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Abstract
The quasistatic problem of a viscoelastic body in a three-dimensional thin domain
with Tresca’s friction law is considered. The viscoelasticity coefficients and data for this
system are assumed to vary with respect to the thickness ε. The asymptotic behavior
of weak solution, when ε tends to zero, is proved, and the limit solution is identified in
a new data system. We show that when the thin layer disappears, its traces form a
new contact law between the rigid plane and the viscoelastic body. In which case, a
generalized weak form equation is formulated, the uniqueness result for the limit
problem is also proved.
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1 Introduction
Simulation and asymptotic behavior have been performed for many physical milieu that
occupy thin layers of R3 in a lot of mechanical and mathematical papers in [1, 8, 9, 12],
both for Newtonian and non-Newtonian fluids, including visco-plastic materials. Other-
wise, the materials related to the linear theory of elasticity have been studied in research
papers conducted by Benseridi et al. in [4–6, 16] and others in [2, 14, 16]. Here, the authors
investigated several elasticity systems in thin layers in dimension 3 under various bound-
ary conditions, through which they reached low-dimensional constitutive laws implicitly
prevalent in many applications, particularly in lubrication problems, to describe the be-
havior of the phenomena that are already occurring in thin layers when the thickness is as
small as 50 nm (e.g. [7]).

In this paper, we are interested in the asymptotic behavior of a quasistatic frictionless
problem modeling the bilateral contact between a viscoelastic body and a rigid foundation
in a thin layer represented by a domain �ε in R

3, where (0 < ε < 1) is a small parameter
that will tend to zero. Starting from the variational formulation giving the displacement
and stress field, as formulated by Sofonea et al. in [10, 17], for such a material with a linear
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Kelvin–Voigt constitutive law of the form

σ ε
(
uε
)

= Aεe
(
uε
)

+ Bεe
(
u̇ε
)
,

where Aε is the viscosity tensor and Bε is the elasticity tensor.
Our aim in this paper is to give an extension to our work in [13]. The novelty thing

in this study is, firstly, that we take into account the heterogeneity and anisotropy of the
milieu, a hypothesis that will cover a lot of materials in nature or industry, for example,
wood, composite materials, and many biological materials, in which, although they ap-
pear to be homogeneous, their properties vary in all directions (see [6, 11]). Secondly, the
body is assumed to have a viscous behavior, because the previously mentioned works are
restricted only to the case of a homogeneous and isotropic elastic body by stress tensor
σ ε

ij (uε) = 2μeij(uε) + λTr(uε)δij in a thin domain. The boundary �ε of �ε is assumed to
be composed of three portions, ω the bottom (in the R

2 surface) of the body, and this is
where our main interest lies, �ε

1 the upper surface, and �ε
L the lateral surface. We consider

Tresca-free boundary friction conditions on ω and Dirichlet boundary conditions on �ε
1 .

However, we consider a traction boundary condition on �ε
L.

The problem is converted into a one over a fixed domain explicitly written depending
on the ε in the variational formulation. The model of the limit problem, when ε tends to
zero, is then obtained. This study yields a new constitutive law, which takes into account
the hypotheses of heterogeneity, anisotropy, and viscosity for the body. Furthermore, the
effects of applied stress tensors on the ω boundary are determined, which will be subject
to Tresca friction conditions. These models are very common in engineering literature,
for example, see [1, 7, 8, 14] and the references cited therein.

The paper is organized as follows. In Sect. 2, the strong and weak formulation of the
problem is given in terms of uε , and also the necessary assumptions which will be needed
in the sequel are presented. In Sect. 3, we introduce a scaling, we find some estimates on
the displacement and velocity which are independent of the parameter ε, the existence of
a weak limit solution u∗ is obtained. Finally, the new formula of our original problem is
stated, the corresponding results for u∗ with a specific weak form of the Reynolds equation
are given in the last section.

2 Basic equation and weak formulation
Let ω be an bounded regular domain in the x1Ox2-plane, and let h ∈ C1(ω) be a positive
smooth function such that 0 < hmin < h(x′) < hmax for all x′ = (x1, x2) ∈ ω. Let ε be a pa-
rameter taking values in a sequence of positive numbers converging to zero. Consider a
viscoelastic body occupying the region �ε ,

�ε =
{(

x′, x3
) ∈R

3,
(
x′, 0

) ∈ ω, 0 < x3 < εh
(
x′)},

its boundary is �ε = ω̄ ∪ �̄ε
1 ∪ �̄ε

L, where �ε
1 is the upper surface defined by x3 = εh(x′), �ε

L

is the lateral boundary, and ω is the bottom of the domain.
Let T > 0. We denote ν to be the unit outward normal to �ε . The body is assumed to be

clamped on �ε
1 × (0, T) and surface tractions of density gε act on �ε

L × (0, T).
On the bottom, the normal velocity is equal to zero but the tangential velocity is un-

known and satisfies Tresca type fluid-solid boundary conditions with friction coefficient
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kε , a given positive function. Moreover, a volume force of density f ε = (f ε
1 , f ε

2 , f ε
3 ) acts on

the body in �ε × (0, T). We denote by R
n×n
s (n = 2, 3) the space of symmetric tensors, and

“·” is the scalar product in R
n×n or Rn, and | · | is the associated norm.

The classical formulation of the mechanical problem is as follows:
Find a displacement field uε = (uε

i ) : �ε × [0, T] −→R
3 and a stress field σ ε = (σ ε

ij ) : �ε ×
[0, T] −→R

3×3
s , i, j = 1, 2, 3, such that

σ ε
ij
(
uε
)

= Aε
ijklekl

(
uε
)

+ Bε
ijklekl

(
u̇ε
)

in �ε × (0, T), (2.1)

∂σ ε
ij

∂xj
+ f ε

i = 0 in �ε × (0, T), (2.2)

uε = 0 on �ε
1 × (0, T), (2.3)

σνε = gε on �ε
L × (0, T), (2.4)

uε
ν = 0 on ω × (0, T), (2.5)

|σ ε
τ | < kε �⇒ u̇ε

τ = 0
|σ ε

τ | = kε �⇒ ∃λ ≥ 0 such that u̇ε
τ = –λσ ε

τ

}

on ω × (0, T), (2.6)

uε(0) = uε
0 in �ε . (2.7)

Here, equation (2.1) represents the linear constitutive law of Kelvin–Voigt [11, 17], where
σ ε

ij , Aε
ijkl , and Bε

ijkl denote the components of the stress tensor σ ε , the elasticity tensor Aε ,
and the viscosity tensor Bε , respectively. The dot above represents the time derivative.
Relations (2.2) are the quasi-static equations of motion, the indexes i, j, k, l run between 1
and 3, and the summation convention over repeated indexes is used. We denote by e(v)
the rate of deformation operator defined by

e(v) =
(
eij(v)

)
, eij(v) =

1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
.

We denote by σνε the Cauchy stress vector [11], and by

σ ε
ν = σνε , σ ε

τ = σνε –
(
σ ε

ν

) · ν, uε
ν = uε · ν, uε

τ = uε – uε
νν,

respectively, the components of the normal, the tangential stress tensor on �ε , the normal
and the tangential of uε on �ε , and finally, uε

0 is the initial displacement.
To establish a weak formulation of the problem, we use the spaces L2(�ε)3, H1(�ε)3, and

L2(�ε)3×3
s . The inner products on the spaces L2(�ε)3 and L2(�ε)3×3

s are designed equally
by 〈·, ·〉0,�ε , and let ‖ · ‖0,�ε be the associated norm, we denote by ‖ · ‖1,�ε the associated
norm of the space H1(�ε)3. We define

V ε =
{

vε ∈ H1(�ε
)3 : vε = 0 on �ε

1, vε
ν = 0 on ω

}
.

Following [10], V ε is a real Hilbert space endowed with the inner product

〈u, v〉V ε =
〈
e(u), e(v)

〉
0,�ε , ‖v‖V ε = 〈v, v〉1/2

V ε .
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From [17], see page 97, we use the real Banach space Qε∞ of fourth order tensor fields
defined by

Qε
∞ =

{
Cε =

(
Cε

ijkl
)
/Cε

ijkl = Cε
jikl = Cε

klij ∈ L∞(
�ε

)
, 1 ≤ i, j, k, l ≤ 3

}

with the norm

∥
∥Cε

∥
∥

Qε∞ = max
1≤i,j,k,l≤3

∥
∥Cε

ijkl
∥
∥

L∞(�ε ).

For every Cε ∈ Qε∞ and ξ ∈ L2(�ε)3×3
s , the tensor Cεξ , of components (Cεξ )ij =

∑
kl Cε

ijklξkl

satisfies

Cεξ ∈ L2(�ε
)3×3

s ,
∥∥Cεξ

∥∥
0,�ε ≤ 3

∥∥Cε
∥∥

Qε∞‖ξ‖0,�ε . (2.8)

For every real Banach space H , we use the classical notation for the spaces Lp(0, T ; H) and
W 1,p(0, T ; H), 1 ≤ p ≤ +∞.

Now, we list the assumptions imposed:

⎧
⎪⎪⎨

⎪⎪⎩

Aε ∈ Qε∞, Bε ∈ Qε∞,

∃ma > 0,∀ξ ∈R
3×3
s , Aεξ · ξ ≥ ma|ξ |2 a.e. in �ε ,

∃mb > 0,∀ξ ∈ R
3×3
s , Bεξ · ξ ≥ mb|ξ |2 a.e. in �ε ,

(2.9)

and

f ε ∈ W 1,2(0, T ; L2(�ε
)3), gε ∈ W 1,2(0, T ; L2(�ε

L
)3), (2.10)

kε ∈ L∞(ω), kε(x) ≥ 0 a.e. on ω, (2.11)

moreover,

uε
0 ∈ V ε . (2.12)

A formal application of Green’s formula, using (2.1)–(2.8) leads to the weak formulation
[10]:

Find uε(t) in V ε such that

〈
Aεe

(
uε(t)

)
, e
(
vε – u̇ε(t)

)〉
0,�ε +

〈
Bεe

(
u̇ε(t)

)
, e
(
vε – u̇ε(t)

)〉
0,�ε

+
∫

ω

kε
∣∣vε

∣∣dx′ –
∫

ω

kε
∣∣u̇ε(t)

∣∣dx′

≥
∫

�ε
L

gε(t).
(
vε – u̇ε(t)

)
dρ +

〈
f ε(t), vε–u̇ε(t)

〉
0,�ε

∀vε ∈ V ε ,∀t ∈ [0, T], (2.13)

uε(0) = uε
0, (2.14)

where dρ represents the superficial measure on the lateral boundary �ε
L.
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Remark 2.1 If the assumptions of (2.9)–(2.12) hold, for any ε small fixed, then problem
(2.13)–(2.14) admits a unique solution uε that satisfies (see [3, 10, 15, 19])

uε ∈ W 1,2(0, T ; V ε
)
.

The aim of the next section is to describe the limit behavior of the displacement as ε tends
to zero.

3 The rescaled problem and asymptotic behavior
To simplify the notation, everywhere in the sequel the indexes α,β ,γ , and δ take values
in the set {1, 2}. Moreover, x = (x′, z) denotes the generic point in R

3. According to the
change of variables z = x3/ε, see e.g. [1, 8], we define the fixed domain �:

� =
{(

x′, z
) ∈R

3,
(
x′, 0

) ∈ ω, 0 < z < h
(
x′)},

and we denote by � = ω̄ ∪ �̄1 ∪ �̄L its boundary with

�L =
{(

x′, z
) ∈R

3, x′ ∈ ∂ω, 0 < z < h
(
x′)},

�1 =
{(

x′, z
) ∈R

3,
(
x′, 0

) ∈ ω, z = h
(
x′)}.

We define the following functions in � × [0, T]:

ûε
α

(
x′, z, t

)
= uε

α

(
x′, x3, t

)
, ûε

3
(
x′, z, t

)
= ε–1uε

3
(
x′, x3, t

)
.

Let us define the ε-independent tensors Â = (Âijkl), B̂ = (B̂ijkl):

Â
(
x′, z

)
= Aε

(
x′, x3

)
, B̂

(
x′, z

)
= Bε

(
x′, x3

)
,

the vectors f̂ = (f̂i), ĝ = (ĝi), û0 = (û0i), and k̂ assume the following dependence of the data:

f̂
(
x′, z, t

)
= ε2f ε

(
x′, x3, t

)
, ĝ

(
x′, z, t

)
= ε2gε

(
x′, x3, t

)
,

û0α

(
x′, z

)
= uε

0α

(
x′, x3

)
, û03

(
x′, z

)
= ε–1uε

03
(
x′, x3

)
, k̂ = εkε .

For this rescaling, we have the following function spaces:

Q∞ =
{

C = (Cijkl)/Cijkl = Cjikl = Cklij ∈ L∞(�), 1 ≤ i, j, k, l ≤ 3
}

,

V =
{

v ∈ H1(�)3 : v = 0 on �1, vν = 0 on ω
}

,

�(V ) =
{

v = (v1, v2) ∈ H1(�)2 : v = (v1, v2, v3) ∈ V
}

,

and

Vz =
{

v = (v1, v2) ∈ L2(�)2 :
∂vα

∂z
∈ L2(�), v = 0 on �1

}
.
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Vz is a Banach space equipped with the norm

‖v‖Vz =

[ 2∑

α=1

(
‖vα‖2

0,� +
∥∥
∥∥
∂vα

∂z

∥∥
∥∥

2

0,�

)]1/2

.

Consider now the following functional J and the three-linear form �: Q∞ × V × V −→R

given by

J(v) =
∫

ω

k̂|vτ |dx′, ∀v ∈V ;

�(Ĉ, û, v)

=
1
2

∫

�

Ĉαβγ θε
2
(

∂ûγ

∂xθ

+
∂ûθ

∂xγ

)
∂vα

∂xβ

dx

+
∫

�

Ĉα3γ θ ε

(
∂ûγ

∂xθ

+
∂ûθ

∂xγ

)
∂vα

∂z
dx +

∫

�

Ĉαβγ 3

(
ε
∂ûγ

∂z
+ ε3 ∂û3

∂xγ

)
∂vα

∂xβ

dx

+ 2
∫

�

Ĉα3γ 3

(
∂ûγ

∂z
+ ε2 ∂û3

∂xγ

)
∂vα

∂z
dx +

∫

�

Ĉαβ33ε
2 ∂û3

∂z
∂vα

∂xβ

dx

+
1
2

∫

�

Ĉ33αβε2
(

∂ûα

∂xβ

+
∂ûβ

∂xα

)
∂v3

∂z
dx + 2

∫

�

Ĉα333ε
∂û3

∂z
∂vα

∂z
dx

+
∫

�

Ĉ33α3

(
ε
∂ûα

∂z
+ ε3 ∂û3

∂xα

)
∂v3

∂z
dx +

∫

�

Ĉ3333ε
2 ∂û3

∂z
∂v3

∂z
dx,

∀(Ĉ, û, v) ∈ Q∞ × V × V .

Problem (2.13)–(2.14) leads to the form in the following lemma.

Lemma 3.1 The variational inequality (2.13)–(2.14) is equivalent to the following inequal-
ity:

�
(
Â, ûε(t), v – ∂ tûε(t)

)
+ �

(
B̂, ∂t ûε(t), v – ∂t ûε(t)

)
+ J(v) – J

(
∂t ûε(t)

)

≥
2∑

α=1

∫

�L

ĝα(t)
(
vα–∂ tûε

α(t)
)

dρ + ε

∫

�L

ĝ3(t)
(
v3 – ∂t ûε

3(t)
)

dρ

+
2∑

α=1

∫

�

f̂α(t)
(
vα–∂ tûε

α(t)
)

dx + ε

∫

�

f̂3(t)
(
v3–∂ t ûε

3(t)
)

dx,

∀v ∈ V ,∀t ∈ [0, T], (3.1)

ûε(0)=û0. (3.2)

Proof Let uε be a solution of (2.13)–(2.14). For any Cε ∈ Qε , using the symmetry of
(Cεe(uε))ij, it follows that, for all vε in V ε and t ∈ [0, T], we have

〈
Cεe

(
uε(t)

)
, e
(
vε
)〉

0,�ε =
∫

�ε

Cε
ijklekl

(
uε(t)

)
eij
(
vε
)

dx′ dx3

=
∫

�ε

Cε
ijklekl

(
uε(t)

)∂vε
i

∂xj
dx′ dx3,
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by passing to the fixed domain �, we find

∫

�ε

Ĉijklekl
(
uε(t)

)∂vi

∂xj
dx′ dx3 = ε–1�

(
Ĉ, ûε(t), v

)

with v ∈V , the rescaling of the function vε .
Since the boundary �ε and ∂ω are Lipschitz continuous, we can write the �ε

L boundary
into a union disjoint from �ε

Li
, i ∈ I , such that each �ε

Li
is the graph of a function φ(i), its

points from the domain

Dε
i =

{
(xδi , x3) ∈ R

2, ai < xδi < bi, 0 < x3 < εh
(
x′), x′ ∈ ∂ω ∩ �̄ε

Li

}
,

which are given by theorem of implicit function, with ∂3φi = 0, ai and bi are real numbers,
the indexes δi take the value 1 or 2. Putting

φ̂(i)(xδi , z) = φ(i)(xδi , x3),

Di =
{

(xδi , z) ∈R
2, ai < xδi < bi, 0 < z < h

(
x′), x′ ∈ ∂ω ∩ �̄Li

}
.

We do calculations on the lateral surface �ε
L to get

∫

�ε
L

gε .vε dρ =
∑

i∈I

∫

Dε
i

[(
gε ◦ φ(i)).

(
vε ◦ φ(i))](xδi , x3)

√
1 + |∂δiφi|2 dxδi dx3

= ε–1
2∑

α=1

∑

i∈I

∫

Di

[(
ĝα ◦ φ̂(i)).

(
vα ◦ φ̂(i))](xδi , z)

√
1 +

∣
∣∂δi φ̂

(i)
∣
∣2 dxδi dz

+
∑

i∈I

∫

Di

[(
ĝ3 ◦ φ̂(i)).

(
v3 ◦ φ̂(i))](xδi , z)

√
1 +

∣
∣∂

δi
φ̂(i)

∣
∣2 dxδi dz

= ε–1
2∑

α=1

∫

�L

ĝαvα dρ +
∫

�L

ĝ3v3.

Thus, by the previous relations, we easily obtain the equivalence between problem (3.1)–
(3.2) and (2.13)–(2.14). �

Lemma 3.2 Assume that uε is a solution of (2.13)–(2.14). Then

2∑

α=1

∥
∥∥
∥
∂ûε

α

∂z

∥
∥∥
∥

2

L∞(0,T ;L2(�))
+ ε2

∥
∥∥
∥
∂ûε

3
∂z

∥
∥∥
∥

2

L∞(0,T ;L2(�))

+ ε2
2∑

α,β=1

∥
∥∥
∥
∂ûε

α

∂xβ

∥
∥∥
∥

2

L∞(0,T ;L2(�))
+ ε4

2∑

β=1

∥
∥∥
∥
∂ûε

3
∂xβ

∥
∥∥
∥

2

L∞(0,T ;L2(�))
≤ C; (3.3)

2∑

α=1

∥∥∥
∥
∂2ûε

α

∂z∂t

∥∥∥
∥

2

L2(0,T ;L2(�))
+ ε2

∥∥∥
∥
∂2ûε

3
∂z∂t

∥∥∥
∥

2

L2(0,T ;L2(�))

+ ε2
2∑

α,β=1

∥
∥∥
∥

∂2ûε
α

∂xβ∂t

∥
∥∥
∥

2

L2(0,T ;L2(�))
+ ε4

2∑

α=1

∥
∥∥
∥

∂2ûε
3

∂xβ∂t

∥
∥∥
∥

2

L2(0,T ;L2(�))
≤ C, (3.4)

where C denotes an independent constant of ε and t.
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Proof First, we recall the Korn and Poincaré inequalities (see [1]), respectively,

∥
∥e(v)

∥
∥

0,�ε ≥ CK‖∇v‖0,�ε , ∀v ∈ V ε , (3.5)

‖v‖0,�ε ≤ εhmax‖∇v‖0,�ε , ∀v ∈ V ε , (3.6)

where CK > 0 is a constant independent of ε. By the Sobolev trace theorem and the above
inequality, there exists C0 > 0 depending only on �ε and �ε such that

‖v‖0,�ε
L
≤ C0‖∇v‖0,�ε , ∀v ∈ V ε . (3.7)

However, we can see that the constant C0 does not depend on ε. To this end, for any
function v, we denote its extension from �ε to �̃ = ω×]0, h̃[ by

v̄ =

⎧
⎨

⎩
v on �ε ,

0 on �̃ – �ε ,

where h̃ > hmax. We denote by �̃L the lateral boundary of �̃, so we have ‖v‖0,�ε
L

= ‖v̄‖0,�̃L
,

‖∇v‖0,�ε = ‖∇ v̄‖0,�̃ such that (3.7) is valid for a constant independent of ε. Next, for any t
in [0, T], choosing in (2.13) vε = 0 and integrating over [0, t], it follows from (2.9) and (3.5)
that

1
2

maCK
∥∥∇uε(t)

∥∥2
0,�ε +

1
2

mbCK

∫ t

0

∥∥∇u̇ε(s)
∥∥2

0,�ε ds

≤ 1
2
〈
Aεe

(
uε

0
)
, e
(
uε

0
)〉

0,�ε +
∫ t

0

〈
f ε(s), u̇ε(s)

〉
0,�ε ds +

∫ t

0

∫

�ε
L

gε(s).u̇ε(s) dρ ds. (3.8)

By the Cauchy–Schwarz inequality and (3.6)–(3.7), we have

〈
f ε(s), u̇ε(s)

〉
0,�ε ≤ εhmax

∥∥f ε(s)
∥∥

0,�ε

∥∥∇u̇ε(s)
∥∥

0,�ε ,
∫

�ε
L

gε .u̇ε(s) dρ ≤ C0
∥
∥gε(s)

∥
∥

0,�ε
L

∥
∥∇u̇ε(s)

∥
∥

0,�ε .

Using now the Young inequality

ab ≤ η–2 a2

2
+ η2 b2

2

for η =
√

mbCK /2, a = εhmax‖f ε(s)‖0,�ε and b = ‖∇u̇ε(s)‖0,�ε ; then η =
√

mbCK /2, a =
C0‖gε(s)‖0,�ε

L
and b = ‖∇u̇ε(s)‖0,�ε , we deduce

〈
f ε(s), u̇ε(s)

〉
0,�ε ≤ (hmax)2

mbCK
ε2∥∥f ε(s)

∥∥2
0,�ε +

mbCK

4
∥∥∇u̇ε(s)

∥∥2
0,�ε ,

∫

�ε
L

gε(s).u̇ε(s) dρ ≤ (C0)2

mbCK

∥∥gε(s)
∥∥2

0,�ε
L

+
mbCK

4
∥∥∇u̇ε(s)

∥∥2
0,�ε .
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By two previous inequalities and (2.8), inequality (3.8) after multiplying by ε becomes

1
2

maCKε
∥
∥∇uε(t)

∥
∥2

0,�ε +
1
2

mbCK

∫ t

0
ε
∥
∥∇u̇ε(s)

∥
∥2

0,�ε ds

≤ 3
2
ε
∥
∥Aε

∥
∥

Qε∞
∥
∥∇uε

0
∥
∥2

0,�ε +
(hmax)2

mbCK

∫ t

0
ε3∥∥f ε(s)

∥
∥2

0,�ε ds

+
(C0)2

mbCK

∫ t

0
ε3∥∥gε(s)

∥∥2
0,�ε

L
ds.

Using the relations ε3‖gε(s)‖2
0,�ε

L
= ‖ĝ(s)‖2

0,�L
, ε3‖f ε(s)‖2

0,�ε = ‖f̂ (s)‖2
0,�, and ε‖∇uε

0‖2
0,�ε ≤

‖∇û0‖2
0,�, in the right-hand side of the last inequality and passing to the fixed domain �

in the left-hand side, we get

ma

( 2∑

α=1

∥
∥∥
∥
∂ûε

α

∂z
(s)
∥
∥∥
∥

2

0,�
+ ε2

∥
∥∥
∥
∂ûε

3
∂z

(s)
∥
∥∥
∥

2

0,�
+ ε2

2∑

α,β=1

∥
∥∥
∥
∂ûε

α

∂xβ

(s)
∥
∥∥
∥

2

0,�
+ ε4

2∑

β=1

∥
∥∥
∥
∂ûε

3
∂xβ

(s)
∥
∥∥
∥

2

0,�

)

+ mb

∫ t

0

( 2∑

α=1

∥
∥∥
∥
∂2ûε

α

∂z∂t
(s)
∥
∥∥
∥

2

0,�
+ ε2

∥
∥∥
∥
∂2ûε

3
∂z∂t

(s)
∥
∥∥
∥

2

0,�

+ ε2
2∑

α,β=1

∥
∥∥
∥

∂2ûε
α

∂xβ∂t
(s)
∥
∥∥
∥

2

0,�
+ ε4

2∑

β=1

∥
∥∥
∥

∂2ûε
3

∂xβ∂t
(s)
∥
∥∥
∥

2

0,�

)

ds

≤ 2
CK

{
3
2
‖Â‖Q∞‖∇û0‖2

0,� +
(hmax)2

mbCK

∫ t

0

∥∥f̂ (s)
∥∥2

0,� ds +
(C0)2

mbCK

∫ t

0

∥∥ĝ(s)
∥∥2

0,�L
ds
}

.

So, we find estimates (3.3) and (3.4) with m = min(ma, mb) and

C =
2

mCK

{
3
2
‖Â‖Q∞‖∇û0‖2

0,� +
(hmax)2

mbCK
‖f̂ ‖2

W 1,2(0,T ;L2(�)3)

+
(C0)2

mbCK
‖ĝ‖2

W 1,2(0,T ;L2(�L)3)

}
. �

As a consequence of estimates (3.3)–(3.4), we obtain the convergence of the solution ûε

of problem (3.1)–(3.2).

Corollary 3.1 There exists u∗ = (u∗
1, u∗

2) in W 1,2(0, T ; Vz) such that

(
ûε

1, ûε
2
)
⇀

(
u�

1, u�
2
)

weakly in W 1,2(0, T ; Vz), (3.9)

εûε
3 ⇀ 0, ε

∂ûε
α

∂xβ

⇀ 0, ε2 ∂ûε
3

∂xβ

⇀ 0, ε
∂ûε

3
∂z

⇀ 0

weakly in W 1,2(0, T ; L2(�)
)
. (3.10)

Proof We note that (3.3) and (3.4) imply that, for α = 1, 2,

∥∥
∥∥
∂ûε

α

∂z

∥∥
∥∥

2

L∞(0,T ;L2(�))
≤ C,

∥∥
∥∥
∂2ûε

α

∂z∂t

∥∥
∥∥

2

L2(0,T ;L2(�))
≤ C. (3.11)
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Applying Poincaré’s inequality in the domain � × (0, T), with a simple comparison of the
two relations in (3.11), we find

∥∥ûε
α

∥∥
L∞(0,T ;L2(�)) ≤ hmax

∥
∥∥
∥
∂ûε

α

∂z

∥
∥∥
∥

L∞(0,T ;L2(�))
≤ hmaxC,

∥∥
∥∥
∂ûε

α

∂t

∥∥
∥∥

L2(0,T ;L2(�))
≤ hmax

∥∥
∥∥
∂2ûα

∂z∂t

∥∥
∥∥

L2(0,T ;L2(�))
≤ hmaxC.

Clearly, (ûε
α)α=1,2 is bounded in W 1,2(0, T ; Vz) ∩ L∞(0, T ; Vz); furthermore, convergence

(3.9) can be easily deduced by the injection W 1,2(0, T ; Vz) ↪→ C(0, T ; Vz) as in [17,
Lemma 2.2]. Also (3.10) follows from (3.3)–(3.4) and (3.9). �

4 Main results and limit problem
In this section, we give the satisfied equations of u∗ in � × [0, T], and we can show the
corresponding boundary conditions obtained for system (2.1)–(2.7). For the rest of this
article, we denote by 〈·, ·〉 the inner product on the space L2(�)2.

Theorem 4.1 u∗ satisfies the following variational inequality:

〈
A∗ ∂u∗

∂z
(t),

∂

∂z
(
v – u̇∗(t)

)〉
+
〈
B∗ ∂u̇∗

∂z
(t),

∂

∂z
(
v – u̇∗(t)

)〉
+
∫

ω

k̂
(|v| –

∣
∣u̇∗(t)

∣
∣)dx′

≥
2∑

α=1

∫

�L

ĝα(t)
(
vα–u̇∗

α(t)
)

dρ +
2∑

α=1

∫

�

f̂α(t)
(
vα–u̇∗

α(t)
)

dx

∀v ∈ �(V ),∀t ∈ [0, T], (4.1)

u∗(0) = û0, (4.2)

where the matrices A∗, B∗ are given by

A∗ = 2

(
Â1313 Â1323

Â2313 Â2323

)

, B∗ = 2

(
B̂1313 B̂1323

B̂2313 B̂2323

)

and û0 = (û01, û02).
Moreover, we have

–
∂

∂z

{
A∗ ∂u∗

∂z
+ B∗ ∂u̇∗

∂z

}
= (f̂1, f̂2) in L2(0, T ; L2(�)2), (4.3)

u∗(0) = û0.

Proof Let t ∈ [0, T]. By the integral of (3.1) relative to t, we find for every v ∈ V

∫ t

0

[
�
(
Â, ûε(s), v

)
+ �

(
B̂, ∂t ûε(s), v

)
+ J(v)

]
ds +

1
2
�(Â, û0, û0)

≥ 1
2
�
(
Â, ûε(t), ûε(t)

)
+
∫ t

0
�
(
B̂, ∂t ûε(s), ∂tûε(s)

)
ds +

∫ t

0
J
(
∂t ûε(s)

)
ds

+
2∑

α=1

∫ t

0

∫

�L

ĝα(s)
(
vα–∂t ûε

α(s)
)

dρ ds + ε

∫ t

0

∫

�L

ĝ3(s)
(
v3–∂t ûε

3(s)
)

dρ ds
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+
2∑

α=1

∫ t

0

∫

�

f̂α(s)
(
vα–∂ t ûε

α(s)
)

dx ds + ε

∫ t

0

∫

�

f̂3(s)
(
v3–∂ tûε

3(s)
)

dx ds. (4.4)

Since the form �(Ĉ, ·, ·) is a symmetry and V -elliptic, by using the convergence (3.10), we
have

lim inf
ε→0

�
(
Â, ûε(t), ûε(t)

)≥ 2
2∑

α,γ =1

∫

�

Âα3γ 3
∂u∗

γ

∂z
∂u∗

α

∂z
dx.

This formula can be rewritten using the matrix form A∗ as follows:

lim inf
ε→0

�
(
Â, ûε(t), ûε(t)

)≥
〈
A∗ ∂u∗

∂z
(t),

∂u∗

∂z
(t)
〉
. (4.5)

An argument similar to that used for (4.5) shows that the functional

t −→
∫ t

0
�
(
B̂, ∂t ûε(s), ∂tûε(s)

)
ds

is lower semi-continuous for the weak topology of W 1,2(0, T ; Vz). Then

lim inf
ε→0

∫ t

0
�
(
B̂, ∂tûε(s), ∂t ûε(s)

)
ds ≥

∫ t

0

〈
B∗ ∂u̇∗

∂z
(s),

∂u̇∗

∂z
(s)
〉

ds. (4.6)

From (4.5)–(4.6) and (3.9)–(3.10), and by the semi-continuity of t −→ ∫ t
0 J(u̇∗(s)) ds, we let

ε tend to 0 in (4.4) to obtain

〈
A∗ ∂u∗

∂z
(t),

∂v
∂z

〉
+
∫ t

0

〈
B∗ ∂u̇∗

∂z
(s),

∂v
∂z

〉
ds +

∫ t

0
J(v) ds +

1
2

〈
A∗ ∂û0

∂z
,
∂û0
∂z

〉

≥ 1
2

〈
A∗ ∂u∗

∂z
(t),

∂u∗

∂z
(t)
〉

+
∫ t

0

〈
B∗ ∂u̇∗

∂z
(s),

∂u̇∗

∂z
(s)
〉

ds +
∫ t

0
J
(
u̇∗(s)

)
ds

+
2∑

α=1

∫ t

0

∫

�L

ĝα(s)
(
vα–u̇∗

α(s)
)

dρ ds +
2∑

α=1

∫ t

0

∫

�

f̂α(s)
(
vα–u̇∗

α(s)
)

dx ds

with

u∗(0) = û0.

The condition u∗(0) = û0 is an immediate consequence of (3.9) and (3.2). Thus, by the
following equality

∫ t

0

〈
A∗ ∂u∗

∂z
(s),

∂u̇∗

∂z
(s)
〉

ds =
1
2

〈
A∗ ∂u∗

∂z
(t),

∂u∗

∂z
(t)
〉

–
1
2

〈
A∗ ∂û0

∂z
,
∂û0
∂z

〉
, (4.7)

we conclude that

∫ t

0

[〈
A∗ ∂

∂z
u∗(s),

∂

∂z
(
v – u̇∗(s)

)〉
+
〈
B∗ ∂

∂z
u̇∗(s),

∂

∂z
(
v – u̇∗(s)

)〉
+ J(v) – J

(
u̇∗(s)

)]
ds
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≥
2∑

α=1

∫ t

0

∫

�L

ĝα(s)
(
vα–u̇∗

α(s)
)

dρ ds +
2∑

α=1

∫ t

0

∫

�

f̂α(s)
(
vα–u̇∗

α(s)
)

dx ds.

Now, it remains only to use the same method as that used in [11] to derive relation
(4.1). To prove (4.3), we use the Green formula in (4.1), and this completes the proof of
Theorem 4.1. �

Theorem 4.2 The limit problem (4.1)–(4.2) has a unique solution u∗ in W 1,2(0, T ; Vz).

Proof Let u∗,1, u∗,2 be two solutions of (4.1)–(4.2), and let t ∈ [0, T]. Taking v = u∗,2 in
(4.1)–(4.2) and v = u∗,1 in the inequality relating to u∗,2, it follows by posing w∗ = u∗,2 – u∗,1

that
〈
A∗ ∂w∗

∂z
(t),

∂ẇ∗

∂z
(t)
〉

+
〈
B∗ ∂ẇ∗

∂z
(t),

∂ẇ∗

∂z
(t)
〉
≤ 0.

Since u∗,1(0) = u∗,2(0) = û0, using (4.7), we deduce that

1
2

〈
A∗ ∂w∗

∂z
(t),

∂w∗

∂z
(t)
〉

+
∫ t

0

〈
B∗ ∂ẇ∗

∂z
(s),

∂ẇ∗

∂z
(s)
〉

ds ≤ 0. (4.8)

We must now check that the matrices A∗, B∗ are elliptic. Let η = (ηα)α=1,2 ∈R
2, we return

now to hypotheses (2.8)–(2.9). By choosing symmetric tensors ξ given by ξαβ = 0 for α,β =
1, 2, ξ33 = 0 and ξα3 = ξ3α = ηα for α = 1, 2, we get

Âijklξklξij = 2Âα3β3ξβ3ξα3 + 2Âα333ξ33ξα3 + 2Â33α3ξα3ξ33 + Â3333ξ33ξ33

= A∗
αβηβηα .

In the same way, derive the last relation for the matrix B∗. Consequently, |ξ |2 = 2|η|2 leads
to

A∗η.η ≥ 2ma|η|2, B∗η.η ≥ 2mb|η|2

for all η ∈ R
2.

Hence, inequality (4.8) becomes

2ma

∥
∥∥
∥
∂w∗

∂z
(t)
∥
∥∥
∥

2

0,�
+ 2mb

∫ t

0

∥
∥∥
∥
∂ẇ∗

∂z
(s)
∥
∥∥
∥

2

0,�
ds ≤ 0.

Since ma, mb > 0, and from Poincaré’s inequality, we obtain

∥∥w∗(t)
∥∥2

0,� ≤ h2
max

∥
∥∥∥
∂w∗

∂z
(t)
∥
∥∥∥

2

0,�
= 0,

∫ t

0

∥
∥ẇ∗(s)

∥
∥2

0,� ds ≤ h2
max

∫ t

0

∥∥
∥∥
∂ẇ∗

∂z
(s)
∥∥
∥∥

2

0,�
ds = 0,

we deduce that w∗ = 0 in L2(0, T ; Vz) and ẇ∗ = 0 in L2(0, T ; Vz), which concludes the
uniqueness of problem (4.1)–(4.2). �
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Theorem 4.3 Under the assumptions of Theorem 4.2, the traces {s∗,π∗}with s∗ = (s∗
1, s∗

2)
and π∗ = (π∗

1 ,π∗
2 ) defined by

s∗(x′, t
)

= u∗(x′, 0, t
)
;

π∗(x′, t
)

= A∗(x′, 0
)∂u∗

∂z
(
x′, 0, t

)
+ B∗(x′, 0

)∂u̇∗

∂z
(
x′, 0, t

)
(4.9)

satisfy the following limit form of the Tresca boundary conditions:

∫

ω

k̂
∣∣
∣∣ψ +

∂s∗

∂t

∣∣
∣∣ –

∣∣
∣∣
∂s∗

∂t

∣∣
∣∣dx′ –

∫

ω

π∗.ψdx′ ≥ 0 ∀ψ ∈ L2(ω)2,∀t ∈ [0, T], (4.10)

|π∗| < k̂ ⇒ ∂s∗
∂t = 0

|π∗| = k̂ ⇒ ∃λ > 0 such that ∂s∗
∂t = λπ∗

}

a.e. in ω × [0, T]. (4.11)

Proof For every t ∈ [0, T], we chose in the variational inequality (4.1) v = u̇∗(t) + ψ , where
ψ in H1

�1∪�L
(�)2, and using the Green formula, we find

–
∫

�

∂

∂z

{
A∗(x′, z

)∂u∗

∂z
(
x′, z, t

)
+ B∗(x′, z

)∂u̇∗

∂z
(
x′, z, t

)
}

· ψ dx′ dz

–
∫

ω

(
A∗(x′, 0

)∂u∗

∂z
(
x′, 0, t

)
+ B∗(x′, 0

)∂u̇∗

∂z
(
x′, 0, t

)
)

· ψ(
x′, 0

)
dx′

+
∫

ω

k̂
(∣∣ψ + u̇∗(t)

∣
∣ –

∣
∣u̇∗(t)

∣
∣)dx′ ≥

2∑

α=1

∫

�

f̂α(t) · ψα dx′ dz.

Adding the last formula and (4.1), (4.9) leads to

∫

ω

k̂
(∣∣ψ + u̇∗(t)

∣∣ –
∣∣u̇∗(t)

∣∣)dx′ –
∫

ω

π∗(x′, t
) · ψ(

x′, 0
)

dx′ = 0

for all ψ in H1
�1∪�L

(�)2.
As in [1], this inequality remains valid for any ψ in D(ω)2, and by density of D(ω) in

L2(ω), we could therefore deduce (4.10). To prove (4.11), we use an argument similar to
that used in the proof of Theorem 4.2 in [1]. �

Theorem 4.4 Suppose that the components Âα3β3, B̂α3β3 for 1 ≤ α,β ≤ 2 depend only on
the variable x′, we have the following weak form:

∫

ω

(∫ h

0

[
A∗u∗(x′, z, t

)
+ B∗u̇∗(x′, z, t

)]
dz +

h2

2
π∗(x′, t

)
– F̃

(
x′, t

)
)

.∇ψ
(
x′)dx′ = 0,

∀ψ ∈ H1(ω),∀t ∈ [0, T], (4.12)

where the vector F̃ = (F̃α)α=1,2 is given by

F̃α

(
x′; t

)
=
∫ h

0
Fα

(
x′, z, t

)
dz – hFα

(
x′, h, t

)
and

Fα

(
x′, z, t

)
=
∫ z

0

∫ w

0
f̂α
(
x′, y, t

)
dy dw.

(4.13)
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Proof Integrating equality (4.3) over [0, z] two times and taking into account Âα3β3 and
B̂α3β3 depending only on x′, we infer

–A∗(x′)u∗(x′, z, t
)

– B∗(x′)u̇∗(x′, z, t
)

+ A∗(x′)ṡ∗(x′, t
)

+ B∗(x′)ṡ∗(x′, t
)

+ zπ∗(x′, t
)

= F
(
x′, z, t

)
(4.14)

for all t ∈ [0, T]. As u∗
α(x′, h(x′), t) = 0, α = 1, 2, we have

A∗(x′)s∗(x′, t
)

+ B∗(x′)ṡ∗(x′, t
)

+ hπ∗(x′, t
)

= F
(
x′, h, t

)
. (4.15)

We integrate (4.14) from 0 to h(x′) to obtain

–
∫ h(x′)

0

(
A∗(x′)u∗(x′, z, t

)
+ B∗(x′)u̇∗(x′, z, t

))
dz

+ hA∗(x′)s∗(x′) + hB∗(x′)ṡ∗(x′, t
)

+
h2

2
π∗(x′, t

)

=
∫ h(x′)

0
F
(
x′, z, t

)
dz.

From this equality and (4.15), we derive the relation

∫ h(x′)

0

[
A∗(x′)u∗(x′, z, t

)
+ B∗(x′)u̇∗(x′, z, t

)]
dz +

h2

2
π∗(x′, t

)
– F̃

(
x′, t

)
= 0 (4.16)

such that F̃ is already defined in (4.13). Let us finally get the weak form (4.12) if we multiply
(4.16) by ∇ψ(x′) and integrate it in ω. �

5 Conclusion
The key to this work lies in the relation between the tensors Aε , Bε and the matrices A∗, B∗,
which played a major role in the passage from uε to u∗. This permits us to deduce that at
the limit the phenomenon can be described by the following two-dimensional constitutive
law:

σ ∗(u∗) = A∗ ∂u∗

∂z
+ B∗ ∂u̇∗

∂z
.

Such a constitutive law maintains the classical physical and algebraic properties, so we can
deduce a corresponding inverse law, see for example [11, 17].

Moreover, this law and its traces meet the basic equation of motion in (4.2)–(4.3) and the
boundary conditions of the Tresca friction in (4.10)–(4.11). The phenomenon is described
mathematically by the weak formula (4.12), known as the Reynolds equation, and has been
proved in many papers for the particular cases, see [1, 2, 4, 7, 12].

Specifically, if Aε = 0, the model matches the case of the anisotropic linearized elastic-
ity system and has been studied in [13, 14]. Other cases in [1, 5, 6, 16, 18] related to a
homogeneous and isotropic system can also be recovered in a similar manner to [13].

Through the results of this work, we are sure that the behavior of the posed problem for
“small” parameters ε is characterized by a clearly defined physical-mathematical model.
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