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Abstract
In this paper, we focus on the existence of solutions for the Choquard equation

{
–�u + V(x)u = (Iα ∗ |u| α

N +1)|u| α
N –1u + λ|u|p–2u, x ∈ R

N ;

u ∈ H1(RN),

where λ > 0 is a parameter, α ∈ (0,N), N ≥ 3, Iα :RN →R is the Riesz potential. As
usual, α/N + 1 is the lower critical exponent in the Hardy–Littlewood–Sobolev
inequality. Under some weak assumptions, by using minimax methods and Pohožaev
identity, we prove that this problem admits a ground state solution if λ > λ∗ for some
given number λ∗ in three cases: (i) 2 < p < 4

N + 2, (ii) p = 4
N + 2, and (iii) 4

N + 2 < p < 2∗.
Our result improves the previous related ones in the literature.
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1 Introduction
In this paper, we mainly study the Choquard equation with a variable potential and a local
nonlinearity:

⎧⎨
⎩–�u + V (x)u = (Iα ∗ |u| α

N +1)|u| α
N –1u + λ|u|p–2u, x ∈R

N ;

u ∈ H1(RN ),
(1.1)

where λ > 0, α ∈ (0, N), N ≥ 3, 2 < p < 2∗, and Iα : RN → R is the Riesz potential defined
by

Iα(x) =
�( N–α

2 )
�( α

2 )2απN/2|x|N–α
, x ∈ R

N \ {0}.

V : RN →R satisfies the following assumptions:
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(V1) V ∈ C(RN , [0,∞));
(V2) V (x) ≤ V∞ := lim|y|→∞ V (y) < ∞ for all x ∈R

N .
By the Hardy–Littlewood–Sobolev inequality (see Lemma 2.1), one has

[∫
RN

(
Iα ∗ |u| α

N +1)|u| α
N +1 dx

] N
N+α ≤ S–1

∫
RN

u2 dx. (1.2)

In the work of Lieb and Loss (see [1]), the sharp constant S is achieved by a function
u ∈ H1(RN ) if and only if, for every x ∈R

N ,

u(x) = A
(
z2 + |x – a|2)– N

2 (1.3)

for a ∈R
N , A > 0, and z > 0. In Lemma 2.9, we choose A = A0 > 0, and A0 is determined by

A
2α
N +2

0

∫
RN

∫
RN

dxdz

(1 + |x|2) N+α
2 |x – z|N–α(1 + |z|2) N+2

2
=

2απ
N
2 �( α

2 )
�( N–α

2 )
. (1.4)

Under (V1), (V2), (1.2), and the Sobolev embedding theorem, the weak solutions of (1.1)
correspond to the critical points of the energy functional I : H1(RN ) →R defined by

I(u) =
1
2

∫
RN

[|∇u|2 + V (x)u2]dx –
N

2(N + α)

∫
RN

(
Iα ∗ |u| α

N +1)|u| α
N +1 dx

–
λ

p

∫
RN

|u|p dx, (1.5)

which is continuously differentiable and

〈
I ′(u), v

〉
=

∫
RN

(∇u · ∇v + V (x)uv
)

dx –
∫
RN

(
Iα ∗ |u| α

N +1)|u| α
N –1uv dx

– λ

∫
RN

|u|p–2uv dx, ∀v ∈ H1(
R

N)
. (1.6)

If the potential V (x) ≡ V∞, then (1.1) reduces to the autonomous equation⎧⎨
⎩–�u + V∞u = (Iα ∗ |u| α

N +1)|u| α
N –1u + λ|u|p–2u, x ∈R

N ;

u ∈ H1(RN ).
(1.7)

Similar to (1.5), the energy functional of (1.7) is defined by

I∞(u) =
1
2

∫
RN

[|∇u|2 + V∞u2]dx –
N

2(N + α)

∫
RN

(
Iα ∗ |u| α

N +1)|u| α
N +1 dx

–
λ

p

∫
RN

|u|p dx. (1.8)

Equation (1.1) is a special form of the following Choquard equation with a local nonlin-
ear perturbation and a variable potential:⎧⎨

⎩–�u + V (x)u = (Iα ∗ |u|q)|u|q–2u + f (u), x ∈R
N ;

u ∈ H1(RN ),
(1.9)

where 1 + α
N < q < N+α

N–2 .
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If f = 0 and V (x) ≡ 1, (1.9) appears under the background of various physical models.
For example, as early as in 1954, Pekar [2] introduced (1.9) into the physical model to study
the free electrons in a ionic lattice interact with phonons associated with deformations of
the lattice. Choquard equation is also known as the Schrödinger–Newton equation after
the addition of non-relativistic Newtonian gravity to some Schrödinger equations [3–6].
Lieb [7] first verified the positive solution of (1.9) in R

3 when f = 0, α = 2, V (x) ≡ 1, and
q = 2. Later, Lions [8, 9] further improved the results of (1.9) and obtained the existence
and multiplicity of normalized solution for (1.9). The existence of a ground state solution
and the qualitative properties of the solution in the range of exponents q which satisfies

1 +
α

N
< q <

N + α

N – 2

were established in [10].
The endpoints N+α

N–2 and N+α
N are critical exponents. It is known to all that N+α

N–2 is an upper
critical exponent which plays a similar role as the Sobolev critical exponent in the local
semilinear equations [11–17]. The lower critical exponent N+α

N is strictly greater than 1
which comes from inequality (1.2). So far, many authors have investigated the existence of
nontrivial solutions of many forms of (1.9) (see [18–21]). In addition, for some applications
of the variational method in elliptic systems, we refer to [22–24]. If the potential V (x) ≡ 1,
then (1.1) reduces to the following equation:

⎧⎨
⎩–�u + u = (Iα ∗ |u| α

N +1)|u| α
N –1u + λ|u|p–2u, x ∈R

N ;

u ∈ H1(RN ).
(1.10)

Tang, Wei, and Chen [25] proved that (1.10) has ground state solutions in the following
assumptions:

(i) 2 < p < 4
N + 2 and λ > 0;

(ii) p = 4
N + 2 and λ > N2

A
4
N
0 S

2
α

;

(iii) 4
N + 2 < p < 2∗ and λ > pN4�

pN
2 � N

2
8(N+1)!(A0t0)p–2�

(p–1)N
2

.

By using the mountain pass lemma, they obtained a Palais–Smale sequence and the cor-
responding energy level m. Then, from these three assumptions, an estimate of the energy
level m was given, which is very important to ensure the Sobolev compactness. We fur-
ther improve these three hypotheses to be applicable to the research in this paper. This
has certain enlightenment to our work.

Motivated by the work of [26, 27], we use a weaker decay assumption on ∇V to solve
the trouble caused by variable potential.

(V3) V ∈ C1(RN ,R), and there is θ ∈ [0, 1) such that

∇V (x) · x ≤ (N – 2)2θ

2|x|2 , ∀x ∈R
N \ {0}.

Van Schaftingen and Xia [11], Chen and Tang [26] did a pretty good job, which gives
us some inspiration. To our knowledge, there seems to be no results of (1.1). Motivated
by the above works, especially [25, 26], in this paper, we establish the existence result of
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ground state solutions for (1.1). To state our result, inspired by [28], we define the following
Pohožaev identity functional on H1(RN ):

P(u) :=
N – 2

2
‖∇u‖2

2 +
1
2

∫
RN

[
NV (x) + ∇V (x) · x

]
u2 dx

–
N
2

∫
RN

(
Iα ∗ |u| α

N +1)|u| α
N +1 dx –

Nλ

p

∫
RN

|u|p dx, (1.11)

and

P∞(u) :=
N – 2

2
‖∇u‖2

2 +
NV∞

2
‖u‖2

2 –
N
2

∫
RN

(
Iα ∗ |u| α

N +1)|u| α
N +1 dx

–
Nλ

p

∫
RN

|u|p dx. (1.12)

In view of [29, Prorosition 3.1], if ū is a solution of (1.1), then it satisfies the Pohožaev
identity P(u) = 0. Let

M :=
{

u ∈ H1(
R

N) \ {0} : P(u) = 0
}

. (1.13)

Our main result is as follows.

Theorem 1.1 Assume that V satisfies (V1)–(V3) and one of the following conditions:
(i) 2 < p < 4

N + 2 and λ > 0;
(ii) p = 4

N + 2 and λ > (N+2)N2

2(N+1)A
4
N
0 (SV∞)

2
α

;

(iii) 4
N + 2 < p < 2∗ and λ > 25pN4�( N

2 )�( pN
2 )

256(N+1)!Ap–2
0 ε2∗–2(V∞S)

2
α �( (p–1)N

2 )
holds. Then problem (1.1) has

a solution ū ∈ H1(RN ) such that

I(ū) = inf
M

I = inf
u∈H1(RN )\{0}

max
t>0

I(ut) > 0,

where ut(x) := u(x/t).

In this paper, we use the following notations:
• H1(RN ) denotes the usual Sobolev space equipped with the inner product and the

norm

(u, v) =
∫
RN

(∇u · ∇v + uv) dx, ‖u‖ = (u, u)1/2, ∀u, v ∈ H1(
R

N)
.

• Ls(RN ) (1 < s < ∞) denotes the Lebesgue space with the norm ‖u‖s = (
∫
RN |u|s dx)1/s.

• For any u ∈ H1(RN ) and r > 0, Br(x) := {y ∈R : |y – x| < r}.
• For any u ∈ H1(RN ) \ {0}, ut(x) := u(x/t) for t > 0.
• C, C1, C2, . . . denote positive constants possibly different in different places.

2 Proof of the main result
Before proving the main result, we first give some key inequalities and lemmas. The fol-
lowing famous Hardy–Littlewood–Sobolev inequality [1, Theorem 4.3] is an origin of the
variational approach to (1.1).
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Lemma 2.1 Let α ∈ (0, N) and s ∈ (1, N
α

). If u ∈ Ls(RN ), then Iα ∗ u ∈ L
Ns

N–αs (RN ), and

∫
RN

|Iα ∗ u| Ns
N–αs dx ≤ C

(∫
RN

|u|s dx
) N

N–αs
, (2.1)

where the constant C > 0 depends only on α, N , and s.

By a simple calculation, we have the following lemma.

Lemma 2.2 The following two inequalities hold:

g(t) := 2 – NtN–2 + (N – 2)tN ≥ 0, ∀t ∈ [0, +∞), (2.2)

β(t) := α – (N + α)tN + NtN+α ≥ β(1) = 0, ∀t ∈ [0, +∞). (2.3)

Moreover, (V3) implies that the following inequality holds:

NtN[
V (x) – V (tx)

]
+

(
tN – 1

)∇V (x) · x

≥ –
(N – 2)2θ [2 – NtN–2 + (N – 2)tN ]

4|x|2 , ∀t > 0, x ∈R
N \ {0}. (2.4)

Lemma 2.3 Assume that (V1) and (V3) hold. Then

I(u) ≥ I(ut) +
1 – tN

N
P(u) +

(1 – θ )g(t)
2N

‖∇u‖2
2

+
β(t)

2(N + α)

∫
RN

(
Iα ∗ |u| α

N +1)|u| α
N +1 dx, ∀u ∈ H1(

R
N)

, t > 0. (2.5)

Proof According to Hardy’s inequality, we obtain

‖∇u‖2
2 ≥ (N – 2)2

4

∫
RN

u2

|x|2 dx, ∀u ∈ H1(
R

N)
. (2.6)

Note that

I(ut) =
tN–2

2
‖∇u‖2

2 +
tN

2

∫
RN

V (tx)u2 dx –
tNλ

p

∫
RN

|u|p dx

–
NtN+α

2(N + α)

∫
RN

(
Iα ∗ |u| α

N +1)|u| α
N +1 dx. (2.7)

Thus, by (1.5), (1.11), (2.2), (2.3), (2.4), (2.6), and (V3), one has

I(u) – I(ut) =
1 – tN–2

2
‖∇u‖2

2 +
1
2

∫
RN

[
V (x) – tN V (tx)

]
u2 dx

+
NtN+α – N
2(N + α)

∫
RN

(
Iα ∗ |u| α

N +1)|u| α
N +1 dx +

(tN – 1)λ
p

∫
RN

|u|p dx

=
1 – tN

N

{
N – 2

2
‖∇u‖2

2 +
1
2

∫
RN

[
NV (x) + ∇V (x) · x

]
u2 dx
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–
N
2

∫
RN

(
Iα ∗ |u| α

N +1)|u| α
N +1 dx –

Nλ

p

∫
RN

|u|p dx
}

+
g(t)
2N

‖∇u‖2
2

+
1
2

∫
RN

{
tN[

V (x) – V (tx)
]

–
1 – tN

N
∇V (x) · x

}
u2 dx

+
β(t)

2(N + α)

∫
RN

(
Iα ∗ |u| α

N +1)|u| α
N +1 dx

≥ 1 – tN

N
P(u) +

(1 – θ )g(t)
2N

‖∇u‖2
2

+
β(t)

2(N + α)

∫
RN

(
Iα ∗ |u| α

N +1)|u| α
N +1 dx.

�

From Lemma 2.3, we have the following corollary.

Corollary 2.4 Assume that (V1) and (V3) hold. Then, for u ∈M,

I(u) = max
t>0

I(ut). (2.8)

Based on the above results, we establish the following important property for M.

Lemma 2.5 For any u ∈ H1(RN ) \ {0}, there is unique tu > 0 such that utu ∈M.

Proof Let u ∈ H1(RN ) \ {0} be fixed and define a function ξ (t) := I(ut) on (0,∞). Clearly,
by (1.11) and (2.7), we have

ξ ′(t) = 0 ⇔ N – 2
2

tN–2‖∇u‖2
2 +

tN

2

∫
RN

[
NV (tx) + ∇V (tx) · (tx)

]
u2 dx

–
NtN+α

2

∫
RN

(
Iα ∗ u

α
N +1)u

α
N +1 dx –

NλtN

p
‖u‖p

p = 0

⇔ P(ut) = 0 ⇔ ut ∈M. (2.9)

It is not hard to verify, using (V1), (V2), (1.2), and (2.7), that limt→0 ξ (t) = 0, ξ (t) > 0 for
t > 0 small and ξ (t) < 0 for t large. Therefore maxt∈(0,∞) ξ (t) is achieved at some tu > 0 so
that ξ ′(tu) = 0 and utu ∈ M.

Not unnaturally, we claim that tu is unique for any u ∈ H1(RN ) \ {0}. As a matter of
fact, for any given u ∈ H1(RN ) \ {0}, if there are two positive constants t1 �= t2 such that
ut1 , ut2 ∈M, then P(ut1 ) = P(ut2 ) = 0. Together with (2.3), (2.4), and (2.5), we have

I(ut1 ) ≥ I(ut2 ) +
tN
1 – tN

2

NtN
1

P(ut1 ) +
(1 – θ )g(t2/t1)

2N
‖∇ut1‖2

2

+
β(t2/t1)
2(N + α)

∫
RN

(
Iα ∗ u

α
N +1
t1

)
u

α
N +1
t1 dx

≥ I(ut2 ) +
(1 – θ )[2tN

1 – Nt2
1tN–2

2 + (N – 2)tN
2 ]

2Nt2
1

‖∇u‖2
2. (2.10)
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The same procedure may be easily adapted to obtain the following equation:

I(ut2 ) ≥ I(ut1 ) +
(1 – θ )[2tN

2 – Nt2
2tN–2

1 + (N – 2)tN
1 ]

2Nt2
2

‖∇u‖2
2. (2.11)

From (2.10) and (2.11), we have ut1 = ut2 , which shows that tu > 0 is unique for any
u ∈ H1(RN ) \ {0}. �

Lemma 2.6 ([19, Lemma 2.5]) Assume that (V1)–(V3) hold. Then there are two constants
γ1,γ2 > 0 such that

γ1‖u‖2 ≤ (N – 2)‖∇u‖2
2 +

∫
RN

[
NV (x) + ∇V (x) · x

]
u2 dx ≤ γ2‖u‖2. (2.12)

Proof The proof of Lemma 2.6 is routine, and we omit it. �

From Corollary 2.4 and Lemma 2.5, we have M �= ∅. Next, we apply the method in-
troduced in [26] to prove the following lemma, which is key to verifying the minimax
characterization.

Lemma 2.7 Assume that (V1) and (V2) hold. Then

inf
u∈M

I(u) := m = inf
u∈H1(R)\{0}

max
t>0

I(ut).

Lemma 2.8 Assume that (V1) and (V2) hold. Then
(i) there exists ρ > 0 such that ‖u‖ > ρ .
(ii) m = infu∈M I(u) > 0.

Proof (i). SinceP(u) = 0 for all u ∈M, by (2.1), (1.11), Lemma 2.6, and Sobolev embedding
inequality, one has

γ1

2
‖u‖2 ≤ N – 2

2
‖∇u‖2

2 +
1
2

∫
RN

[
NV (x) + ∇V (x) · x

]
u2 dx

=
N
2

∫
RN

(
Iα ∗ |u| α

N +1)|u| α
N +1 dx +

Nλ

p

∫
RN

|u|p dx

≤ C1‖u‖ 2(N+α)
N + C2‖u‖p. (2.13)

There are two cases to consider.
Case (1). When 2(N+α)

N ≥ p, from (2.13), one has

γ1

2
‖u‖2 ≤ C1‖u‖ 2(N+α)

N + C2‖u‖ 2(N+α)
N , (2.14)

which implies

‖u‖ ≥ ρ0 := min

{
1,

[
γ1

2(C1 + C2)

] N
2α

}
. (2.15)
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Case (2). When p > 2(N+α)
N and λ > 0, one has

γ1

2
‖u‖2 ≤ C1‖u‖p + C2‖u‖p, (2.16)

which implies

‖u‖ ≥ ρ1 := min

{
1,

[
γ1

2(C1 + C2)

] 1
p–2

}
. (2.17)

From (2.15) and (2.17), we know that (i) holds.
(ii). Let {un} ⊂M be such that I(un) → m. There are two possible cases:
Case (i). infn∈N‖∇un‖2 := σ > 0. From (1.5) and (1.11), one has

I(un) –
1
N
P(un) =

1
N

‖∇un‖2
2 –

1
2N

∫
RN

∇V (x) · xu2
n dx

+
α

2(N + α)

∫
RN

(
Iα ∗ |un| α

N +1)|un| α
N +1 dx, ∀u ∈ H1(

R
N)

. (2.18)

From (V3), we have

∫
RN

∇V (x) · xu2 dx ≤ θ (N – 2)2

2

∫
RN

u2

|x|2 dx ≤ 2θ‖∇u‖2
2, ∀u ∈ H1(

R
N)

. (2.19)

From (2.18) and (2.19), we obtain

m + o(1) = I(un) = I(un) –
1
N
P(un)

≥ 1
N

‖∇un‖2
2 –

θ

N
‖∇un‖2

2 +
α

2(N + α)

∫
RN

(
Iα ∗ |un| α

N +1)|un| α
N +1 dx

≥ 1 – θ

N
‖∇un‖2

2 =
1 – θ

N
σ 2. (2.20)

Case (ii). infn∈N‖∇un‖2 = 0. In this case, by (2.15) and (2.17), passing to a subsequence,
one has

‖∇un‖2 → 0, ‖un‖2 ≥ 1
2

max{ρ0,ρ1}. (2.21)

By Lemma 2.1 and the Sobolev inequality, one has

∫
RN

(
Iα ∗ |un| α

N +1)|un| α
N +1 dx ≤ C3‖un‖

2(N+α)
N

2 . (2.22)

By (V1), there exists 0 < r0 < [ S

C3tαn ω2/N
N ‖un‖2α/N

2 +
4λω2/N

N
p ‖un‖p–2

2

]1/2 such that

V (x) ≥ V∞
2

> C3tα
n ‖un‖2α/N

2 +
2λ

p
‖un‖p–2

2 (2.23)

for |x| ≥ r0. Then
∫

|tx|≥r0

V (tx)u2
n dx ≥ V∞

2

∫
|tx|≥r0

u2
n dx, ∀t > 0, un ∈ H1(

R
N)

. (2.24)
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By the Sobolev inequality and Hölder’s inequality, we have

∫
|tx|<r0

u2 dx ≤
(

ωN rN
0

tN

)(2∗–2)/2∗(∫
|tx|<r0

u2∗
dx

)2/2∗

≤ ω2/N
N r2

0t–2S–1‖∇u‖2
2, ∀t > 0, u ∈ H1(

R
N)

. (2.25)

Let

σ = min
{

V∞, Sr–2
0 ω

– 2
N

N
}

(2.26)

and

tn =
(

σ – 4λ
p ‖un‖p–2

2

4C3

) 1
α

‖un‖– 2
N

2 . (2.27)

Since (2.21) implies that {tn} is bounded, then it follows from (2.7), (2.8), (2.21)–(2.27),
Corollary 2.4, and the Sobolev embedding inequality that

m =I(un)

≥ I
(
(un)tn

)
=

tN–2
n
2

‖∇un‖2
2 +

tN
n
2

∫
RN

V (tnx)u2
n dx –

NtN+α
n

2(N + α)

∫
RN

(
Iα ∗ |un| α

N +1)|un| α
N +1 dx

–
tN
n λ

p

∫
RN

|un|p dx

≥ StN
n

2r2
0ω

2/N
N

∫
|tnx|<r0

u2
n dx +

tN
n V∞

4

∫
|tnx|≥r0

u2
n dx –

C3tN+α
n
2

‖un‖
2(N+α)

N
2 –

λtN
n

p
‖un‖p

2

≥ σ

4
‖un‖2

2 –
C3tN+α

n
2

‖un‖
2(N+α)

N
2 –

λtN
n

p
‖un‖p

2

=
tN
n
4

‖un‖2
2

(
σ – 2C3tα

n ‖un‖
2α
N

2 –
4λ

p
‖un‖p–2

2

)
> 0. (2.28)

The two cases show that m = infu∈M I(u) > 0. �

Inspired by Tang and Chen [25], we give an estimate on the energy level m, which is
essential in ensuring compactness.

Lemma 2.9 m < m∗ := α
2(N+α) (V∞S) N

α +1

Proof We set U(x) = A0(1 + |x|2)– N
2 , where A0 is defined by (1.4). By the calculation of

integral, we get

‖U‖p
p =

∫
RN

|U|P dx = ωN Ap
0

∫ +∞

0
rN–1(1 + r2)–pN/2 dr =

ωN Ap
0�( (p–1)N

2 )�( N
2 )

�( pN
2 )
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and

‖∇U‖2
2 =

∫
RN

|∇U|2 dx = ωN (NA0)2
∫ +∞

0
rN+1(1 + r2)–(N+2) dr =

ωN (N2A0)2[�( N
2 )]2

8(N + 1)!
.

Let t∗ = (V∞S) 1
α . For any ε > 0, we define two functions f (t) and hε(t) as follows:

f (t) =
V∞S

2
tN –

N
2(N + α)

tN+α (2.29)

and

hε(t) =
ε2‖∇U‖2

2
2

tN–2 –
λε

Np
2 –N

p
‖U‖p

ptN . (2.30)

It is easy to know that f (t) < f (t∗) = α
2(N+α) (V∞S) N

α +1 := m∗ for t ∈ [0, t∗) ∪ (t∗,∞). We set
Uε(x) = εN/2U(εx). Then it follows from the definition of S that

‖Uε‖2
2 = S and

∫
RN

(
Iα ∗ |u| α

N +1)|u| α
N +1 dx = 1, (2.31)

and

‖∇Uε‖2
2 = ε2‖∇U‖2

2 and ‖Uε‖p
p = ε

pN
2 –N‖U‖p

p. (2.32)

From (2.7), (2.29), (2.30), (2.31), and (2.32), we obtain

I
(
(Uε)t

)
=

tN–2

2
‖∇Uε‖2

2 +
tN

2

∫
RN

V (tx)U2
ε dx

–
NtN+α

2(N + α)

∫
RN

(
Iα ∗ |Uε| α

N +1)|Uε| α
N +1 dx

–
tNλ

p

∫
RN

|Uε|p dx

≤ V∞tN

2
‖Uε‖2

2 +
tN–2

2
‖∇Uε‖2

2 –
NtN+α

2(N + α)

∫
RN

(
Iα ∗ |Uε| α

N +1)|Uε| α
N +1 dx

–
tNλ

p

∫
RN

|Uε|p dx

=
V∞S

2
tN –

N
2(N + α)

tN+α +
ε2‖∇U‖2

2
2

tN–2 –
λε

Np
2 –N

p
‖U‖p

ptN

= f (x) + hε(t). (2.33)

There are three possible cases to distinguish.
Case 1. 2 < p < 2 + 4

N and λ > 0. In this case, we choose ε ∈ (0, 1), then

hε(t) ≤ 1
2p

ε2tN–2(p‖∇U‖2
2 – 2λ‖U‖p

pt2). (2.34)
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Let

T0 = max

{
6t∗
5

,
(

p‖∇U‖2
2

2λ‖U‖p
p

) 1
2
}

. (2.35)

We can choose ε ∈ (0, 1) such that

λt2
∗ ≥ 25p‖∇U‖2

2

32‖U‖p
p

, (2.36)

and

1
2
ε2TN–2

0 ‖∇U‖2
2 < m∗ – f

(
6t∗
5

)
,

1
2
ε2tN–2

∗ ‖∇U‖2
2 < m∗ – f

(
4t∗
5

)
. (2.37)

There are four possible subcases.
Subcase (i) t ≥ T0. Then it follows from (2.29), (2.33), (2.34), and (2.35) that

max
t≥T0

I
(
(Uε)t

) ≤ max
t≥T0

[
f (t) + hε(t)

]

≤ f
(

6t∗
5

)
≤ f (t∗) = m∗. (2.38)

Subcase (ii) 6t∗
5 ≤ t ≤ T0. Then it follows from (2.29), (2.33), (2.34), and (2.37) that

max
6t∗
5 ≤t≤T0

I
(
(Uε)t

) ≤ max
6t∗
5 ≤t≤T0

[
f (t) + hε(t)

]

≤ f
(

6t∗
5

)
+

1
2
ε2TN–2

0 ‖∇U‖2
2 < m∗. (2.39)

Subcase (iii) 4t∗
5 ≤ t ≤ 6t∗

5 . Then it follows from (2.29), (2.33), and (2.35) that

max
4t∗
5 ≤t≤ 6t∗

5

I
(
(Uε)t

) ≤ max
4t∗
5 ≤t≤ 6t∗

5

[
f (t) + hε(t)

]

≤ f (t∗) + hε

(
4t∗
5

)
≤ m∗. (2.40)

Subcase (iv) 0 ≤ t ≤ 4t∗
5 . Then it follows from (2.29), (2.33), (2.34), and (2.37) that

max
0≤t≤ 4t∗

5

I
(
(Uε)t

) ≤ max
0≤t≤ 4t∗

5

[
f (t) + hε(t)

]

≤ f
(

4t∗
5

)
+

1
2
ε2tN–2

∗ ‖∇U‖2
2 < m∗. (2.41)

Case 2. p = 2 + 4
N and λ > (N+2)N2

2(N+1)A
4
N
0 (SV∞)

2
α

. In this case we choose ε ∈ (0, 1), then

hε(t) =
1
2
ε2tN–2

(
‖∇U‖2

2 –
N

N + 2
λ‖U‖2+4/N

2+4/N t2
)

. (2.42)
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Let

T1 = max

{
t∗ + ε,

(
(N + 2)‖∇U‖2

2

Nλ‖U‖2+4/N
2+4/N

) 1
2
}

. (2.43)

By assumption (ii) in Theorem 1.1, we can choose ε > 0 such that

λ(t∗ – ε)2 ≥ (N + 2)‖∇U‖2
2

N‖U‖2+4/N
2+4/N

. (2.44)

We choose ε > 0 such that

1
2
ε2TN–2

1 ‖∇U‖2
2 < m∗ – f (t∗ + ε),

1
2
ε2tN–2

∗ ‖∇U‖2
2 < m∗ – f (t∗ – ε). (2.45)

There are also four possible subcases.
Subcase (i) t ≥ T1. Then it follows from (2.29), (2.33), (2.42), and (2.43) that

max
t≥T1

I
(
(Uε)t

) ≤ max
t≥T1

[
f (t) + hε(t)

]
≤ f (t∗ + ε) ≤ f (t∗) = m∗. (2.46)

Subcase (ii) t∗ + ε ≤ t ≤ T1. Then it follows from (2.29), (2.33), (2.42), and (2.45) that

max
t∗+ε≤t≤T1

I
(
(Uε)t

) ≤ max
t∗+ε≤t≤T1

[
f (t) + hε(t)

]

≤ f (t∗ + ε) +
1
2
ε2TN–2

1 ‖∇U‖2
2 < m∗. (2.47)

Subcase (iii) t∗ – ε ≤ t ≤ t∗ + ε. Then it follows from (2.29), (2.33), (2.42), and (2.44) that

max
t∗–ε≤t≤t∗+ε

I
(
(Uε)t

) ≤ max
t∗–ε≤t≤t∗+ε

[
f (t) + hε(t)

]
≤ f (t∗) + hε(t∗ – ε) ≤ m∗. (2.48)

Subcase (iv) 0 ≤ t ≤ t∗ – ε. Then it follows from (2.29), (2.33), (2.42), and (2.45) that

max
0≤t≤t∗–ε

I
(
(Uε)t

) ≤ max
0≤t≤t∗–ε

[
f (t) + hε(t)

]
≤ f (t∗ – ε) +

1
2
ε2tN–2

∗ ‖∇U‖2
2 < m∗. (2.49)

Case 3. 2 + 4
N < p < 2∗ and λ > 25pN4�( N

2 )�( pN
2 )

256(N+1)!Ap–2
0 ε2∗–2(V∞S)

2
α �( (p–1)N

2 )
. In this case, we also choose

ε ∈ (0, 1], then

hε(t) ≤ ε2‖∇U‖2
2

2
tN–2 –

λε2∗

p
‖U‖p

ptN , (2.50)

T2 = max

{
6t∗
5

,
(

p‖∇U‖2
2

2λε2∗–2‖U‖p
p

)1/2}
, (2.51)
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and

λ >
p‖∇U‖2

2

2ε
(p–2)N

2 –2t2
0

. (2.52)

Now we can choose ε ∈ (0, 1] and λ > 0 such that

λt2
∗ ≥ 25p‖∇U‖2

2

32ε2∗–2‖U‖p
p

(2.53)

and

1
2
ε2TN–2

2 ‖∇U‖2
2 < m∗ – f

(
6t∗
5

)
,

1
2
ε2tN–2

∗ ‖∇U‖2
2 < m∗ – f

(
4t∗
5

)
. (2.54)

There are four possible subcases.
Subcase (i) t ≥ T2. Then it follows from (2.29), (2.33), (2.51), and (2.50) that

max
t≥T2

I
(
(Uε)t

) ≤ max
t≥T2

[
f (t) + hε(t)

]

≤ f
(

6t∗
5

)
≤ f (t∗) = m∗. (2.55)

Subcase (ii) 6t∗
5 ≤ t ≤ T2. Then it follows from (2.29), (2.33), (2.52), (2.50), and (2.54) that

max
6t∗
5 ≤t≤T2

I
(
(Uε)t

) ≤ max
6t∗
5 ≤t≤T2

[
f (t) + hε(t)

]

≤ f
(

6t∗
5

)
+

1
2
ε2TN–2

2 ‖∇U‖2
2 < m∗. (2.56)

Subcase (iii) 4t∗
5 ≤ t ≤ 6t∗

5 . Then it follows from (2.29), (2.50), and (2.53) that

max
4t∗
5 ≤t≤ 6t∗

5

I
(
(Uε)t

) ≤ max
4t∗
5 ≤t≤ 6t∗

5

[
f (t) + hε(t)

]

≤ f (t∗) + hε

(
4t∗
5

)
≤ m∗. (2.57)

Subcase (iv) 0 ≤ t ≤ 4t∗
5 . Then it follows from (2.29), (2.33), (2.50), and (2.54) that

max
0≤t≤ 4t∗

5

I
(
(Uε)t

) ≤ max
0≤t≤ 4t∗

5

[
f (t) + hε(t)

]

≤ f
(

4t∗
5

)
+

1
2
ε2tN–2

∗ ‖∇U‖2
2 < m∗. (2.58)

The above three cases show that

m ≤ max
t>0

I
(
(Uε)t

)
< m∗. (2.59)�

Lemma 2.10 Assume that (V1)–(V3) hold. Then m is achieved.
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Proof In view of Lemmas 2.5 and 2.8, we have M �= ∅ and m > 0. Let {un} ⊂ M be such
that I(un) → m. Since P(un) = 0, then it follows from (2.5), (2.18), and (2.20) that

m + o(1) = I(un) ≥ I(un) –
1
N
P(un)

≥ 1 – θ

N
‖∇un‖2

2. (2.60)

This is to show that {‖∇un‖2} is bounded. Next, we prove that {‖un‖2} is also bounded.
Arguing indirectly, assume that ‖un‖2 → ∞, without loss of generality, we can assume
that ‖un‖2 ≥ 1. From (2.28), we have

m = I(un) ≥ I
(
(un)t̄n

)
=

t̄N–2
n
2

‖∇un‖2
2 +

t̄N
n
2

∫
RN

V (t̄nx)u2
n dx –

t̄N
n λ

p

∫
RN

|un|p dx

–
Nt̄N+α

n
2(N + α)

∫
RN

(
Iα ∗ |un| α

N +1)|un| α
N +1 dx

≥ St̄N
n

2r0ω
2/N
N

∫
|t̄nx|<r0

u2
n dx +

V∞ t̄N
n

4

∫
|t̄nx|≥r0

u2
n dx –

C3 t̄N+α
n
2

‖un‖
2(N+α)

N
2 –

λt̄N
n

p
‖un‖p

2

≥ σ t̄N
n

4
‖un‖2

2 –
C3 t̄N+α

2
‖un‖

2(N+α)
N

2 –
λt̄N

n
p

‖un‖p
2

=
t̄N
n
4

‖un‖2
2

(
σ – 2C3 t̄α

n ‖un‖
2α
N

2 –
4λ

p
‖un‖p–2

2

)
, ∀t̄n ≥ 0. (2.61)

If 2α
N ≥ p – 2, we choose

λ =
pC3 t̄α

n
4

> 0 and C3 =
σ

4

(
σ

24m

) α
N

. (2.62)

Let

t̄n =
(

24m
σ

) 1
N ‖un‖– 2

N
2 . (2.63)

From (2.61), (2.62), and (2.63), we have

m ≥ t̄N
n
4

‖un‖2
2

(
σ – 2C3 t̄α

n ‖un‖
2α
N

2 –
4λ

p
‖un‖p–2

2

)

≥ t̄N
n
4

‖un‖2
2

(
σ – 2C3 t̄α

n ‖un‖
2α
N

2 –
4λ

p
‖un‖

2α
N

2

)

=
3
2

m. (2.64)

This is a contradiction.
When 2α

N < p – 2, we choose

λ =
pC3 t̄α

n
4

> 0 and C3 =
σ

4

(
σ

24m‖un‖[N(p–2)–2α]/α
2

)α/N

. (2.65)
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Let

t̄n =
(

24m‖un‖[N(p–2)–2α]/α
2
σ

)1/N

‖un‖–(p–2)/α . (2.66)

Then from (2.61), (2.65), and (2.66), we get

m ≥ t̄N
n
4

‖un‖2
2

(
σ – 2C3 t̄α

n ‖un‖
2α
N

2 –
4λ

p
‖un‖p–2

2

)

≥ t̄N
n
4

‖un‖2
2

(
σ – 2C3 t̄α

n ‖un‖p–2
2 –

4λ

p
‖un‖p–2

2

)

=
3
2

m, (2.67)

a contradiction. Hence, {‖un‖2} is also bounded. Therefore, {un} is bounded in H1(RN ).
Passing to a subsequence, we have un ⇀ ū in H1(RN ). Then un → ū in Ls

loc(RN ) for 2 ≤
s ≤ 2∗ and un → ū a.e. in R

N . We obtain two possible cases.
Case (i) ū = 0, i.e., un ⇀ 0 in H1(RN ). Then un → 0 in Ls

loc(RN ) for 2 ≤ s ≤ 2∗ and un → 0
a.e. in R

N . Let t = 0 in (2.4), one has

NV (x) + ∇V (x) · x ≤ NV∞ +
(N – 2)2θ

2|x|2 . (2.68)

Let t → ∞ in (2.4), one has

–
(N – 2)3θ

4|x|2 + NV∞ ≤ NV (x) + ∇V (x) · x. (2.69)

By (V2), (2.68), and (2.69), it is easy to show that

lim
n→∞

∫
RN

[
V∞ – V (x)

]
u2

n dx = lim
n→∞

∫
RN

∇V (x) · xu2
n dx = 0. (2.70)

From (1.5), (1.8), (1.11), and (2.70), one can get

I(un) → m, P∞(un) → 0. (2.71)

From Lemma 2.8(i), (1.12), and (2.71), one has

min{N – 2, NV∞}ρ2 ≤ min{N – 2, NV∞}‖un‖2

≤ (N – 2)‖∇un‖2
2 + NV∞‖un‖2

2

= N
∫
RN

(
Iα ∗ |un| α

N +1)|un| α
N +1 dx +

2Nλ

p
‖un‖p

p. (2.72)

Using (2.72) and the Lions concentration compactness principle [14, Lemma 1.21], we
can prove that there exist σ > 0 and a sequence {yn} ⊂ R

N such that
∫

B1(yn) |un|2 dx > σ .
Let ûn(x) = un(x + yn). Then we have ‖ûn‖ = ‖un‖ and

P∞(ûn) = o(1), I(ûn) → m,
∫

B1(0)
|ûn|2 dx > σ . (2.73)
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Therefore, there exists û ∈ H1(RN ) \ {0} such that, passing to a subsequence,

⎧⎪⎪⎨
⎪⎪⎩

ûn ⇀ û in H1(RN );

ûn → û in Ls
loc(RN ),∀s ∈ [1, 2∗);

ûn → û a.e. on R
N .

(2.74)

Let wn = ûn – û. Then (2.74) and the Brezis–Lieb type lemma (see [11, Lemmas 2.4]), [30,
Lemmas 2.10] lead to

I∞(ûn) = I∞(û) + I∞(wn) + o(1) (2.75)

and

P∞(ûn) = P∞(û) + P∞(wn) + o(1). (2.76)

From (1.12), (1.8), and Lemma 2.3, one has

I∞(u) ≥ I∞(ut). (2.77)

Moreover,

1
N

‖∇wn‖2
2 = m –

1
N

‖∇û‖2
2 +

α

2(N + α)

∫
RN

(
Iα ∗ |û| α

N +1)|û| α
N +1 dx + o(1), (2.78)

P∞(wn) = –P∞(û) + o(1). (2.79)

If there exists a subsequence {wni} of {wn} such that wni = 0, then going to this subse-
quence, we have

I∞(û) = m, P∞(û) = 0. (2.80)

Next we assume that wn �= 0. We claim that P∞(û) ≤ 0. Otherwise, P∞(û) > 0 for large n.
In view of Corollary 2.4 and Lemma 2.5, there exists tn > 0 such that (wn)tn ∈ M∞. From
(1.5), (1.12), (2.77), (2.78), and (2.80), we obtain

m –
1
N

‖∇ωn‖2
2 + o(1) =

1
N

‖∇û‖2
2 +

α

2(N + α)

∫
RN

(
Iα ∗ |û| α

N +1)|û| α
N +1 dx

= I∞(wn) –
1
N
P∞(wn)

≥ I∞(
(wn)tn

)
–

tN
n

N
P∞(wn)

≥ m∞ –
tN
n

N
P∞(wn) ≥ m∞, (2.81)

which implies P∞(û) ≤ 0 due to ‖∇û‖2 > 0. Since û �= 0 and P∞(û) ≤ 0, in view of
Lemma 2.5, there exists t̂ > 0 such that ût̂ ∈ M∞. From (1.8), (1.12), (2.77), (2.78), (2.80)
and the weak semicontinuity of norm, one has

m = lim
n→∞

[
I∞(ûn) –

1
N
P∞(ûn)

]
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=
1
N

lim
n→∞‖∇ûn‖2

2 +
α

2(N + α)
lim

n→∞

∫
RN

(
Iα ∗ |ûn| α

N +1)|ûn| α
N +1 dx

≥ I∞(û) –
1
N
P∞(û)

≥ I∞(ût̂) –
t̂N

N
P∞(û)

≥ m∞ –
t̂N

N
P∞(û) ≥ m, (2.82)

which implies that (2.80) also holds. In view of Lemma 2.5, there exists t̂ > 0 such that
ût̂ ∈M; moreover, it follows from (V2), (1.5), (1.8), (2.81), and (2.82) that

m ≤ I(ût̂) ≤ I∞(ût̂) ≤ I∞(û) = m. (2.83)

This shows that m is achieved at ût̂ ∈M.
Case (ii). ū �= 0. Let vn = un – ū. If un ⇀ ū, similar to [17] and [31], we have the following

two equalities:

I(un) = I(ū) + I(vn) + o(1) (2.84)

and

P(un) = P(ū) + P(vn) + o(1). (2.85)

Set

�(u) =
1
N

‖∇u‖2
2 –

1
2N

∫
RN

(∇V (x) · x
)
u2 dx

+
α

2(N + α)

∫
RN

(
Iα ∗ u

α
N +1)u

α
N +1 dx. (2.86)

Then it follows from (1.2), (2.4) with t = 0, (2.6) and (2.86) that

�(u) ≥ 1 – θ

N
‖∇u‖2

2, ∀u ∈ H1(
R

N)
. (2.87)

Since I(un) → m and P(un) = 0, then it follows from (1.5), (1.11), (2.85), (2.86), and (2.87)
that

�(vn) = m – �(ū) + o(1) (2.88)

and

P(vn) = –P(ū) + o(1). (2.89)

If there exists a subsequence {vni} of {vn} such that vni = 0, then going to this subsequence,
we have

I(ū) = m, P(ū) = 0, (2.90)
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which implies that the conclusion of Lemma 2.10 holds. Next, we assume that vn �= 0. We
claim that P(ū) ≤ 0. Otherwise, P(ū) > 0, then (2.88) implies P(vn) < 0 for large n. In view
of (2.8), there exists tn > 0 such that (vn)tn ∈M for large n. From (1.5), (1.11), (2.5), (2.88),
and (2.89), we obtain

m – �(ū) + o(1) = �(vn)

= I(vn) –
1
N
P(vn)

≥ I
(
(vn)tn

)
–

tN
n

N
P(vn)

≥ m –
tN
n

N
P(vn) ≥ m, (2.91)

which implies P(ū) ≤ 0 due to �(ū) > 0. Since ū �= 0 and P(ū) ≤ 0, in view of (2.8) and
(2.77), there exists t̄ > 0 such that ūt̄ ∈ M. From (1.5), (1.11), (2.5), (2.87), (2.88) and the
weak semicontinuity of norm, we obtain

m = lim
n→∞

[
I(un) –

1
N
P(un)

]
= lim

n→∞�(un) ≥ �(ū)

≥ I(ū) –
1
N
P(ū) ≥ I(ūt̄) –

t̄N

N
P(ū)

≥ m –
t̄N

N
P∞(ū) ≥ m, (2.92)

which implies that (2.90) also holds. �

Lemma 2.11 Assume that (V1)–(V3) hold. If ū ∈ M and I(ū) = m, then ū is a critical
point of I .

Proof Similar to the proof of [32, Lemma 2.12], we can clearly conclude the desired con-
clusion by using

I(ūt) ≤ I(ū) –
(1 – θ )g(t)

2N
‖∇ū‖2

2 –
β(t)

2(N + α)

∫
RN

(
Iα ∗ |ū| α

N +1)|ū| α
N +1 dx

≤ I(ū) –
(1 – θ )g(t)

2N
‖∇ū‖2

2 < m, ∀t > 0, (2.93)

and

ε1 := min

{
(1 – θ )g(1 – ε1)

5(N + α)
‖∇ū‖2

2,
(1 – θ )g(1 + ε1)

5(N + α)
‖∇ū‖2

2, 1,
ρδ

8

}
(2.94)

instead of [26, (2.55) and ε], respectively. �

Proof of Theorem 1.1 In view of Lemma 2.7, Lemma 2.8, and Lemma 2.11, there exists
ū ∈M such that

I(ū) = inf
u∈H1(RN )\{0}

max
t>0

I(ut) = m > 0, I ′(ū) = 0. (2.95)

This shows that ū is a ground state solution of (1.1). �
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