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Abstract
In this paper we study the existence and multiplicity of solutions for the following
nonlinear Choquard equation:

–�u + V(x)u =
[|x|–μ ∗ |u|p]|u|p–2u, x ∈ R

N ,

where N ≥ 3, 0 <μ < N, 2N–μN ≤ p < 2N–μ
N–2 , ∗ represents the convolution between two

functions. We assume that the potential function V(x) satisfies general periodic
condition. Moreover, by using variational tools from the Nehari manifold method
developed by Szulkin and Weth, we obtain the existence results of ground state
solutions and infinitely many pairs of geometrically distinct solutions for the above
problem.
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1 Introduction and main result
Consider the following Choquard equation:

–�u + V (x)u =
[|x|–μ ∗ |u|p]|u|p–2u, x ∈R

N , (1.1)

where N ≥ 3, 0 < μ < N , 2N–μ

N ≤ p < 2N–μ

N–2 . Problem (1.1) arises from the study of the
existence of standing wave solutions for the following equation:

iψt = –�ψ + Wψ –
[|x|–μ ∗ |ψ |p]|ψ |p–2ψ ,

which appears naturally in optical systems with a thermal [21] and influences the propa-
gation of electromagnetic waves in plasmas [2] and plays an important role in the theory
of Bose–Einstein condensation [9]. Here ψ : RN × R → C represents the wave function
of the state of an electron, and W is the external potential. In the present paper, we are
mainly interested in studying the standing wave solutions of the form ψ(x, t) = u(x)e–iEt .
This type of particle-like solution does not change its shape as it evolves in time, hence
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has a soliton-like behavior. Obviously, u(x) solves (1.1) iff ψ(x, t) solves the above equation
with V (x) = W (x) – E. Additionally, it is easy to see that problem (1.1) has nonlocal char-
acteristics in the nonlinearity due to the effect of the convolution part, which is different
from a local problem.

Especially, when p = 2, N = 3, and μ = 1, problem (1.1) is called Choquard–Pekar equa-
tion

–�u + V (x)u =
[|x|–1 ∗ |u|2]u, x ∈R

3, (1.2)

which arises in the description of the quantum theory of a polaron at rest by Peak [28]
in 1954 and in the modeling of an electron trapped in its own hole in 1976 in the work
of Choquard, see [18]. Moreover, people also call this equation the Schrödinger–Newton
equation, which was introduced by Penrose in his discussion on the self-gravitational col-
lapse of a quantum mechanical wave function [29]. Up to reparametrization, Penrose sug-
gested that the solutions to (1.2) are the basic stationary states that do not spontaneously
collapse any further within a certain time scale. Hence, it is very interesting to study these
basic solutions. Besides, equation (1.2) has many interesting applications in the quantum
theory of large systems of nonrelativistic bosonic atoms and molecules, we refer readers
to [18, 28] for more physical backgrounds.

Mathematical work on nonlinear Choquard equations like the above has been investi-
gated in recent years, and the existence and multiplicity results for such type equations
have been considered in many papers under some different assumptions on the potential
and nonlinearity by using various variational arguments. For readers’ convenience, next
we briefly summarize the related study on the existence and multiplicity of nontrivial so-
lutions to problem (1.1).

We pointed out that Lieb [18] and Lions [20] firstly studied the existence and symmetry
of the solutions to (1.2). More precisely, up to translations, Lieb [18] obtained the exis-
tence and uniqueness of the ground state solutions with V being a positive constant. Li-
ons [20] showed the existence of a sequence of radially symmetric solutions. Since then
people began to pay attention to studying the existence of nontrivial solutions for nonlin-
ear Choquard equations, not only from the mathematical curiosity. Such nonlocal prob-
lems are also widely used in optimization, finance, phase transitions, stratified materi-
als, anomalous diffusion, and so on. Although Lieb [18] established the uniqueness of the
ground state solutions, the classification of positive solutions has been an open problem
for many years. The fundamental reason is that people cannot use the standard method
of moving planes (based on the maximum principle) to obtain the radial symmetry of the
solutions. Until 2010, inspired by the works of Chen et al. [4] and Li et al. [17], under the
assumptions p ≥ 2 and

[
2,

2N
N – 2

]
∩

(
p,

Np
μ

)
∩

(
(2p – 2)N

μ + 2
,

(2p – 1)N
μ + 2

)
∩

[
(2p – 1)N

N + μ
, +∞

)
	= ∅, (1.3)

Ma and Zhao [22] proved that all the positive solutions to equation (1.1) with V = Const
and 2 ≤ p < 2N–μ

N–2 are radially symmetry and monotone decreasing about some fixed point.
And by using of the new method of moving planes introduced in [4] and Riesz and Bessel
potentials, they deduced the problem into an elliptic system. At last, using the radial sym-
metry, up to translations, they proved that the positive solution to (1.2) (not only the
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ground state) is unique, which solved the open problem in [18]. After that, in the spirit
of [22], Cingolani, Clapp, and Secchi [5] considered the following nonlinear Choquard
equation with magnetic field:

⎧
⎪⎪⎨

⎪⎪⎩

(–i∇ + A(x))2u + V (x)u = [|x|–μ ∗ |u|p]|u|p–2u, x ∈R
N ,

u ∈ L2(RN ,C),

∇u + iA(x)u ∈ L2(RN ,C)

and obtained the existence of multiple complex-valued solutions that satisfy the symme-
try condition u(gx) = τ (g)u(x) for all g ∈ G, where τ : G → S1 is a given group homo-
morphism into the unit complex numbers, A is a real-valued C1-vector potential, V is
a real-valued bounded continuous scalar potential with inf V > 0, N ≥ 3, 0 < μ < N , and
2N–μ

N < p < 2N–μ

N–2 . In [24], Moroz and Van Schaftingen eliminated this restriction (1.3) to
establish regularity and positivity of the groundstates for equation (1.1). They also proved
the radial symmetry and monotonic decay of positive groundstates. We pointed out that
they had many interesting works about Choquard equation, see [25–27] and the references
therein. Recently, the strongly indefinite Choquard equations with critical exponent in the
whole space were also studied in [14, 31, 32, 39] where the existence and multiplicity were
obtained by using a linking theorem. Furthermore, by using the minimax procedure and
perturbation technique, Gao et al. [15] showed the existence of infinitely many solutions
for a class of critical Choquard equations with zero mass.

Very recently, for other related topics involving the singularly perturbed problem, there
have been some works devoted to the study of a concentration phenomenon of semi-
classical states. For instance, by using a Lyapunov–Schmidt type reduction, Wei and Win-
ter [37] constructed families of solutions for the following equation:

–ε2�u + V (x)u = ε–2[|x|–1 ∗ |u|2]u, x ∈R
3

with potential inf V > 0 and characterized the concentration behavior around the global
minimum points of V . Moreover, they also showed that the groundstate to (1.2) is up to
translations a nondegenerate critical point. Not long after that the existence of a family
of solutions having multiple concentration regions located around the minimum points
of the potential was obtained in [6]. With the help of the mountain pass lemma and the
genus theory, Ding et al. [10] obtained the existence and multiplicity of semiclassical states
to the Choquard equation

–ε2�u + V (x)u =
(∫

RN

G(u(y))
|x – y|μ dy

)
g(u).

They also constructed the multiplicity of high energy semiclassical states by using the
Ljusternik–Schnirelmann theory. In [42], the authors proved the existence and concen-
tration of semiclassical solutions under Berestycki–Lions type conditions. Furthermore,
the other type of Choquard equations has also attracted great interest. For example, in-
stead of the classical Laplacian operator, many scholars considered the following type of
Choquard equation:

(–�)su + V (x)u =
[|x|–μ ∗ F(u)

]
f (u), x ∈R

N ,
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which is called fractional Choquard equation that is used to model the dynamics of
pseudo-relativistic boson stars. About the study of fractional Choquard equations, please
see [8, 23, 34] and their references therein. More related results about ground state solu-
tions and infinitely many solutions for other problems, we refer the readers to [1, 3, 7, 13,
16, 30, 33, 41, 43, 44] and the references therein.

Motivated by the results mentioned above, in this paper we consider the case that the
potential V is a general periodic function and prove the existence of a ground state solution
and infinitely many pairs of geometrically distinct solutions for problem (1.1) by using the
method of the Nehari manifold developed by Szulkin and Weth [36]. To the best of our
knowledge, it seems that there is no work that considered this problem in the literature
before. In order to state the main result, we list the assumption as follows:

(V ) V ∈ C(RN ,R), 0 < V0 := infx∈RN V (x) and V (x) is 1-periodic in xi, i = 1, . . . , N .
Set

E =
{

u ∈ H1(
R

N)
:
∫

RN

[|∇u|2 + V (x)u2]dx < +∞
}

with the norm

‖u‖2 =
∫

RN

[|∇u|2 + V (x)u2]dx.

Then, according to condition (V ), the norm ‖ · ‖ is equivalent to the norm ‖ · ‖H1 , where

‖u‖2
H1 =

∫

RN

[|∇u|2 + u2]dx.

For k ∈ Z
N , set (k ∗ u)(x) = u(x + k). According to the periodicity condition (V ), if u0 is

a solution of (1.1), then k ∗ u0 is also a solution of (1.1) for all k ∈ Z
N . Set

O(u0) :=
{

k ∗ u0 : k ∈ Z
N}

,

which means the orbit of u0 with respect to the action of ZN . If u0 is a critical point of the
energy functional J and J is ZN -invariant, i.e., J(k ∗ u) = J(u) for all k ∈ Z

N and all u ∈ E,
we call O(u0) a critical orbit of J . Suppose that ui (i = 1, 2) solves (1.1), if O(u1) 	= O(u2),
we say that u1, u2 are geometrically distinct.

Our main result of this paper is the following:

Theorem 1.1 Assume that (V ) holds. Then equation (1.1) admits a ground state solution
and infinitely many pairs of geometrically distinct solutions.

2 Proof of theorem
Throughout this paper, we denote by ‖ · ‖s the usual norm of the space Ls, 1 ≤ s ≤ ∞, and
c or ci (i = 1, 2, . . . ) denotes the different positive constants.

Firstly, in order to overcome the nonlocality of problem (1.1) and study the property
of the energy functional, we will use the classical Hardy–Littlewood–Sobolev inequality
frequently. So, we give the Hardy–Littlewood–Sobolev inequality due to [19].
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Proposition 2.1 (Hardy–Littlewood–Sobolev inequality, [19]) Let s, t > 1 and 0 < μ < N
with 1

s + μ

N + 1
t = 2. Let g ∈ Ls(RN ) and h ∈ Lt(RN ). Then there exists a sharp constant

Cs,N ,μ,t , independent of g, h, such that

∫

RN

∫

RN

g(x)h(y)
|x – y|μ dx dy ≤ Cs,N ,μ,t|g|s|h|t .

Remark 2.2 Obviously, Hardy–Littlewood–Sobolev inequality implies that the integral

∫

RN

∫

RN

|u(x)|q|u(y)|q
|x – y|μ dx dy

is well defined if |u|q ∈ Lt(RN ) for t > 1 with 2
t + μ

N = 2. Since we will work with u ∈ E, in
order to make the integral well defined, tq must fall in the interval [2, 2∗], i.e.,

2N – μ

N
≤ q ≤ 2N – μ

N – 2
.

That is why the exponent 2N–μ

N is called the lower critical exponent and the exponent
2N–μ

N–2 is called the upper critical exponent. We need to point out that Hardy–Littlewood–
Sobolev inequality plays an important role for nonlocal problems.

From a viewpoint of variational methods, it is clear that equation (1.1) is the Euler–
Lagrange equation associated with the energy functional J : E →R given by

J(u) =
1
2

∫

RN

[|∇u|2 + V (x)|u|2]dx –
1

2p

∫

RN

[|x|–μ ∗ |u|p]|u|p dx.

Since p ∈ [ 2N–μ

N , 2N–μ

N–2 ), then by Hardy–Littlewood–Sobolev inequality and Sobolev em-
bedding theorem, it is easy to prove that J is well defined on E and belongs to C1(E,R).
Moreover, there holds

〈
J ′(u),ϕ

〉
=

∫

RN

[∇u · ∇ϕ + V (x)uϕ
]

dx –
∫

RN

[|x|–μ ∗ |u|p]|u|p–2uϕ dx

for all u,ϕ ∈ E.
In order to seek for the ground state solutions of problem (1.1), we consider the following

Nehari set:

N =
{

u ∈ E\{0} :
〈
J ′(u), u

〉
= 0

}

and define the ground state energy

c := inf
u∈N

J(u).

Lemma 2.3 For s ≥ 0, let f (s) = J(sv). Then, for each v ∈ E \ {0}, there exists unique tv > 0
such that f (tv) = maxs≥0 f (s), f ′(t) > 0 for 0 < t < tv and f ′(t) < 0 for tv < t. Moreover, tv ∈ N
if and only if t = tv.
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Proof According to Hardy–Littlewood–Sobolev inequality and Sobolev embedding the-
orem, we have

f (t) = J(tv) =
1
2

t2‖v‖2 –
1

2p
t2p

∫

RN

[|x|–μ ∗ |v|p]|v|p dx

≥ 1
2

t2‖v‖2 –
1

2p
t2p‖v‖2p > 0

for small t > 0. Clearly,

f (t) = J(tv) → –∞

as t → +∞. Hence f has a positive maximum and there exists tv > 0 such that f ′(tv) = 0.
Consequently,

‖v‖2 = t2p–2
v

∫

RN

[|x|–μ ∗ |v|p]|v|p dx,

from where it follows that f ′(t) > 0 for 0 < t < tv and f ′(t) < 0 for tv < t and tv is unique. The
proof is completed. �

For the sake of convenience, for r > 0, set Br := {v ∈ E : ‖v‖ ≤ r} and Sr := {v ∈ E : ‖v‖ = r}.

Lemma 2.4 (i) There are constants � > 0 and α > 0 such that c ≥ infS� J ≥ α > 0;
(ii) ‖v‖ ≥ √

2c > 0 for all v ∈N .

Proof (i) Let v ∈ E, by the Hardy–Littlewood–Sobolev inequality and the Sobolev embed-
ding theorem, we get

J(v) =
1
2
‖v‖2 –

1
2p

∫

RN

[|x|–μ ∗ |v|p]|v|p dx

≥ 1
2
‖v‖2 –

1
2p

c1‖v‖2p.

Observe that 0 < μ < N , then p > 1. So, from the above fact, it is easy to see that there exist
� > 0 and α > 0 such that infS� J ≥ α > 0. On the other hand, for every v ∈ N , there exists
t0 > 0 such that t0v ∈ S� . Then by Lemma 2.3 we get

inf
S�

J ≤ J(t0v) ≤ max
t>0

J(tv) = J(v),

which yields that c ≥ infS� J ≥ α > 0.
(ii) For v ∈N , there holds

c = inf
N

J ≤ J(v) =
1
2
‖v‖2 –

1
2p

∫

RN

[|x|–μ ∗ |v|p]|v|p dx ≤ 1
2
‖v‖2,

which implies that ‖v‖ ≥ √
2c > 0 for all v ∈N . The proof is completed. �

Lemma 2.5 J is coercive on N , i.e., J(v) → +∞ as v ∈N and ‖v‖ → ∞.
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Proof Arguing by contradiction, we assume that there exist a sequence {vn} ⊂ N and a
positive number m such that ‖vn‖ → ∞ and J(vn) ≤ m. Set un = vn

‖vn‖ . Then, passing to a
subsequence, there exists u ∈ E such that un ⇀ u in E, un → u in Lq

loc(RN ) for any 2 ≤ q < 2∗

and un(x) → u(x) a.e. on R
N . By the fact that un 	= 0, there exists a point y ∈R

N such that
∫

B1(y)
u2

n dx := δ > 0.

Set

γ (z) :=
∫

B1(z)
u2

n dx.

It is easy to prove that γ (z) is continuous on R
N by the absolute continuity of integral.

Take large R > 0 with
∫

RN \BR(0)
u2

n dx < δ.

Then

γ (z) =
∫

B1(z)
u2

n dx < δ

for any z ∈R
N\BR+1(0). Consequently,

sup
z∈RN

γ (z) = sup
z∈B̄R+1(0)

γ (z).

Note that γ is continuous and B̄R+1(0) is a compact set, there exists yn ∈ B̄R+1(0) such that
γ (yn) = supz∈B̄R+1(0) γ (z). Hence,

∫

B1(yn)
u2

n dx = sup
z∈RN

∫

B1(z)
u2

n dx.

According to the assumption of periodicity, we can assume that {yn} is bounded in R
N . In

the sequel, we prove

lim sup
n→∞

∫

B1(yn)
u2

n dx > 0.

Indeed, if

lim
n→∞

∫

B1(yn)
u2

n dx = 0,

using the vanishing lemma [38, Lemma 1.21], we have un → 0 in Ls(RN ) for 2 < s < 2∗.
Hence, for any t > 0, there holds

m ≥ J(vn) = max
s≥0

J(svn) ≥ J
(

t
‖vn‖vn

)
= J(tun)

=
t2

2
–

1
2p

t2p
∫

RN

[|x|–μ ∗ |un|p
]|un|p dx → t2

2
,
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this is impossible if t is large enough. Therefore, we know that u 	= 0. Set � = {x ∈ R
N :

u(x) 	= 0}, then meas(�) > 0. In the light of Fatou’s lemma we deduce that

lim inf
n→∞

∫

RN

[|x|–μ ∗ |vn|p]|vn|p
‖vn‖2 dx

= lim inf
n→∞

(
‖vn‖2p–2

E

∫

RN

[|x|–μ ∗ |un|p
]|un|p dx

)

≥
∫

�

∫

�

|u(x)|p|u(y)|p
|x – y|μ dx dy · lim inf

n→∞ ‖vn‖2p–2 = +∞.

Then it follows that

0 ≤ J(vn)
‖vn‖2 =

1
2

–
1

2p

∫

RN

[|x|–μ ∗ |vn|p]|vn|p
‖vn‖2 dx → –∞

as n → ∞, which yields a contradiction. The proof is completed. �

Let W ⊂ E \ {0} be a compact subset. Set R+W := {tv : t ∈R
+, v ∈W}.

Lemma 2.6 There exists r > 0 such that J(v) < 0 on (R+W)\Br for each v ∈W .

Proof Without loss of generality, we may assume that ‖v‖ = 1 for every v ∈ W . Suppose
that there exist vn ∈W and wn = tnvn such that J(wn) ≥ 0 and tn → ∞ as n → ∞. Passing
to a subsequence, we may assume that vn → v ∈ S1 in W ⊂ E\{0}. Consequently, using
Fatou’s lemma, we obtain

0 ≤ J(wn) = J(tnvn) =
1
2

t2
n‖vn‖2

E –
1

2p
t2p
n

∫

RN

[|x|–μ ∗ |vn|p
]|vn|p dx

= t2
n

(
1
2

–
1

2p
t2p–2
n

∫

RN

[|x|–μ ∗ |vn|p
]|vn|p dx

)

→ –∞

as n → ∞, a contradiction. This completes the proof. �

For convenience, set S1 = S. Introduce the mapping m̃ : E \ {0} → N and m : S → N by
setting

m̃(v) = tvv and m = m̃|S,

where tv comes from Lemma 2.3. Set

ψ̃(v) = J
(
m̃(v)

)
and ψ = ψ̃ |S.

Since E is a Hilbert space, by Lemmas 2.3, 2.4, and 2.6 we can verify that the hypotheses
A2 and A3 in [36] hold. Hence, we have Lemmas 2.7–2.8, the details of proofs can be found
in [36].

Lemma 2.7 ([36, Proposition 3.1]) The mapping m̃ : E \ {0} → N is continuous and m is
a homeomorphism between S and N , and the inverse of m is given by m–1(v) = v

‖v‖ .
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Lemma 2.8 ([36, Corollary 3.3])
(i) ψ ∈ C1(S,R) and

ψ ′(w)z =
∥∥m(w)

∥∥J ′(m(w)
)
z

for all z ∈ Tw(S) := {v ∈ E : 〈w, v〉 = 0}.
(ii) If {wn} is a Palais–Smale sequence for ψ , then {m(wn)} is a Palais–Smale sequence for

J . If {vn} ⊂N is a bounded Palais–Smale sequence for J , then {m–1(vn)} is a Palais–Smale
sequence for ψ .

(iii) w ∈ S is a critical point of ψ iff m(w) is a nontrivial critical point of J . Moreover, the
corresponding values of ψ and J coincide and infS ψ = infN J .

(iv) If J is even, then so is ψ .

Lemma 2.9 The mapping m–1 defined in Lemma 2.7 is Lipschitz continuous.

Proof For any v, w ∈N , by Lemma 2.4-(ii) we have ‖v‖ ≥ √
2c and ‖w‖ ≥ √

2c. Moreover,
using Lemma 2.7, we obtain

∥
∥m–1(v) – m–1(w)

∥
∥ =

∥∥
∥∥

v
‖v‖ –

w
‖w‖

∥∥
∥∥ =

∥∥
∥∥

v – w
‖v‖ +

(‖w‖ – ‖v‖)w
‖v‖‖w‖

∥∥
∥∥

≤ 2
‖v‖‖v – w‖ ≤

√
2
c
‖v – w‖.

From the above fact, it is easy to see that the mapping m–1 is Lipschitz continuous. This
completes the proof. �

For any a ∈ R, set ψa := {v ∈ S : ψ(v) ≤ a}. We have the following lemma about the
discreteness property of the Palais–Smale sequence.

Lemma 2.10 Let d ≥ c. If {v1
n}, {v2

n} ⊂ ψd are two Palais–Smale sequences of ψ , then one
of the following conclusions holds:

(i) ‖v1
n – v2

n‖ → 0 as n → ∞;
(ii) lim infn→∞ ‖v1

n – v2
n‖ ≥ ρ(d) > 0, where ρ(d) is a constant that depends on d but not

on the particular choice of Palais–Smale sequences.

Proof Set u1
n := m(v1

n) and u2
n := m(v2

n). By Lemma 2.8-(ii), {ui
n} (i = 1, 2) is a Palais–

Smale sequence of J and {u1
n}, {u2

n} ⊂ Jd . Then {u1
n}, {u2

n} are bounded in E according to
Lemma 2.5. Computing directly, we have

o(1) =
〈
J ′(u1

n
)

– J ′(u2
n
)
, u1

n – u2
n
〉

=
∥∥u1

n – u2
n
∥∥2 –

∫

RN

([|x|–μ ∗ ∣∣u1
n
∣∣p]∣∣u1

n
∣∣p–2u1

n

–
[|x|–μ ∗ ∣∣u2

n
∣∣p]∣∣u2

n
∣∣p–2u2

n
)(

u1
n – u2

n
)

dx.

Consequently, by the Hardy–Littlewood–Sobolev inequality, Hölder’s inequality, and the
boundedness of {u1

n} and {u2
n} in E, we know that there exists a constant c2 > 0 such that

∥∥u1
n – u2

n
∥∥2 ≤ c2

∥∥u1
n – u2

n
∥∥2

2Np
2N–μ

+ o(1). (2.1)
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In the following we divide into two cases to discuss.
Case 1: ‖u1

n –u2
n‖ 2Np

2N–μ
→ 0 as n → ∞. It follows from (2.1) that ‖u1

n –u2
n‖ → 0. Moreover,

from Lemma 2.9 we have ‖v1
n – v2

n‖ = ‖m–1(u1
n) – m–1(u2

n)‖ → 0.
Case 2: ‖u1

n – u2
n‖ 2Np

2N–μ
� 0 as n → ∞. By the boundedness of {u1

n} and {u2
n} in E and the

vanishing lemma [38, Lemma 1.21], we can deduce that

sup
y∈RN

∫

B1(y)

∣∣u1
n – u2

n
∣∣

2Np
2N–μ dx � 0.

Thereby, up to a subsequence, there exists ε0 > 0 such that

sup
y∈RN

∫

B1(y)

∣
∣u1

n – u2
n
∣
∣

2Np
2N–μ dx ≥ ε0, ∀n ∈N.

Following the proof of Lemma 2.5, there exists yn ∈R
N such that

∫

B1(yn)

∣∣u1
n – u2

n
∣∣

2Np
2N–μ dx = sup

y∈RN

∫

B1(y)

∣∣u1
n – u2

n
∣∣

2Np
2N–μ dx ≥ ε0, ∀n ∈N.

Similar to [12], with the help of Lemma 2.4 and Lemma 2.5, we can prove that
lim infn→∞ ‖v1

n – v2
n‖ ≥ ρ(d) > 0, where ρ(d) depends on d but not on the particular choice

of Palais–Smale sequences. The proof is completed. �

To complete the proof of Theorem 1.1, we take the following two lemmas.

Lemma 2.11 Problem (1.1) has at least a ground state solution.

Proof Set

ϕ(u) =
∫

RN

[|∇u|2 + V (x)u2]dx – 1, ∀u ∈ E.

Then S = {u ∈ E : ϕ(u) = 0}. For u ∈ S, one has

〈
ϕ′(u), u

〉
= 2‖u‖2 = 2 > 0.

Making use of Proposition 9 in [36], we know that ψ̃ : E \ {0} → R is a class of C1. More-
over, it is easy to see that

〈
ψ̃ ′(u), v

〉
=

‖m̃(u)‖
‖u‖

〈
J ′(m̃(u)

)
, v

〉
, ∀0 	= u, v ∈ E.

According to Corollary 3.4 in [11], there exists a sequence {wn} ⊂ S such that ψ(wn) → c
and there exists αn ∈R such that ‖ψ̃ ′(wn) – αnϕ

′(wn)‖E∗ → 0. Hence,

αn =
〈ψ̃ ′(wn),ϕ′(wn)〉

‖ϕ′(wn)‖2
E∗

+ o(1).
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Then

ψ̃ ′(wn) –
〈ψ̃ ′(wn),ϕ′(wn)〉

‖ϕ′(wn)‖2
E∗

ϕ′(wn) = o(1), i.e., ψ ′(wn) = o(1).

Set vn = m(wn) ∈N for all n ∈N. In view of Lemma 2.8-(ii) we have

J(vn) → c and J ′(vn) → 0 in E∗.

Moreover, {vn} is bounded in E by Lemma 2.5. Consequently, up to a subsequence, there
exists v ∈ E such that vn ⇀ v in E, vn → v in Lq

loc(RN ) for any 2 ≤ q < 2∗ and vn(x) → v(x)
a.e. on R

N . In what follows, we claim that J ′(v) = 0. In fact, for any φ ∈ C∞
0 (RN ), there holds

o(1) =
〈
J ′(vn),φ

〉
=

∫

RN
∇vn∇φ dx +

∫

RN
V (x)vnφ dx –

∫

RN

[|x|–μ ∗ |vn|p
]|vn|p–2vnφ dx.

According to the fact that vn ⇀ v in E, we get

∫

RN
∇vn∇φ dx →

∫

RN
∇v∇φ dx

and
∫

RN
V (x)vnφ dx →

∫

RN
V (x)vφ dx

and
∫

RN

[|x|–μ ∗ |vn|p
]|vn|p–2vnφ dx →

∫

RN

[|x|–μ ∗ |v|p]|v|p–2vφ dx.

Consequently, according to the above facts, we can obtain

0 =
∫

RN
∇v∇φ dx +

∫

RN
V (x)vφ dx –

∫

RN

[|x|–μ ∗ |v|p]|v|p–2vφ dx

for all φ ∈ C∞
0 (RN ). Since C∞

0 (RN ) is dense in E, for any φ ∈ E, there exists a sequence
{φn} ⊂ C∞

0 (RN ) such that φn → φ in E. Thereby,

0 =
∫

RN
∇v∇φn dx +

∫

RN
V (x)vφn dx –

∫

RN

[|x|–μ ∗ |v|p]|v|p–2vφn dx.

Let n → ∞, by the Hardy–Littlewood–Sobolev inequality, Hölder’s inequality, and the
Sobolev embedding theorem, we get

0 =
∫

RN
∇v∇φ dx +

∫

RN
V (x)vφ dx –

∫

RN

[|x|–μ ∗ |v|p]|v|p–2vφ dx,

which yields that J ′(v) = 0. Notice that

o(1) =
〈
J ′(vn) – J ′(v), vn – v

〉

= ‖vn – v‖2 –
∫

RN

([|x|–μ ∗ |vn|p
]|vn|p–2vn –

[|x|–μ ∗ |v|p]|v|p–2v
)
(vn – v) dx.
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As in the proof of Lemma 2.10, we know that there is a constant c3 > 0 such that

‖vn – v‖2 ≤ c3‖vn – v‖2
2Np

2N–μ

+ o(1). (2.2)

If ‖vn – v‖ 2Np
2N–μ

� 0 as n → ∞, then by the boundedness of {vn} in E and the vanishing
lemma [38, Lemma 1.21] we have

sup
y∈RN

∫

B1(y)
|vn – v| 2Np

2N–μ dx � 0.

Consequently, up to a subsequence, there exists ε0 > 0 such that

sup
y∈RN

∫

B1(y)
|vn – v| 2Np

2N–μ dx ≥ ε0, ∀n ∈N.

The proof of Lemma 2.5 indicates that there exists yn ∈R
N such that

∫

B1(yn)
|vn – v| 2Np

2N–μ dx = sup
y∈RN

∫

B1(y)
|vn – v| 2Np

2N–μ dx ≥ ε0, ∀n ∈N.

By the assumption of periodicity, we can assume that {yn} is bounded in R
N . Therefore,

there exists a bounded domain �1 ⊂R
N such that

∫

�1

|vn – v| 2Np
2N–μ dx ≥

∫

B1(yn)
|vn – v| 2Np

2N–μ dx ≥ ε0.

However, since �1 is bounded, the embedding theorem implies that

∫

�1

|vn – v| 2Np
2N–μ dx → 0.

Clearly, this yields a contraction. Hence ‖vn –v‖ 2Np
2N–μ

→ 0 as n → ∞. Then, by (2.2), we see
that vn → v in E and J(v) = c > 0. Therefore, v ∈ N is a ground state solution of problem
(1.1). The proof is completed. �

Next we are devoted to looking for infinitely many geometrically distinct solutions for
problem (1.1). Observe that, by Lemma 2.8-(iv), we know that ψ is even. Set

K :=
{

v ∈ S : ψ ′(v) = 0
}

and Kc :=
{

v ∈ K : ψ(v) = c
}

and

Uδ(Kc) :=
{

w ∈ S : d(w, Kc) < δ
}

.

Let

� := {A ⊂ S : Ā = A, –A = A}.
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For A ∈ �, we denote the Krasnoselskii genus of A by i(A). Define

ck := inf
{

d ∈R : d ≥ c, i
(
ψd) ≥ k

}

for all k ∈N. It is not difficult to prove that c ≤ ck and ck ≤ ck+1.

Lemma 2.12 ck is a critical value of ψ .

Proof If the conclusion is false, then for any w ∈ S one has ψ(w) 	= ck or ψ ′(w) 	= 0. It implies
that there exists δ > 0 such that

Nck ,δ :=
{

w ∈ S :
∣
∣ψ(w) – ck

∣
∣ < δ,

∥
∥ψ ′(w)

∥
∥

E∗ < δ
}

= ∅.

Otherwise, there exists a sequence {wn} ⊂ S such that ψ(wn) → ck and ‖ψ ′(wn)‖E∗ → 0
as n → ∞. Set vn = m(wn), then Lemma 2.8-(ii) shows that {vn} ⊂ N is a (PS)ck sequence
of J . Moreover, {vn} is bounded in E by Lemma 2.5. Hence, up to a subsequence, there
exists v ∈ E such that vn ⇀ v in E, vn → v in Lq

loc(RN ) for any 2 ≤ q < 2∗, and vn(x) → v(x)
a.e. on R

N . With a similar argument as the proof of Lemma 2.11, we can deduce that
J ′(v) = 0 and vn → v in E. Therefore, J(v) = ck ≥ c > 0 and v ∈ N . Lemma 2.8-(iii) implies
that w := m–1(v) ∈ Kck , a contradiction. As a consequence, Nck ,δ = ∅. By using a deformation
lemma (see Theorem 3.4 in [35]), there exists ε0 > 0 such that, for any 0 < ε < ε ≤ ε0,
there exists a continuous 1-parameter family of homeomorphisms η(t, ·) of S, 0 ≤ t < ∞,
admitting the properties:

(i) η(w, t) = w if t = 0 or ψ ′(w) = 0, or |ψ(w) – ck| ≥ ε̄;
(ii) ψ(η(w, t)) is nonincreasing in t for any w ∈ S;
(iii) η(ψ ck+ε , 1) ⊂ ψ ck –ε ;
(iv) η(·, s) ◦ η(·, t) = η(·, s + t) for all s, t ≥ 0;
(v) η(w, t) is odd in w for t ≥ 0.
Since Nck ,δ = ∅, then there exists 0 < ε1 < ε0 such that

ψ ck +ε1
ck –ε1 ∩ K = ∅.

For each w ∈ ψ ck+ε1 , using deformation shrinkage property (iii), we get ψ(η(w, 1)) ≤ ck –ε1.
Let τ = τ (w) be the infimum of the time for which ψ(η(w, t)) ≤ ck – ε1. We can prove that
τ : ψ ck +ε1 → [0, +∞) is a continuous mapping, and since ψ is even, then τ (–w) = τ (w).
For w ∈ ψ ck +ε1 , set h(w) := η(w, τ (w)). Then h is odd and continuous. Making use of the
mapping property of the genus and the definition of ck , we can conclude that

k ≤ i
(
ψ ck+ε1

) ≤ i
(
ψ ck –ε1

) ≤ k – 1,

which yields a contradiction. The proof is completed. �

Set

K̃ :=
∞⋃

k=1

Kck .
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Choose F ⊂ K̃ such that F = –F and each orbitO(w) ⊂ K has a unique representative in
F . Following the proof of Lemma 2.11 in [40] and some standard arguments, it is easy to
prove that F is an infinite set. As a result, ψ admits infinitely many pairs of geometrically
distinct critical points. Consequently, using Lemma 2.8-(iii) and Lemma 2.11, we can see
that problem (1.1) has infinitely many pairs of geometrically distinct solutions. The proof
of Theorem 1.1 is completed.
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