ε̄ = 0, passing to a subsequence, we may assume that εn → 0 and ṽεn ⇀ ṽ0 in
H1(RN ). Note that (4.12) implies that ṽ0 	= 0. Since V is bounded, going to a subsequence
if necessary, we may assume that limn→∞ V (εnyεn ) = β . Note that

mεn = 
εn (vεn )

=
1
2
‖∇ñεn‖2

2 +
∫
RN

V
(
εn(x + yεn )

)
f 2(ṽεn ) dx

–
∫
RN

(
Iα ∗ G

(
f (ṽεn )

))
G

(
f (ṽεn )

)
dx. (4.13)

As in the proof of Lemma 3.5, and using (4.13) and Lemma 4.3, we obtain ṽεn → ṽ0 in
H1(RN ), 
̂′

β (ṽ0) = 0, and 
̂β (ṽ0) = limn→∞ 
εn (vεn ) ≤ m0. This concludes the proof. �

As those of [5, Lemmas 6.5–6.7], we get the following three lemmas.

Lemma 4.6 inf{‖u‖∞ : u ∈ ϒ} := δ0 > 0.

Lemma 4.7 There exist �1,κ1 > 0 independent of x ∈R
N and v ∈ ϒ such that

∣∣v(x)
∣∣ ≤ �1 exp

(
–κ1|x – yv|

)
, ∀x ∈R

N , v ∈ ϒ , (4.14)

where |v(yv)| = maxx∈RN |v(x)|.

Lemma 4.8 Let vε ∈ Lmε for ε ∈ (0, ε0] and yε ∈ R
N be a global maximum point of vε .

Then
(i) supε∈[0,ε0](ε|yε|) < ∞;

(ii) For εn → 0+, up to a subsequence, ṽεn = vεn (· + yεn ) converges in H1(RN ) to a ground
state solution of (1.3).

Proof of Theorem 1.1 Let ŵε(x) = v̄ε(x/ε) and xε := εyε . In view of Proposition 3.6, for every
ε ∈ (0, ε0], ŵε(x) = v̄ε(x/ε) is a ground state solution of (2.4). Hence, for all ε ∈ (0, ε0], (1.1)
has a ground state solution ûε(x) := f (ŵε(x)) = f (v̄ε(x/ε)). Letting xε := x0 + εyε , (i) follows
from Lemma 4.8. Since f is strictly increasing and |f (t)| ≤ |t| for all t ∈R, Lemmas 4.7 and
4.8 imply the validity of (ii) and (iii), respectively. �
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