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1 Introduction
The Navier—Stokes/Allen—Cahn system, which is a combination of the compressible
Navier—Stokes equations with an Allen—Cahn phase field description, is considered in this

paper. Mathematically, in one dimension, this model reads as follows [5] (cf. [1]):

pe+ (pu)x =0, (1)
pus + pusty + (p7), = (v(p)ux), - g(xf)xr (2)
PXt+ PUXx = —H (3)
PI = =8 Yox + g(x?’—x) (4)

for (t,x) € (0,+00) x [0,1]. Here, p, u, and yx represent the density of the fluid, the mean
velocity of the fluid mixture, and the concentration of one selected constituent, respec-
tively; w is the chemical potential, N/ represents the thickness of the interfacial region.
The viscous coefficient v(p) > 0 satisfies

0<v =<v(p). (5)
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We supplement (1)—(4) with the initial value conditions

(:0: u, X)(Orx) = (:007 Uuo, XO)(x)r X € [0! 1]7 (6)

and the no-slip boundary conditions for viscous fluids and the concentration difference
(u, x)(£,0) = (u, x)(¢,1) = (0,0), t=>0. (7)

Before stating our main results, we review some previous works on this topic. For 1-
dimensional compressible Navier—Stokes/Allen—Cahn system, Ding et al. [5] established
the existence and uniqueness of local and global classical solutions for initial data po with-
out vacuum states. Besides, Ding et al. [6] proved the existence and uniqueness of global
strong solutions to (1)—(4) with free boundary conditions and with the lower bound of the
initial density. Yin et al. [18] investigated the large time behavior of the solutions to the
inflow problem in the half space, and they obtained that the nonlinear wave is asymptot-
ically stable if the initial data has a small perturbation. Recently, Luo et al. [15] (see also
[14]) proved that the system tends to the rarefaction wave time-asymptotically, where the
strength of the rarefaction wave is not required to be small. Chen et al. [2] established the
global strong and classical solutions with initial vacuum in bounded domains. After that,
Chen et al. [4] established the blowup criterion of the strong solutions with the viscosity
depending on the density and the concentration of one selected constituent. Very recently,
Yan et al. [17] considered the global existence of strong solutions with the phase variable
dependent viscosity and the temperature dependent heat-conductivity without vacuum.

For the multi-dimensional compressible Navier—Stokes/Allen—Cahn system, Kotschote
[11] established the local existence of a unique strong solution without initial vacuum.
Later on, Feireisl et al. [8] proved the existence of weak solutions in 3D, where the density
p is a measurable function, and they [9] obtained the global weak solutions in the bounded
domain of R® without any restriction on the initial data for y > 6, which was extended to
y >2 by Chen et al. [3]. Hosek et al. [10] considered the weak-strong uniqueness result in
a bounded domain of R® under the incompressibility assumption, which is relying on the
relative entropy method. Very recently, Feireisl et al. [7] proved that the model is thermo-
dynamically consistent, particularly, a variant of the relative energy inequality holds. At
the same time, they obtained the weak-strong uniqueness principle and showed the low
Mach number limit to the standard incompressible model. For more related results, we
refer the readers to Zheng et al. [19], Liu et al. [12], and Ma et al. [16].

Although considerable progress has been made to the compressible Navier—Stokes/
Allen—Cahn system, one of the natural questions is whether one could obtain the global
classical solutions without any small assumption on the initial data or perturbations,
where the time ¢ could tend to +00? Motivated by [13], we give a partial answer to this
question.

Our first main result in the paper is the following.

Theorem 1 Assume that 0 < py € H', j1o € L, uo € H}, and xo € H} N H?. Then there
exists a global strong solution (p,u, x) to the initial boundary value problem (1)—(7) such
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that, for all T € (0, +00),

p € C([0, T HY),

0: € L®(0, T; L?),

ueL>®(0, T;Hy) N L*(0, T; H?),

Jpu, € L*0,T; L), 8)
x € L°°(0, T; H} N H?),

(Vtu, x) € L®(0, T; H),

(Vtus, x;) € L*(0, T; H}).

Especially, the density can remain uniformly bounded for all time, that is,

sup | p(t, )| 0 < +00, )
0<t<+00
sup || x(, ')HHlmH2 < +00, (10
0<t<+00 0
and
tganw”u(t, ) yrp =0, Vpell,o00). (11)

The following result means that the strong solution obtained by Theorem 1 is a classical
solution provided that the initial data (o, 4o, xo) satisfies some additional conditions.

Theorem 2 Assume v(p) € C*[0,00), and the initial data (oo, uo, Xo) satisfies
(100:,0())/) 6H27 (MO’XO) EHé mHz

and the following compatibility condition

[v(po)uox]x — a(pg )x = /Pogs
Mo = \/%h’

(12)

where g € L* and h € H'. Then the strong solution (o, u, x) obtained in Theorem 1 becomes
a classical solution and satisfies, for any 0 < T < +00,

p, 0" € C([0, T];H?),

pw, pf € C([0, T;; HY),

Pus Py € L*(0, T; L),

u e C(0, T); H?) N L*(0, T; H?),

x € C([0, T; H?), (13)
(us, xe) € L*(0, T; Hé),

(Vtu, x) € L®(0, T; H?),

(Wt /txs) € L0, T; HY) N L*(0, T; H?),

(VP JOXu) € L*(0, T; L?).
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A few remarks are listed in order:

Remark 1 Compared with the previous results [2], ours are more general. First, the vis-
cosity v(p) depends on the density; Second, we remove the compatibility condition in ob-
taining the strong solution in Theorem 1, and Theorem 2 is established under (12), which
has improved Theorem 2 in [2]; Third, the density p is uniformly bounded for all time and
the large time behavior of « is also obtained, see (11) for details.

Remark 2 Similar to [2], we have to use the no-slip boundary condition on x to deal with
the term [ p?u, x? dx in (29) because ||u,]| > is not time-integrable when we establish the
time-independent lower order estimates, see (26) below.

Remark 3 The concentration x is uniformly (in time) bounded with higher order esti-
mates in (10), without any decay as ¢t — +00, perhaps because it appears in the hyperbol-
icity in (3) rather than in the parabolicity in (24).

We now make some comments on the analysis of this paper. To obtain the results stated
in Theorems 1 and 2, which mainly establish the time-independent lower order estimates
and the time-dependent higher order ones, the method used in [2] is not suitable here,
due to the all time-dependent a priori estimates. Moreover, it is difficult to obtain the
large time behavior of solutions (11). Here, it is noted that we borrow some ideas from
[13], where they discussed the global large classical solutions to the compressible Navier—
Stokes equations. The key uniform upper bound of the density is obtained by Zlotnik’s
inequality, which is also successfully used to system (1)—(7) (see Lemma 4). Furthermore,
the key time-independent L?*-norm of u, is bounded by the material derivative u; + uu, (see
Lemma 5). With the lower order estimates obtained in Lemmas 3-6, the time-dependent
higher order estimates on (p, , x ) are obtained by standard energy estimates and the prop-
erties of one dimension.

The paper is organized as follows. In the next section, we deduce the desired estimates
globally in time. By using the a priori estimates obtained in Sect. 2, we complete the proofs
of Theorems 1 and 2 in Sect. 3.

2 A priori estimates

In this section, we establish some necessary a priori estimates of the solutions to (1)—(7) to
extend the local solution to a global one, which is guaranteed by the following Lemma 1,
whose proof can be obtained by similar arguments as those in [5].

Lemma 1 Assume that py € C** satisfies 0 < Cgl < po < Cy for some constant o € (0,1)
and Cy > 0, ug, xo € C>*. Then there exists a small time Ty > 0 depending only on (0o, 1o, Xo)
such that the initial boundary value problem (1)—(7) admits a unique classical solution
(0, u, x) satisfying that

(pwp) €C,  0<Cl<p<C,  (uy)eC¥¥,
where the C*? is the usual Holder space.

Before starting the a priori estimates, we list Zlotnik’s inequality which could be found
in [20] and will be used to establish the uniform upper bound of the density.
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Lemma 2 Let the function y satisfy
Y(©) =g0) +B®, on[0,T],  ¥0) =",
with g € C(R) and y,b € W(0, T). If g(c0) = —00 and
b(ty) — b(t1) < No + Na(t2 - 1),
forall 0 <t <ty < T with some nonnegative constants Ny and Ny, then
y(2) < max{yo,g:} +Np<oo onl0,T],
where ¢ is a constant such that
ge)<-Ni fort=¢.
2.1 A priori estimates (l): Lower order estimates
We emphasize that, in this subsection, C denotes some positive constant, which may be
changed line by line and depends only on v, §, y and the initial data (po, %o, o), but without
the lower bound of the initial density py and the length of T First of all, we have the

following basic energy estimates.

Lemma 3 Let (p,u, x) be a smooth solution of (1)—(7) on (0, T) x [0, 1]. Then one has

2 y 2_1)2 2 T
sup /(ﬂ + p + Pl ) + X—") dx+/ /(ufc + uz) dxdt < C. (14)
t€[0,7] 2 y-1 4 2 0

Proof This lemma can be obtained by standard energy estimates. Multiplying (2), (3) by
u and p, respectively, by integrating by parts and by using (1) and (4), we obtain (14), the

details can be found in [2]. O

Due to the basic energy inequality (14), we first consider the uniform upper bound of
the density p, which does not depend on the length of time 7.

Lemma 4 Let (p,u, x) be a smooth solution of (1)—(7) on (0, T) x [0, 1]. Then one has
0 < p(t,x) < C. (15)

Proof To prove this lemma, we borrow some some ideas of [13]. First of all, integrating (2)
over (0,x), we obtain
a [ s 5

— | pudy+ pu® + p¥ —v(p)uy + = X (16)
ot ), 2

8
= |:pu2 + 07 —v(p)uyx + Exf](t, 0),
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which implies that

|:,ou2 +p¥ —v(p)u, + gxf](t, 0) (17)

8 1 X 1 1 1 8 1
:_/ / pudydx+/ ,ouzdx+/ pydx—/ v(p)uxdx+—/ dex.
Jat o Jo 0 0 0 2 0

Combining (16) with (17), it follows from (14) that

5
P’ —v(p)uy + Ex,? (18)

1 1 1 s (1
:/ puzdx-;-/ pydx—/ v(p)uxdx+—/ X2 dx
0 0 0 2 Jo
P 1 x 9 X
— dydx — — dy — pu®
+at/0/0,ouyx at/(;puy pu
1 1 1 s (1
:/ puzdx-;-/ pydx—/ v(p)uxdx+—/ X2 dx
0 0 0 2 Jo
1 P 1 x 1
+Dt(/ ,o/ v(s)s_zdsdx+/ / pudydx—f pudy>
0 2 0o Jo 0

< C+Dy(Bi1(t) + By(t) + Bs(t)),

where we have used the following fact (due to (1))

1 1 ]
—/ v(p)uxdx:Dt/ ,o/ v(s)s 2 dsdx.
0 0 2

The notion D,f(¢,x) denotes the derivation operator D,f(£,x) = 0,f (¢, x) + ud,f (¢, x).
Next, direct calculations show that

—v(p)u, = Dy /‘P v(s)s~t ds,

1

which together with (18) yields
? -1 § o
Dy v(s)s " ds < —p¥ — EX" +C +Dt(Bl(t) + By(2) +Bg(t)) (19)
1
<—p” + C +Dy(B1(t) + By(t) + B3(1)).

Now, we focus on the estimates of the last term on the right-hand side of (19). First, by
(14) and Holder’s inequality, we easily obtain

1 x x 1 1
|B2(t)| + |Bg(t)| < Cf / pdy/ puzdx+/ pdx/ putdx < C. (20)
o Jo 0 0 0

Next, we also have

1 max{ sup p,2}
Bi(t) < 5_/ OTx01 ) (5)s7t s, (21)
0
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Finally, it follows from Lemma 2, Zlotnik’s inequality, and (19) that

o 1 [P
/ v(s)stds<C+ = / v(s)s~t ds,
1 2/

which together with (5) shows (15). This completes the proof. O

Next, we focus on L?-estimates about p;, iy, and x,,, which are the key estimates for
the proofs of the main theorems.

Lemma 5 Let (p,u, x) be a smooth solution of (1)—(7) on (0, T) x [0, 1]. Then one has

sup (1oxellz + llell?2 + [l Xex72) (22)
te[0,T]

T
+ / (e + |/t + sl 2) dt < C.

Proof First, multiplying (2) by u; + uu, and integrating the resultant equality by parts, we
obtain

LA [ od /1( Yd (23)
2dt0v'0ux x+0put+uux x

d (! s ! 1t
= %<A p)’uxdx+ EA X?uxdx) - EA [l)(p)—pv/(p)]u‘idx

1 1 1
+V/ pyuﬁdx—S/ Xxxxtuxdx—5/ X Xuxlithy A%
0 0 0

d ! s !
< ([ rmane [ xtucds) s Cludi s Cli
0 0

+ Clixaellzoe e 2 N2t 22 + Cll el oo [ Xl 2 Ml 22| oo [l 28] 2

d 1 8 1
< %( fo prucdss /O x,?uxdx) + Clluglly sl + Clus %

|1/2 1/2 1/2 3/2

2
+ Clell 2 e 27 1 e 2 el 22+ el 27 1 e 15 N2t 72

Next, let us rewrite (3) and (4) as

0
P> Xt + 7 UXx = Xx — g(x3 -X) (24)

from which, due to (14), (15), and Young’s inequality, we obtain
1 xxxllz2 < Clloxellz + Cliv/pull 2l xxllie + C (25)
1
< ||10Xt||L2 + EHXxx”LZ +C.

Next, due to (2), (14), (15), and (25), we obtain

”M?C”Loc SC”v(p)ux_py”Loo +CprHLOO (26)

< Clv(p)ux = p” | ;1 + C|| [v(p)ux — p7] || + C
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< Clv(ous] o + Cllo7 || 1 + ClloGue + uns)|| ;1 + Clixallz2 sl + €

1
< C/ v(p)us dx + C|| /(s + uisy) | 5 + Cll xuxll 2 + C.
0

Then, substituting (25) and (26) into (23), and integrating the resultant inequality over
(0, ), one has

1 t pl
/ v(p)ufc dx + / / p(uy + uuy)* dx dt (27)
0 o Jo

t 1 2 t
§C+C/ (/ V(p)uﬁdx> ds + Cillpxell7 +€/ | Xt 172 ds
0 0 0

t 1
e ( | v(p)u,%dx) loxel% ds,
0 0

where we have used the following fact:

1 1
1 2
fpyuxdmf Keds = 2| Vo@hs]2a + Culloxili + C,
0 0

due to (15) and (25).
Next, differentiating (24) with respect to ¢, we deduce that

P> xee + (0%), Xt + PP U Xt (28)

= Xaxt — (pz)tMXx - pthXx - pt(X3 - X) - ,0(3)(2 - 1)Xt~

Then, multiplying (28) by x; and integrating the resultant equality by parts, we obtain

1d
2dt

1
= 5/pzuxxfdx—Z/pZthtxxtdx—/pzuuxxxxtdx—/pzuZXxxxtdx

P2 dx+ / 2 dx (29)

—/pzuzxxxxtdx—fp2utxxxtdx—fpu(3x2—l)xxxtdx

9
—/pu(x3—x)xxtdx—/p(BXZ—l)xfdmZli.

i=1

Now, we estimate each term on the right-hand side of (29). First, due to Sobolev’s inequal-

ity, Holder’s inequality, and Young’s inequality, one has

I = Cllpllzee T xellzoe Naxllz2 | o Xl 22

1
<éelxul?: + C< / v(p)uZ dx) o XelI?.
0

Page 8 of 21
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Similarly, we obtain
1
I < ellxall7 + C< f v(p)u; dx) loxell 7
0

1 2
L+I5+13 < 8||th||%2 + C</ v(p)uidx) .
0
Due to (25), we obtain

Iy < CllullFoo Lo xe 122 | Xl 2

2 2 3 2
< Clluelp2lloxell 72 + Clluxllyz + Cllxli

1 1 2 1
2 2 2 2
< C(./o v(p)u; dx) loxellz> + C(./o v(p)u; dx) + C(/o v(p)u; dx).

From (3), (14), and (25), we have

1 1
[6:_/ p2(ut+uux)xxxtdx+/ 0> Utk X Xe dx
0 0

1 1 1
=/ pz(ut+uux)x§udx+f p(ut+uux)xxudx+f P Utk X Xe A%
0 0 0

< C| /Bt + wit) | o llitall 2 124 + Cllelzos | /PC0te + waa) | ol 2
+ Cllxallzos a2 o el 2

< C|| Vo + wn) || 2 Nl 2 1 2 | Xl 2

+ Cltaell 20 X 157 [ /0ot + e | ol 2

1/2 1/2 2
+ Cltll 221 |2 Nl 72 1l 0 el 22

1
<[Pl + w3, + C ( / v(p)is; dx) lpxel%
0
1
¥ cnuniz(npxtniz + / v(pmgdx)
0

1 2 1
+ C(/ v(p)u,zcdx> + C(/ V(;O)M,chx) +Cllul?s.
0 0

By (3), (14), (15), and (25), I7 could be rewritten and estimated as

1 1
17=/ pu2(3x2—1)x3dx+/ u(3x* = 1) xaprdx
0 0

2 2
< Cliullzoo Il Xxllza + Cllatllzoe ll e ll 2 1l 22

2
< Cllstellp2 Wl 22 e ll 22 + Cllatell 2 1 el 22 2l 22

1 1 2
§C< /0 v(p)uidx)npxtniﬁc( fo v(p)u,%dx)

1
+ C(/ v(p)ufcdx> + Cllpll?,.
0

Page 9 of 21
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Similarly, the last term Iy is

1 1
19=/ pu(3x2—1)xxxtdx+f (3x* - 1) ux. dx
0 0

< Cliullzoe Il xellzoo  xellz2 + Clixellzoo | 2]l 2

< Clluall 21Xt ll 22 + CllXaell 2 M1 21l 2

1
<&l xuell?z + C(f v(p)ul dx) + Cll 2.
0

Then, substituting all the above estimates into (29), and then integrating it over (z,¢),
where 1 € (0,¢), we obtain

1 t pl
/pzxf(t)dx+/ / Xftdxds (30)
0 T JO
1

< C/:(/o v(p)uidx)llpxtllizds+ C‘/Tt(‘/olv(p)uidx) ds

t
+ e/ ||\/5(ut + uux)”i2 ds + ”,o)(t(r)”i2 +C.
T

On the other hand, multiplying (3) by p x;, we have

1

1 1
/ p2xf(f)dx:—/ pquxXt(T)dx_/ o xeu(T) dx
0 0 0
< Cloxe@)] 2[4 oo | 42 (@) | 2 + €|l 2D | 2 | 1(2) | 12
1
< Zoxe@) |22 + Cllael s el + Cll (@) | 2o

Substituting the above inequality into (30), then letting T — 0*, we conclude that

1 t ol
/pzxfdx+//xftdxds (31)
0 0o Jo
1

t t 1 2
c| ( | v(p)uidx)npxtnizdwc | ( | v(p)u,%dx) ds
0 0 0 0

t
+ 8/ ||ﬁ(ut + uu,c)”i2 ds+C.
0

At last, multiplying (31) by 1 + Cj, then adding the resultant inequality into (27), and
choosing ¢ sufficiently small, we have

1 t
loxels + / V()i dx + / (e + |/t + ) |2 dis
0 0

t 1 2 t 1
< C/ (/ v(p)ufc dx) ds + C/ (/ v(,o)ufc dx) ||\/ﬁxt||%2 ds+ C,
o \Jo o \Jo

which together with Gronwall’s inequality, (4), (14), and (25) shows (22). This completes
the proof. O
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Lemma 6 Let (p,u, x) be a smooth solution of (1)—(7) on (0, T) x [0, 1]. Then one has

T
sup o () (Iull?im + | /0 (e + 1) |2,) + / o () (e + w3, dt < C, (32)
£€[0,7] 0

where o (t) = min{1, t}.

Proof Taking the operator 9; + (u-), to (2), and multiplying it by u; + uu,, then integrating
the resultant equality by parts, we obtain

1d !

1
—— plut+uux|2dx+/ v(p)|(ut+uux)x|2dx (33)

1 1
=y / 7 vty + utky) dx + / [v(p) + V' (0)p (e + unsy)s dox
0 0

1
+ 8/ (Xxth(ut + uux)x + MXxXxx(ut + uux)x) dx
0

< C(1+ atllzoo) ot 2 | (e + wita)c |
+ Cllxelloe | xaell 2 || (e + s | ;2
+ Cllaell oo 1ol | el 2 || G + wan)e | 12
< C(1+ |/ + te) | o) Nt 2| (ot + ta) | 2

+ Cll gl 2 [ G + waaa )| 12

1
< e + ), I3 + Clluxl s + Clluas |12 | /PGt + win) |22 + Cllxael %2,

due to (22), (25), and (26). Then, multiplying (33) by o (¢) and integrating the resultant
inequality over (0, ¢), one has

1 T p1
sup o(t)/ plut+uux|2dx+/ / v(p)‘(u[+uux)x|2dxdt§C, (34)
0 o Jo

te(0,T]

due to (14), (22), and Gronwall’s inequality. Furthermore, (34) together with (22) and (26)

yields
sup o () || uxllz» < C. (35)
[0,T]

Combining (34) and (35) leads to (32). This completes the proof. O

2.2 A priori estimates (ll): higher order estimates

In this subsection, we derive the higher-order estimates of the smooth solution (p, #, x) to
system (1)—(7). Particularly, in this subsection the constant C may depend on the initial
data (po, 4o, x0), ¥, 8, and V. Almost the a priori estimates obtained in this subsection could
be obtained by similar arguments as in [2], we estimate them here to make the paper self-
contained and satisfy the new assumptions on the initial data and compatibility condition
(12).

Page 11 of 21
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Lemma 7 Let (p,u, x) be a smooth solution of (1)— (7) on (0, T) x [0,1]. Then one has

sup (Ilocl?s + lloxll?2) < C (36)
te[0,T]
and
T
sup (o (Ollv/Puel?s + 0 (O)lluaxll?) + / (l1st2x 112 + 0 () e |1 5) dt < C. (37)
te[0,T] 0

Proof Differentiating (1) with respect to x leads to

Pt + Paxlh + 205Uy + PUy = 0. (38)

Then, multiplying (38) by p, and integrating the resultant equality by parts, by (15), one
shows that

d
7 1Pelliz = Clistelizelloxllzz + Cllttall 2. (39)

To prove the last term on the right-hand side of (39), let us rewrite (2) as

V(0)thax = p (g + utt)) + (07) = V' (0) Pt = 8 X Xows (40)

which together with (5), (15), (22), and (32) leads to

lttsll 2 < C|| /P utr + wn)|| 5 + C(1+ lltallzoo) | ol 2 (41)
+ Cllxxllzee | ax ll 22

-1/2
= Co@®) (1 +llpel2)-
Therefore, substituting (41) into (39), then Gronwall’s inequality gives

sup || pxll2 = C, (42)
te[0,T]

which together with (1), (15), and (22) yields

sup [|p¢llz2 = Cllullze |l pxllz2 + Cllusll 2 < C. (43)
te(0,T]

Next, it follows from (15), (22), and (41) that

IV/puell 2 < C|l/o(u: + uiey) | 5 + Cll/puss| 2 (44)
< C| /P +uny)|| ,, + C

and

2
lotaell 2 < C|| (e + 1s)s | 2 + Cllatell o + Cllthell 214l 2 (45)
3/4 1/4
< C| (e + uny)| 12 + Clluag 25 1t |5 + Cllttae |2

< C| (e + un)s | 2 + C,
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then (44) and (45) together with (32) and (41) yield (37). This completes the proof of
Lemma 7. O

From now on, suppose that (p,u, x) is a smooth solution of problem (1)—(7) with the
smooth initial data satisfying the conditions in Theorem 2 and v(-) € C2[0, c0).

Lemma 8 Let (p,u, x) be a smooth solution of (1)— (7) on (0, T) x [0,1]. Then one has

t
sup (llxxll 72 + el wice + l/0uell?2) + f lltae 12, < C. (46)
te[0,T] 0

Proof Based on (33) and the compatibility condition (12), the initial data ||./po(u0o; +
uouo,c)H%2 < C. Therefore integrating (33) over (0, ), one has

1 T p1
sup / plut+uux|2dx+/ / v(p)‘(ut+uux)x|2dxdt§C,
0 o Jo

te(0,T]

which together with (22), (26), (41), (44), and (45) yields (46). This completes the proof. (]

Lemma9 Let (p,u, x) be a smooth solution of (1)— (7) on (0, T) x [0, 1]. Then one has

sup ](npxxniz sl + 1 (07) L2 + 1(07) 17 + [vse0)]72) (47)
te|0,

T
+/0 (”uxxx”]z; + ”Xxxx”iz + ||Ptt||1%2 + ” (Py)tt ”iz + H Vtt(p)”iz) <C.

Proof Differentiating (1) twice with respect to x, and multiplying the resultant equality by
Pxx> then integrating it by parts, we obtain

1d

2 d / Prcdx < Cllttlloo [l oaxl72 + Cllpxllzoe | oxell 2 |4l 2 (48)

+ Cll oxxll 2 Nt || 2

2 2
= C”pxx”LZ + C(||px||L2 + ||pxx||L2)”pxx”L2 + C”uxxx”LZ

< Cllpxxll72 + Clittaax |72 + C
due to (15), (36), and (46). Furthermore, it follows from (1) that
("), + (p"u), + (¥ = 1)p"ux =0,

from which, by the same arguments as in (48), we deduce

1d

575 | P )eedx = Cl (0"l + Cliasellz + C.

Combining the above inequality with (48) leads to

1d
5 g 1wl + 1(07), . ]2) (49)

< CIowslZ + [ (07) | 72) + Clltasll?s + C.
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To obtain the second term on the right-hand side of (49), it follows from (2) that
V(;O)uxxx = Pxls + PUst + PxlUly + Pui + PUUxy + (Py)xx + 8)(;?,; + (SXxXxxx
= 20"(p) Pty — V" () 021t = V' (0) Pl

which gives the following estimates:

el 2 < Cllstellzoc | oxll 2 + Cllttas |12 + Clltte || 2 |2t l|o0 1| 1| 2
+ Cllualifa + Clluall2 Nl ll 2 + CJ| (07) [l 12 + Cllxasll 74
+ Cllxalloo ll twexllz2 + Cll ol Notaell 2 + Cllox 1 ltell o
+ Cllutgl| 2o || pxll 12

<Cl (7). |l 2 + Cllpxslizz + Ntte |72 + Cll xanell 2 + C,

where we have used (15), (22), (36), and (46). Furthermore, it follows from (24) that

Xooxx = 2005 Xt + P> Xat + 200xUXx + P Uz X + P UXxx

+ (x> = %)+ P(3x* = 1) X»

which, due to (14), (22), (36), and (46), implies that

Iasllz2 < CL+ lallzee + laeli2) (losll 2 + Nzl 2 +1) + C

< CllXaellz2 + C.

(50)

(51)

Then, substituting (50) and (51), by using Gronwall’s inequality, (22), and (46), we obtain

sup (losslZ2 + [ (07),,]17) < C.
te(0,T]

Next, it follows from (38) that

lPxellr2 < Cllpxxllr2 lttell 2 + Clloxll 2 N[l 200 + Cllttaell 2 < €

due to (22), (36), (46), and (52). Furthermore, it follows from (1) that

Pt = —PxtUh + Pxlhy + Prly — PUyt,

from which we have

T
/ w2 dt
0

T
2 2 2 2 2 2 2
=< C/ (el 2 N oxell72 + Cllsae | 72l oxl 72 + Cllstellzoc el 2 + Cllstae|I72) dt
0

T
= C/ ||”xt||iz dt+C
0

(52)

(53)

(54)
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due to (22), (36), (46), and (53). Similarly, we obtain

T
sup ([[(07) 412 + [0 2) + /0 (107,22 + o)) e <

te(0,T]

which together with (22) and (50)—(54) shows (47). Therefore, we complete the proof. [J

Lemma 10 Let (p,u, x) be a smooth solution of (1)— (7) on (0, T) x [0,1]. Then we have

2 2 2 2 2
sup (t”uxt”L2 + t||,0Xtt||Lz + ||th||L2 + t||”xxx||L2 + ”Xxxx”L2) (55)
te[0,T]

T
+/ (EI/Pre s + tll st 132 + ll Xocat |2 + Ell Xt 132 + N0 x I 72) dt < C.
0

Proof Multiplying (28) by xy, integrating the resultant equality by parts, we obtain

1d [!
24t J,
d

1 1 1
=——/ pt(XB_X)Xtdx_/ pquxtXttdx_Z/ PPN Xez A%
dt Jo 0 0

1
Xft dx + / pzxtzt dx
0

1 1 1
—f pzu:xxxttdx—2/ pthxXndx—f p(3x* = 1) Xexu dx
0 0 0

1 1
+f ,Ott(Xg_X)Xtdx"'/ pe(3x% - 1)} dx
0 0

d 1
== pe(x® = x) xedx + Cllull ool o xee ll 2 | et I 2
0

+ Cllullzeo loxell 2 Xl zoe 1ol g2 + Cllp xeell g2 1/ ptte [l g2 | X[l 20
+ C||,0Xtt||L2(||pt||L2 | xellzoe + ||Xt||L°°) + Cllogell 2 1 xe Ml o

+ Clloel I xell 7

d (! 1
<=5 | 0 = 0mdn s Soxalis + Clixal +
0

which together with the compatibility condition (12) yields

T
sup. [l + / Lol dt < C, (56)
te[0,T] 0

by using the fact that

1
1
|| 266 =0 e = s + Clnl
0
Furthermore, (56) together with (51) leads to

sup ”Xxxx”iz <C (57)
te[0,T]
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To proceed, differentiating (28) with respect to £, multiplying the resultant equation by
Xu> and integrating by parts, we obtain

1 d 1 2.2 ! 2
5%./0 0 Xttdx+/0 Ny A%
1! ! '
=_5/ pzuxxtztdx—4/ pptxftdx—Z/ P7 Xt Xue dx
0 0 0

1 1 1
- 2/ PP Xt Xt X — 4/ PO Xt Xet AX — / /OzutthXtt dx
0 0 0

1 1 1
- 2/ ptquxXtt dx — 2/ PPuUXx Xt A% — 4'/ PO Xz Xer AX
0 0 0

1 1 1
—2/ pzuttXxXttdx_Q'/ pZMtthXttdx_/ ptt(X3 _X)Xttdx
0 0 0

1 1 1
—2/ pt(3x2—1)xtxtzdx—6f pxxfxttdx—/ p(3x*—1)xz dx
0 0 0

< Cllusliellpxellfs + Cllxee e lloell2 0 xee 2 + Clixellze l Xeelloe 1 o272
+ Clixelloo llpeell 2110 Xeell 22 + Cll Xeell oo 1l oell 2 | Xoxe 1 22
+ Cllttellzoe | Xaell 2 0 Xl 2 + Cll etz | X llzoo o2 117
+ Clixsllzoe loeellz2 10 Xeell 22 + Cllutellzoe | oell 2 | 0 Xeell 22
+ Cllxallzoe I/l 2 10 xeell 2 + Cllagell oo | xose 2 10 X N 2
+ Cllixeell 2 oeell 2 + Cll Xee oo | Xell Lo [l oe 1l 22

+ Clixell ool zoe llp Xeellz2 + Cllxee oo ll 0 xee 12
1
= 5 ||tht||§2 + 5”\/51/%”%2 + C||10Xtt||i2 + C||Mxt||22 + C”Ptt”iz +C.

Multiplying the above inequality by ¢ and using Gronwall’s inequality, we obtain

T T
sup t”PXtt”]zlz + / t||tht||%2 dt < 8/ t”\/ﬁutt”iz dt+C, (58)
t€[0,T] 0 0

where we have used (46), (47), and (56).
Then, differentiating (2) with respect to ¢ leads to

8
Pt + plithey — [V(0)1k ]|, = —pe(uty + utny) — puginy — 2 (X2) e (59)

Multiplying the above equation by u;, and integrating the resultant equality by parts, we
obtain

d 1
I RN (60)
1

1 1 1
=5 / ve(p)uZ, dx — / Ve(p)ththngy dx — / e Uy + Utk )y dx
0 0 0

1 1 S 1 6
—/0 putuxundx—/o (p7) e dx — 5/0 (Xﬁ)xtutrdm;]i.
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Now, we focus on the estimates of the terms on the right-hand side of (60). First, due to

(36) and (47), we obtain

1

Ji < Clve0) | o lttae 2 < Clloal 2 [vae(0) | 5 Nttael15 < Cllaase 2.

It follows from (46) and (47) that

d 1 1 1
/2:——/ vt(p)uxuxtdm/ vtt(p)uxumdm/ v(p)u?, dx
dt Jo 0 0

d 1
<=-—— / V() thytty A + Cllungl| o< | vie(0) | 2 4t N 12
0

+ C” ve(p) ||Loo ||Mxt||i2

d (! 2
<=5 | oz s sl + o)
0

Next, it follows from (1) and integration by parts that
1 1
J3= / (pu)x (s + uthy) by dx = — / pu(us + Uhy)xthy AX
0 0

1
—/ PU(Uy + Ulhy) Uy AX
0

1

<—— | pulus + usny)uyy dxc + Cll/ptaee || 2 || (e + )|

dt Jo

1 1
+ / peut(Us + Ulhy)Uys dX + / ou (U + Ully) Uy dx
0 0

1
+/ pu(t; + Ulhy) sty dX
0

1

=- puu; + utte) ity dx + C||/ptay | 12 || (us + uux)x”Lz

= dt ),
+ Cllug + utdy || oo | pg |l g2 1245 || 12

2
+ Cllug + vty || oo ||/ puell g2 |t || 2 + Clloae |72

d (! 1
<= / puta + Yt e+ |/l + Clte I
0

+ C| (e + wany) | 2

where we have used (15), (36), (46). Moreover, by (46), one easily shows that

Ja < Cllttell oo ll/pusell 2 |/ 0aell 2 < €ll/Oull 72 + C.

Furthermore, J5 is estimated as

d 1 1
Js = d—/ (py)tuxtdx—f (7)ot dx
tJo 0

d 1
<= | (0" e+ C(07) |2 + Cllae o
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Similarly, we deduce that

5d (! ! '
Jo = Ed_/ (Xf)tuxtdx—é/. xftuxtdx—cs/. K Xxte Ut AX
t 0 0 0
) d 1 2 2
< 5 (Xx)t”xt dx + Cll Xaell ol txe |l 22 + Cll X ll 200 | et 1 22 128t || 12
0
) d 1 2 2 2 2
< S [ (62) gt + Cllaaly + Clixanl 2 + Cllxael
0

Substituting all the above estimates into (60), we obtain

d
EF(t) + ”x/ﬁutt”%Z (61)

2
< Cllttae 172 + Cll Xt 172 + Cllxae 172 + €ll/pusae |72 + C[ (07) , |12
2 2
+ C|| (s + uux)x”L2 + C||vtt(,o) ||L2 +C.
Multiplying the above inequality by ¢ and adding (58) to the resultant inequality, then in-

tegrating it over (0, t), after choosing & small enough, and using (46), (47), (56), Gronwall’s
inequality, we show that

T
s[up]t(npxttniz 2t 122) + / t( a2 + 11/ Pute|2) dt < C, (62)
te[0,T 0

due to
1 ! 1 1
F(t) = 5‘/ v(p)uitdx+/ ut(p)uxux,gdx+/ ou(u; + uidy) Uy dx
0 0 0

1 F) 1 5
_/0 (py)tuxtdx—E/O (x2) txe A,

satisfying

v
5 el = C < F®) < Nl o + C.
Moreover, due to (50), (51), (56), and (62), we obtain

t””xxx”iz <C (63)

Furthermore, it follows from (59) that

Dlttan |2 < Clly/Dttee |12 + Cllitael® (L + 10e1 2 + 0sl12) + C[[ (7)., |72

2 2 2 2 2
+ Cllxae 2 Xl 7o + Clloaellz2 + Cll X llzoo | X 125

which together with (62) leads to

T
/ Hlthyt 122 dt < C. (64)
0
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Similarly, due to (28), one has

T
| e =c.
0
which together with (57), (62), (63), (64), and (56) shows (55). This completes the proof. (]

3 Proofs of the main theorems
In this section, based on the a priori estimates derived in Sect. 2, we extend the local
classical solution obtained in Lemma 1 to a global one.

Proof of Theorem 1 To prove Theorem 1, we first construct a sequence of approximate
solutions by giving the density without initial vacuum. Let js(x) be a standard mollifier
with width § and define the initial density

S . 8 . § .
Py =Js * po + 6, uy = Ug * js, Xo = X0 * s,
where
) ) § . Hl 3 0
Lo — Po» Uy — Uy, Xo — Xo, 1n ;aso — L.

Due to Lemma 1, the initial boundary value problem (1)—(7) with initial data (o3, u, xJ)
has a classical solution (0%, #%, x?) on [0, Tp] x [0, 1]. Moreover, the estimates obtained in

Lemmas 3—7 show that the solution (p?, u?, ) satisfies, for any 0 < T < +00,

sup ([[0% (0°) [l + 02 2 + [ + [ ] 12)
te[0,T]

T
+ f (I [20 + tlluse 22 + el %) < C,
0

where C is independent of §. With all the estimates at hand, one easily extracts subse-
quences to some limit (p,u, x) in the weak sense. Then letting § — 0, we deduce that
(0, u, x) is a strong solution to (1)—(7).

Furthermore, the uniqueness of the strong solution (p, u, x) could be obtained by the
similar argument as in [2]. For simplicity, we omit the details here.

Next, we will extend the local existence time T} of the strong solution to be infinity and
therefore prove the global existence result. Let 7 be the maximal time of existence for
the strong solution, thus, T* > Ty. For any 0 < t < T < T* with T finite, we obtain

(u, x) € L(0, T; Hy) NL*(0, T; H?),  (uy, xo) € L (v, T; HY),
then

(. x) € C([x, T; Hy). (65)
Moreover, it follows from

peL™(0,T;H"),  p, €L>(0,T;L%)
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that

peC(0, T HY). (66)
Let

(0747, x7) = (0,1, JO(T, %) = lim (p, 1, ) (&,5),

it follows from (65) and (66) that (p*, u*, x*) satisfies the initial condition stated in Theo-
rem 1.

Therefore, we take (p*, u*, x*) as the initial data at 7* and then use the local result,
Lemma 1, to extend the strong solution beyond the maximum existence time T*. This
contradicts the assumption on T*. We finally show that T* could be infinity and complete
the proof of the global existence of the strong solution.

It remains to prove (11), process of which is similar to that in in [13], we sketch it here

for completeness. Due to integration by parts, we have

1
= 2/ Uy Uy AX
0

1
= 2/0 ux[(ut + Ully)yx — (uux)x] dx

2
I%Huxlle

1 1
= 2/ ux(ut+uux)xdx—/ uidx
0 0

< C|| e + w3 + C(1+ lltallzoo) a1,

which together with (14) and (32) leads to

+00
2
/ <||ux||L2 .
1

Therefore, we obtain

)mgc

T [

. 2 _
dim % =0,

which together with (32) yields
thm ”u”WLP =0, Vp € [l,OO)
This completes the proof. O

Proof of Theorem 2 With the higher-order estimates in Lemmas 8-10 at hand, the proof

of Theorem 2 is similar to that of Theorem 1, and so it is omitted here for simplicity. [J
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