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Abstract
In this paper, we consider a class of Choquard equations with
Hardy–Littlewood–Sobolev lower or upper critical exponent in the whole spaceRN .
We combine an argument of L. Jeanjean and H. Tanaka (see (Proc. Am. Math. Soc.
131:2399–2408, 2003) with a concentration–compactness argument, and then we
obtain the existence of ground state solutions, which extends and complements the
earlier results.
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1 Introduction
In this paper, we consider the following nonlinear Choquard problem:

–�u + u =
(
Iα ∗ F(u)

)
f (u), u ∈ H1(

R
N)

, (P)

where N ≥ 3, 0 < α < N , Iα is a Riesz potential

Iα(x) =
�( N–α

2 )

�( α
2 )π N

2 2α|x|N–α
:=

Ĉ
|x|N–α

with �(s) =
∫ +∞

0 xs–1e–x dx, s > 0, F ∈ C1(R,R), and f := F ′. Problem (P) can be studied by
the variational method. It is the Euler–Lagrange equation of the functional

�(u) =
1
2

∫

RN

[|∇u|2 + u2]dx –
1
2

∫

RN

(
Iα ∗ F(u)

)
F(u) dx.

As we know, a large number of works have been devoted to the problem like (P). We
refer the readers to [2, 4, 5, 7–10, 12–15] and the references therein.

Especially, in [8], under the following conditions:
(MS1) f ∈ C(R,R) and there exists C > 0 such that, for every s ∈R,

∣
∣sf (s)

∣
∣ ≤ C

(|s| N+α
N + |s| N+α

N–2
)
;
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(MS2)

lim
s→0

F(s)

|s| N+α
N

= 0 and lim
s→∞

F(s)

|s| N+α
N–2

= 0;

(MS3) There exists s0 ∈R \ {0} such that F(s0) 
= 0,
Moroz and Schaftingen proved the existence of a ground state solution. They employed a
method introduced by L. Jeanjean, where a key step is to construct Palais–Smale sequences
that satisfy asymptotically the Pohozǎev identity [3]. Note that assumption (MS2) is called
subcritical. The constant N+α

N is termed the lower-critical exponent and N+α
N–2 is termed

the upper-critical exponent in the sense of Hardy–Littlewood–Sobolev inequality. In [14],
Seok considered that problem (P) with F(u) is doubly critical, i.e.,

F(u) =
1
p
|u|p +

1
q
|u|q,

where p = N+α
N and q = N+α

N–2 . In this situation,

lim
s→0

F(s)

|s| N+α
N

=
1
p


= 0 and lim
s→∞

F(s)

|s| N+α
N–2

=
1
q


= 0.

He showed the existence of nontrivial solutions of the nonlinear Choquard equation if
α + 4 < N .

In the following we give our main result.

Theorem 1.1 Suppose that N ≥ 3, p, q ∈ [ N+α
N , N+α

N–2 ] and

F(u) =
1
p
|u|p +

1
q
|u|q.

Then problem (P) has at least a ground state solution u ∈ H1(RN ) provided one of the
following conditions holds:

(1) q = N+α
N–2 , N ≥ 4, and p ∈ ( N+α

N , N+α
N–2 ) or N = 3 and p ∈ (1 + α

N–2 , N+α
N–2 );

(2) p = N+α
N , N > 4 + α, and q ∈ ( N+α

N , N+α
N–2 ] or N < 4 + α and q ∈ ( N+α

N , N+α+4
N ).

Remark 1.1 By conditions (1) and (2), it is easy to see that

lim
s→0

F(s)

|s| N+α
N

= 0 and lim
s→∞

F(s)

|s| N+α
N–2

=
1
q


= 0

and

lim
s→0

F(s)

|s| N+α
N

=
1
p


= 0 and lim
s→∞

F(s)

|s| N+α
N–2

= 0 or
1
q

,

respectively.

We denote the strong and the weak convergence in H1(RN ) by → and ⇀, respectively.
Set ‖u‖ := [

∫
RN (|∇u|2 + u2) dx]1/2 and |u|q := [

∫
RN |u|q dx]1/q for 1 < q < ∞. As for the
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Choquard equation, the Hardy–Littlewood–Sobolev inequality (see [6] and [7]) implies
that the nonlocal term is well defined for u ∈ H1(RN ) and � is continuously differentiable
on H1(RN ). Clearly, u = 0 is a trivial solution of (P). The solutions of (P) must verify the
Pohozǎev identity, as was proved in [8, Corollary 3.5]. In our case, the Pohozǎev identity
reads as follows:

P(u) :=
N – 2

2

∫

RN
|∇u|2 dx +

N
2

∫

RN
u2 dx –

N + α

2

∫

RN

(
Iα ∗ F(u)

)
F(u) dx = 0. (1)

We call any weak solution u ∈ H1(RN ) \ {0} of (P) a groundstate of (P) if

�(u) = c0 := inf
{
�(v) : v ∈ H1(

R
N) \ {0} is a solution of (P)

}
.

Because problem (P) contains nonlocal critical nonlinearities in R
N , there are more dif-

ficulties to overcome. One difficulty is the embedding of H1(RN ) into Lq(RN ) which is not
compact, where 2 ≤ q ≤ 2∗. As a consequence, the corresponding functional of (P) does
not satisfy the Palais–Smale condition; we overcome the lack of compactness by studying
the problem in H1

r (RN ):

H1
r
(
R

N)
=

{
u ∈ H1(

R
N)

: u(x) = u
(|x|)},

which embeds compactly into Lq(RN ). By standard arguments (the principle of symmetric
criticality; see [11] or [16, Theorem 1.28]), one has that a critical point u ∈ H1

r (RN ) for the
functional �(u) of (P) is also a critical point in H1(RN ). We say that {un} ⊂ H1(RN ) is a
Pohozǎev–Palais–Smale sequence for � ∈ C1(H1(RN ),R) at level c ∈ R if and only if {un}
satisfies �(un) → c, �′(un) → 0, and P(un) → 0 as n → ∞. Following the strategy in [3],
we obtain that there exists a Pohozǎev–Palais–Smale sequence for �, with c confined in a
suitable range. To ensure that the mini-max levels stay in a certain range, we make some
careful computation in Sect. 2, which is crucial in our approach. Then, we make full use of
three limit formulas in the Pohozǎev–Palais–Smale sequence and prove that this sequence
has a strongly convergent subsequence.

2 Preliminaries
In the following, we recall the well-known Hardy–Littlewood–Sobolev inequality (see in
[6, Theorem 4.3]).

Proposition 2.1 (Hardy–Littlewood–Sobolev inequality) Let r, s > 1 and α ∈ (0, N) with
1
r + 1

s = 1+ α
N . Then there exists C > 0 depending only on N , α, r such that, for any f ∈ Lr(RN )

and g ∈ Ls(RN ),

∣
∣∣
∣

∫

RN

∫

RN

f (x)g(y)
|x – y|N–α

dx dy
∣
∣∣
∣ ≤ C(N ,α, r)‖f ‖Lr (RN )‖g‖Ls(RN ).

Lemma 2.1 Suppose that N ≥ 3 and p, q ∈ [ N+α
N , N+α

N–2 ]. Let {vn} ⊂ H1
r (RN ) be a sequence

converging weakly to 0 as n → ∞. If 2(N+α)
N < p + q < 2(N+α)

N–2 , then

∫

RN

(
Iα ∗ |vn|p

)|vn|q dx → 0, as n → ∞.
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Proof Since vn ⇀ 0 in H1
r (RN ) and 2 < N(p+q)

N+α
< 2N

N–2 , we have

vn → 0 in L
N(p+q)

N+α
(
R

N)
,

see [16, Corollary 1.25]. By the Hardy–Littlewood–Sobolev inequality with r = p+q
p

N
N+α

and t = p+q
q

N
N+α

, we obtain

∣∣∣
∣

∫

RN

(
Iα ∗ |vn|p

)|vn|q dx
∣∣∣
∣ ≤ C

∥∥|vn|p
∥∥

Lr (RN )

∥∥|vn|q
∥∥

Lt (RN )

= C
(∫

RN
|vn| N(p+q)

N+α dx
) N+α

N → 0,

where C is a positive constant. The proof is finished. �

Remark 2.1 p, q that appear in Theorem 1.1 satisfy

2(N + α)
N

< p + q <
2(N + α)

N – 2
.

The constant S1 is defined by

S1 := inf

{ |∇u|22
[
∫
RN (Iα ∗ |u|q)|u|q dx]1/q : u ∈ H1(

R
N) \ {0}

}

and is attained by the functions

Uε(x) =
Cε(N–2)/2

(ε2 + |x|2)(N–2)/2 ,

where ε > 0 (see in [6]). We define a cutoff function ϕ(x) by

ϕ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, x ∈ B1;

2 – |x|, x ∈ B2 \ B1;

0, x ∈R
N \ B2,

where B1 = {x ∈R
N : |x| ≤ 1} and B2 = {x ∈R

N : |x| ≤ 2}. Set

uε = uε(x) = ϕ(x) · Uε(x).

Then we have the following lemma.

Lemma 2.2 Suppose that N ≥ 3 and p, q ∈ [ N+α
N , N+α

N–2 ]. Then there exists a positive constant
ε0 such that if ε ∈ (0, ε0) then

�(tuε) <
1
2

(
1 –

1
q

)
q

1
q–1 S

N+α
2+α

1 for all t ≥ 0,

provided q = N+α
N–2 and one of the following conditions holds:



Li and Wang Boundary Value Problems        (2021) 2021:102 Page 5 of 20

(1) N ≥ 4 and p ∈ [ N+α
N , N+α

N–2 );
(2) N = 3 and p ∈ (1 + α

N–2 , N+α
N–2 ).

Proof According to the definition of � and uε , we have

�(tuε) =
t2

2

∫

RN

[|∇uε|2 + u2
ε

]
dx –

1
2

∫

RN

(
Iα ∗ F(tuε)

)
F(tuε) dx

=
t2

2

∫

RN
|∇uε|2 dx +

t2

2

∫

RN
u2

ε dx –
t2p

2p2

∫

RN

(
Iα ∗ |uε|p

)|uε|p dx

–
tp+q

pq

∫

RN

(
Iα ∗ |uε|p

)|uε|q dx –
t2q

2q2

∫

RN

(
Iα ∗ |uε|q

)|uε|q dx

=
t2

2

∫

RN
|∇uε|2 dx +

t2

2

∫

RN
u2

ε dx –
t2p

2p2 L –
tp+q

pq
H –

t2q

2q2 M,

where

L :=
∫

RN

∫

RN

Ĉ|uε(x)|p|uε(y)|p
|x – y|N–α

dx dy,

H :=
∫

RN

∫

RN

Ĉ|uε(x)|p|uε(y)|q
|x – y|N–α

dx dy

and

M :=
∫

RN

∫

RN

Ĉ|uε(x)|q|uε(y)|q
|x – y|N–α

dx dy.

By [1] (see also [16]), the following asymptotic estimates hold as ε is small enough:

∫

RN
|∇uε|2 dx = S

N+α
2+α

1 + O
(
εN–2) (2)

and

h(ε) :=
∫

RN
|uε|2 dx =

⎧
⎪⎪⎨

⎪⎪⎩

cε2 + O
(
εN–2), if N ≥ 5;

cε2| log ε| + O
(
ε2), if N = 4;

cε + O
(
ε2), if N = 3,

(3)

where c is a positive constant.
In the following we estimate the convolution terms L, H, and M, respectively.
Case L:

L =
∫

RN

∫

RN

Ĉ|uε(x)|p|uε(y)|p
|x – y|N–α

dx dy

=
∫

B2

∫

B2

Ĉ|uε(x)|p|uε(y)|p
|x – y|N–α

dx dy

≥
∫

B1

∫

B1

Ĉ|uε(x)|p|uε(y)|p
|x – y|N–α

dx dy
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=
∫

B1

∫

B1

Ĉ|Uε(x)|p|Uε(y)|p
|x – y|N–α

dx dy

=
∫

B2

∫

B2

Ĉ|Uε(x)|p|Uε(y)|p
|x – y|N–α

dx dy –
∫

B2\B1

∫

B1

Ĉ|Uε(x)|p|Uε(y)|p
|x – y|N–α

dx dy

–
∫

B2\B1

∫

B2\B1

Ĉ|Uε(x)|p|Uε(y)|p
|x – y|N–α

dx dy

= L1 – 2L2 – L3,

where

L1 :=
∫

B2

∫

B2

Ĉ|Uε(x)|p|Uε(y)|p
|x – y|N–α

dx dy,

L2 :=
∫

B2\B1

∫

B1

Ĉ|Uε(x)|p|Uε(y)|p
|x – y|N–α

dx dy,

and

L3 :=
∫

B2\B1

∫

B2\B1

Ĉ|Uε(x)|p|Uε(y)|p
|x – y|N–α

dx dy.

By direct computation, we have, for ε < 1,

L1 = O
(
ε–(N–2)p)

∫

B2

∫

B2

1

(1 + | x
ε
|2)

(N–2)p
2 |x – y|N–α(1 + | y

ε
|2)

(N–2)p
2

dx dy

= O
(
εN+α–(N–2)p)

∫

B2/ε

∫

B2/ε

1

(1 + |x|2)
(N–2)p

2 |x – y|N–α(1 + |y|2)
(N–2)p

2
dx dy

≥ O
(
εN+α–(N–2)p)

∫

B 1
2

[∫

Bx, 1
2

1

(1 + |y|2)
(N–2)p

2 |x – y|N–α
dy

]
1

(1 + |x|2)
(N–2)p

2
dx

≥ O
(
εN+α–(N–2)p)

∫

B 1
2

[∫

Bx, 1
2

1
|x – y|N–α

dy
]

1

(1 + |x|2)
(N–2)p

2
dx

= O
(
εN+α–(N–2)p)

∫

B 1
2

1
|y|N–α

dy ·
∫

B 1
2

1

(1 + |x|2)
(N–2)p

2
dx = O

(
εN+α–(N–2)p).

(4)

We also have

L2 = O
(
ε(N–2)p)

∫

B1

∫

B2\B1

1

(ε2 + |x|2)
(N–2)p

2 |x – y|N–α(ε2 + |y|2)
(N–2)p

2
dx dy.

By the Hardy–Littlewood–Sobolev inequality with 1
r1

+ 1
s1

= 1 + α
N (see Proposition 2.1)

and

s1 ∈
(

N
(N – 2)p

,
2N

N + α – (N – 2)p

)
, (5)
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we have

L2 ≤ O
(
ε(N–2)p)

(∫

B2\B1

1

(ε2 + |x|2)
(N–2)pr1

2
dx

) 1
r1

×
(∫

B1

1

(ε2 + |y|2)
(N–2)ps1

2
dy

) 1
s1

≤ O
(
ε

N
s1

)(∫ 1
ε

0

zN–1

(1 + |z|2)
(N–2)ps1

2
dz

) 1
s1

≤ O
(
ε

N
s1

)(
1 +

∫ 1
ε

1
|z|N–1–(N–2)ps1 dz

) 1
s1

= O
(
ε

N
s1

)
.

(6)

We also get

L3 = O
(
ε(N–2)p)

∫

B2\B1

∫

B2\B1

1

(ε2 + |x|2)
(N–2)p

2 |x – y|N–α(ε2 + |y|2)
(N–2)p

2
dx dy

≤ O
(
ε(N–2)p)

∫

B2\B1

∫

B2\B1

1
|x|(N–2)p|x – y|N–α|y|(N–2)p dx dy

≤ O
(
ε(N–2)p)

[∫

B2\B1

|x|– 2N(N–2)p
N+α dx

] N+α
N

= O
(
ε(N–2)p).

(7)

Combining (4), (6), and (7), we obtain

L≥ O
(
εN+α–(N–2)p) – O

(
ε

N
s1

)
– O

(
ε(N–2)p).

Noting that s1 > N
(N–2)p ,

L≥ O
(
εN+α–(N–2)p) – O

(
ε

N
s1

)
. (8)

Case H: It is easy to see that

H =
∫

RN

∫

RN

Ĉ|uε(x)|p|uε(y)|q
|x – y|N–α

dx dy =
∫

B2

∫

B2

Ĉ|uε(x)|p|uε(y)|q
|x – y|N–α

dx dy

≥
∫

B1

∫

B1

Ĉ|uε(x)|p|uε(y)|q
|x – y|N–α

dx dy =
∫

B1

∫

B1

Ĉ|Uε(x)|p|Uε(y)|q
|x – y|N–α

dx dy

=
∫

B2

∫

B2

Ĉ|Uε(x)|p|Uε(y)|q
|x – y|N–α

dx dy –
∫

B2\B1

∫

B1

Ĉ|Uε(x)|p|Uε(y)|q
|x – y|N–α

dx dy

–
∫

B1

∫

B2\B1

Ĉ|Uε(x)|p|Uε(y)|q
|x – y|N–α

dx dy –
∫

B2\B1

∫

B2\B1

Ĉ|Uε(x)|p|Uε(y)|q
|x – y|N–α

dx dy

= H1 – H2 – H3 – H4,
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where

H1 :=
∫

B2

∫

B2

Ĉ|Uε(x)|p|Uε(y)|q
|x – y|N–α

dx dy,

H2 :=
∫

B2\B1

∫

B1

Ĉ|Uε(x)|p|Uε(y)|q
|x – y|N–α

dx dy,

H3 :=
∫

B1

∫

B2\B1

Ĉ|Uε(x)|p|Uε(y)|q
|x – y|N–α

dx dy,

H4 :=
∫

B2\B1

∫

B2\B1

Ĉ|Uε(x)|p|Uε(y)|q
|x – y|N–α

dx dy.

For ε < 1, we have

H1 = O
(
ε– (N–2)(p+q)

2
)∫

B2

∫

B2

1

(1 + | x
ε
|2)

(N–2)p
2 |x – y|N–α(1 + | y

ε
|2)

(N–2)q
2

dx dy

= O
(
εN+α– (N–2)(p+q)

2
)∫

B2/ε

∫

B2/ε

1

(1 + |x|2)
(N–2)p

2 |x – y|N–α(1 + |y|2)
(N–2)q

2
dx dy

≥ O
(
ε

N+α–(N–2)p
2

)∫

B 1
2

[∫

Bx, 1
2

1

(1 + |y|2)
(N–2)q

2 |x – y|N–α
dy

]
1

(1 + |x|2)
(N–2)p

2
dx

≥ O
(
ε

N+α–(N–2)p
2

)∫

B 1
2

[∫

Bx, 1
2

1
|x – y|N–α

dy
]

1

(1 + |x|2)
(N–2)p

2
dx

= O
(
ε

N+α–(N–2)p
2

)∫

B 1
2

1
|y|N–α

dy ·
∫

B 1
2

1

(1 + |x|2)
(N–2)p

2
dx = O

(
ε

N+α–(N–2)p
2

)
.

(9)

By direct computation, we have

H2 = O
(
ε

(N–2)(p+q)
2

)∫

B1

∫

B2\B1

1

(ε2 + |x|2)
(N–2)p

2 |x – y|N–α(ε2 + |y|2)
(N–2)q

2
dx dy.

By the Hardy–Littlewood–Sobolev inequality with 1
r2

+ 1
s2

= 1 + α
N and

s2 ∈
(

N
N + α

,
N

N + α – (N – 2)p

)
,

we have

H2 ≤ O
(
ε

(N–2)(p+q)
2

)
(∫

B2\B1

1

(ε2 + |x|2)
(N–2)pr2

2
dx

) 1
r2

(∫

B1

1

(ε2 + |y|2)
(N+α)s2

2
dy

) 1
s2

≤ O
(
ε

(N–2)(p+q)
2 –(N+α)+ N

s2
)(∫ 1

ε

0

zN–1

(1 + |z|2)
(N+α)s2

2
dz

) 1
s2

≤ O
(
ε

N
s2

– (N+α)–(N–2)p
2

)(
1 +

∫ 1
ε

1
|z|N–1–(N+α)s2 dz

) 1
s

= O
(
ε

N
s2

– (N+α)–(N–2)p
2

)
.

(10)
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By direct computation, we get

H3 = O
(
ε

(N–2)(p+q)
2

)∫

B2\B1

∫

B1

1

(ε2 + |x|2)
(N–2)p

2 |x – y|N–α(ε2 + |y|2)
(N–2)q

2
dx dy.

By the Hardy–Littlewood–Sobolev inequality with 1
r3

+ 1
s3

= 1 + α
N and

s3 >
N

(N – 2)p
,

we have

H3 ≤ O
(
ε

(N–2)(p+q)
2

)(∫

B1

1

(ε2 + |x|2)
(N–2)ps3

2
dx

) 1
s3

(∫

B2\B1

1

(ε2 + |y|2)
(N+α)r3

2
dy

) 1
r3

≤ O
(
ε

(N–2)(p+q)
2 –(N–2)p+ N

s3
)
(∫ 1

ε

0

zN–1

(1 + |z|2)
(N–2)ps3

2
dz

) 1
s3

≤ O
(
ε

N
s3

+ N+α–(N–2)p
2

)
(

1 +
∫ 1

ε

1
|z|N–1–(N–2)ps3 dz

) 1
s3

= O
(
ε

N
s3

+ N+α–(N–2)p
2

)
.

(11)

We also get

H4 = O
(
ε

N+α+(N–2)p
2

)∫

B2\B1

∫

B2\B1

1

(ε2 + |x|2)
(N–2)p

2 |x – y|N–α(ε2 + |y|2)
(N–2)q

2
dx dy

≤ O
(
ε

N+α+(N–2)p
2

)∫

B2\B1

∫

B2\B1

1
|x|(N–2)p|x – y|N–α|y|(N–2)q dx dy

≤ O
(
ε

N+α+(N–2)p
2

)
[∫

B2\B1

|x|– 2pN(N–2)
N+α dx

] N+α
2N ·

[∫

B2\B1

|x|–2N dx
] N+α

2N

≤ O
(
ε

N+α+(N–2)p
2

)
.

(12)

Combining (9), (10), (11), and (12), we have

H ≥ O
(
ε

N+α–(N–2)p
2

)
– O

(
ε

N
s2

– (N+α)–(N–2)p
2

)
– O

(
ε

N
s3

+ N+α–(N–2)p
2

)
– O

(
ε

N+α+(N–2)p
2

)
.

Noting that s2 < N
N+α–(N–2)p , we obtain

H ≥ O
(
ε

N+α–(N–2)p
2

)
. (13)
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Case M: By the definition of uε(x), we have

M =
∫

RN

∫

RN

Ĉ|uε(x)|q|uε(y)|q
|x – y|N–α

dx dy =
∫

B2

∫

B2

Ĉ|uε(x)|q|uε(y)|q
|x – y|N–α

dx dy

≥
∫

B1

∫

B1

Ĉ|uε(x)|q|uε(y)|q
|x – y|N–α

dx dy =
∫

B1

∫

B1

Ĉ|Uε(x)|q|Uε(y)|q
|x – y|N–α

dx dy

=
∫

RN

∫

RN

|Uε(x)|q|Uε(y)|q
|x – y|N–α

dx dy – 2
∫

RN \B1

∫

B1

Ĉ|Uε(x)|q|Uε(y)|q
|x – y|N–α

dx dy

–
∫

RN \B1

∫

RN \B1

Ĉ|Uε(x)|q|Uε(y)|q
|x – y|N–α

dx dy

≥
∫

RN

∫

RN

Ĉ|Uε(x)|q|Uε(y)|q
|x – y|N–α

dx dy – 2
∫

RN \B1

∫

B1

Ĉ|Uε(x)|q|Uε(y)|q
|x – y|N–α

dx dy

–
∫

RN \B1

∫

RN \B1

Ĉ|Uε(x)|q|Uε(y)|q
|x – y|N–α

dx dy

= S
N+α
2+α

1 – 2M1 – M2,

where

M1 :=
∫

RN \B1

∫

B1

Ĉ|Uε(x)|q|Uε(y)|q
|x – y|N–α

dx dy

and

M2 :=
∫

RN \B1

∫

RN \B1

Ĉ|Uε(x)|q|Uε(y)|q
|x – y|N–α

dx dy.

By direct computation, we have, for ε < 1,

M1 = O
(
ε(N–2)q)

∫

RN \B1

∫

B1

1

(ε2 + |x|2)
(N–2)q

2 |x – y|N–α(ε2 + |y|2)
(N–2)q

2
dx dy.

By the Hardy–Littlewood–Sobolev inequality with t = r = 2N
N+α

and q = N+α
N–2 , we have

M1 ≤ O
(
ε(N–2)q)

(∫

RN \B1

1
(ε2 + |x|2)N dx

) N+α
2N

(∫

B1

1
(ε2 + |y|2)N dy

) N+α
2N

≤ O
(
ε

N+α
2

)(∫ +∞

1
z–1–N dz

) N+α
2N

(∫ 1
ε

0

zN–1

(1 + |z|2)N dz
) N+α

2N

≤ O
(
ε

N+α
2

) ·
(

1 +
∫ 1

ε

1
z–1–N dz

) N+α
2N

≤ O
(
ε

N+α
2

)(
1 +

1
–N

r–N | 1
ε
1

) N+α
2N ≤ O

(
ε

N+α
2

)
.

(14)
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We also get

M2 = O
(
ε(N–2)q)

∫

RN \B1

∫

RN \B1

1

(ε2 + |x|2)
(N–2)q

2 |x – y|N–α(ε2 + |y|2)
(N–2)q

2
dx dy

≤ O
(
ε(N–2)q)

∫

RN \B1

∫

RN \B1

1
|x|(N–2)q|x – y|N–α|y|(N–2)q dx dy

≤ O
(
ε(N–2)q)

[∫

RN \B1

|x|–2N dx
] N+α

N
= O

(
εN+α

)
.

(15)

Combining (14) and (15), we have

M≥ S
N+α
2+α

1 – O
(
ε

N+α
2

)
. (16)

From (2), (3), (8), (13), and (16), we have

�(tuε) ≤ t2

2
(
S

N+α
2+α

1 + O
(
εN–2)) –

t2q

2q2

(
S

N+α
2+α

1 – O
(
ε

N+α
2

))

+ t2h(ε) – t2p[O
(
εN+α–(N–2)p) – O

(
ε

N
s1

)]
– O

(
ε

N+α–(N–2)p
2

)
tp+q.

It is easy to see that there exist constants ε̄ > 0 and t2 > t1 > 0 such that, for all ε ∈ (0, ε̄)
and t ∈ [0, t1] ∪ [t2,∞),

�(tuε) <
1
2

(
1 –

1
q

)
q

1
q–1 S

N+α
2+α

1 .

In the following we may set t ∈ [t1, t2] and ε ∈ (0, ε̄). Then we have

�(tuε) ≤ t2

2
S

N+α
2+α

1 –
t2q

2q2 S
N+α
2+α

1 +
t2

2
O

(
εN–2) +

t2q

2q2 O
(
ε

N+α
2

)

+ t2h(ε) – t2pO
(
εN+α–(N–2)p) + t2pO

(
ε

N
s1

)
– tp+qO

(
ε

N+α–(N–2)p
2

)

≤ t2

2
S

N+α
2+α

1 –
t2q

2q2 S
N+α
2+α

1 +
t2
2
2

O
(
εN–2) +

t2q
2

2q2 O
(
ε

N+α
2

)

+ t2
2h(ε) – t2p

1 O
(
εN+α–(N–2)p) + t2p

2 O
(
ε

N
s1

)
– tp+q

1 O
(
ε

N+α–(N–2)p
2

)
.

By the definition of h(ε) and (22), for ε small enough, we obtain

�(tuε) <
1
2

(
1 –

1
q

)
q

1
q–1 S

N+α
2+α

1 for all t ≥ 0,

provided one of the following conditions holds:
(1) N ≥ 4 and p ∈ [ N+α

N , N+α
N–2 );

(2) N = 3 and p ∈ (1 + α
N–2 , N+α

N–2 ).
The proof is finished. �

The constant S2 is defined by

S2 := inf

{ |u|22
[
∫
RN (Iα ∗ |u|p)|u|p dx]1/p : u ∈ H1(

R
N) \ {0}

}



Li and Wang Boundary Value Problems        (2021) 2021:102 Page 12 of 20

and is attained by the functions

vσ (x) =
C̃σ N/2

(1 + σ 2|x|2)N/2 ,

where σ > 0 (see [6, Theorem 4.3]).

Lemma 2.3 Suppose that N ≥ 3 and p, q ∈ [ N+α
N , N+α

N–2 ]. There exists a positive constant σ0

such that if σ > σ0 then

�(tvσ ) <
1
2

(
1 –

1
p

)
p

1
p–1 S

p
p–1

2 for all t ≥ 0,

under p = N+α
N and one of the following conditions:

(1) N > 4 + α and q ∈ ( N+α
N , N+α

N–2 ],
(2) N < 4 + α and q ∈ ( N+α

N , N+α+4
N ).

Proof According to the definition of vσ , we have

∫

RN

∣
∣vσ (x)

∣
∣2 dx =

∫

RN

C̃2σ N

(1 + σ 2|x|2)N dx

=
∫

RN

C̃2

(1 + |σx|2)N d(σx) =
∫

RN

C̃2

(1 + |x|2)N dx = S
N+α

α
2

(17)

and for

r ∈
[

N + α

N
,

N + α

N – 2

]
,

∫

RN

∫

RN

Ĉ|vσ (x)|r|vσ (y)|r
|x – y|N–α

dx dy

=
∫

RN

∫

RN

ĈC̃2rσ Nr

(1 + σ 2|x|2) Nr
2 |x – y|N–α(1 + σ 2|y|2) Nr

2
dx dy

= σ Nr–(N+α)
∫

RN

∫

RN

ĈC̃2r

(1 + |x|2) Nr
2 |x – y|N–α(1 + |y|2) Nr

2
dx dy.

(18)

Especially, for r = p, we have

∫

RN

∫

RN

Ĉ|vσ (x)|p|vσ (y)|p
|x – y|N–α

dx dy = S
N+α

α
2 . (19)

We also get

∫

RN
|∇vσ |2 dx

=
∫

RN

C̃2N2σ N+4|x|2
(1 + σ 2|x|2)N+2 dx = σ 2

∫

RN

C̃2N2|x|2
(1 + |x|2)N+2 dx

(20)
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and

∫

RN

∫

RN

|vσ (x)|p|vσ (y)|q
|x – y|N–α

dx dy

=
∫

RN

∫

RN

ĈC̃p+qσ
N(p+q)

2

(1 + σ 2|x|2)
Np
2 |x – y|N–α(1 + σ 2|y|2)

Nq
2

dx dy

= σ
Nq–(N+α)

2

∫

RN

∫

RN

ĈC̃p+q

(1 + |x|2)
Np
2 |x – y|N–α(1 + |y|2)

Nq
2

dx dy.

(21)

By the definition of � and combining (17)–(21), we obtain

�(tvσ ) =
t2

2

∫

RN

[|∇vσ |2 + v2
σ

]
dx –

1
2

∫

RN

(
Iα ∗ F(tvσ )

)
F(tvσ ) dx

=
t2

2

∫

RN
|∇vσ |2 dx +

t2

2

∫

RN
v2
σ dx –

t2p

2p2

∫

RN

(
Iα ∗ |vσ |p)|vσ |p dx

–
tp+q

pq

∫

RN

(
Iα ∗ |vσ |p)|vσ |q dx –

t2q

2q2

∫

RN

(
Iα ∗ |vσ |q)|vσ |q dx

=
(

t2

2
–

t2p

2p2

)
S

N+α
α

2 + c1σ
2t2 – c2σ

Nq–(N+α)t2q – c3σ
Nq–(N+α)

2 tp+q,

where c1, c2, and c3 are positive constants. It is easy to see that there exist constants σ1 > 0
and t4 > t3 > 0 such that, for all σ ∈ (0,σ1) and t ∈ [0, t3] ∪ [t4,∞),

�(tvσ ) <
1
2

(
1 –

1
p

)
p

1
p–1 S

N+α
α

2 .

In the following we set t ∈ [t3, t4] and σ ∈ (0,σ1). Thus we have

�(tvσ ) ≤ 1
2

(
1 –

1
p

)
p

1
p–1 S

N+α
α

2 + c1σ
2t2

4 – c3σ
Nq–(N+α)

2 tp+q
3 .

By q < N+α+4
N , there exists a positive constant σ0 such that if σ ∈ (0,σ0) then

�(tvσ ) <
1
2

(
1 –

1
p

)
p

1
p–1 S

N+α
α

2 for all t ≥ 0.

Noting that if N > α + 4 then N+α
N–2 < N+α+4

N ; if N < α + 4 then N+α
N–2 > N+α+4

N , the conclusion
follows. �

3 Proof of the main theorem
It is easy to prove that there exist β ,ρ > 0 and v ∈ H1

r (RN ) such that
(i) inf‖u‖=ρ �(u) > β ;

(ii) ‖v‖ > ρ and �(v) < 0.
Thus � has mountain pass geometry. Define the mountain pass level c by

c := inf
γ∈�

max
0≤t≤1

�
(
γ (t)

)
,
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where

� =
{
γ ∈ C

(
[0, 1], H1

r
(
R

N))
: γ (0) = 0,γ (1) = v

}
.

Combining Lemmas 2.2 and 2.3, we have the following conclusions:
(i) If q = N+α

N–2 , N ≥ 4, and p ∈ ( N+α
N , N+α

N–2 ) or N = 3 and p ∈ (1 + α
N–2 , N+α

N–2 ), then

c ∈
(

0,
1
2

(
1 –

1
q

)
q

1
q–1 S

N+α
2+α

1

)
. (22)

(ii) If p = N+α
N , N > 4 + α, and q ∈ ( N+α

N , N+α
N–2 ) or N < 4 + α and q ∈ ( N+α

N , N+α+4
N ), then

c ∈
(

0,
1
2

(
1 –

1
p

)
p

1
p–1 S

N+α
α

2

)
. (23)

(iii) If q = N+α
N–2 , p = N+α

N , and N > 4 + α, then

c ∈
(

0, min

{
1
2

(
1 –

1
q

)
q

1
q–1 S

N+α
2+α

1 ,
1
2

(
1 –

1
p

)
p

1
p–1 S

N+α
α

2

})
. (24)

From Proposition 2.1 in [8], there exists a Pohozǎev–Palais–Smale sequence {un}n∈N in
H1

r (RN ) such that, as n → ∞,

⎧
⎪⎪⎨

⎪⎪⎩

�(un) → c,

�′(un) → 0 strongly in
(
H1

r
(
R

N))′,

P(un) → 0.

For every n ∈N,

�(un) –
1

N + α
P(un) =

2 + α

2(N + α)

∫

RN
|∇un|2 dx +

α

2(N + α)

∫

RN
|un|2 dx.

As the left-hand side is bounded, the sequence {un}n∈N is bounded in H1
r (RN ).

By extracting if necessary to a subsequence, we may assume that un ⇀ u in H1
r (RN ). It

is obvious that u is a solution of problem (P). Thus

�(u) = �(u) –
1

N + α
P(u) =

2 + α

2(N + α)

∫

RN
|∇u|2 dx +

α

2(N + α)

∫

RN
|u|2 dx ≥ 0.

Let vn = un – u. By the Brezis–Lieb lemma (see [16, Lemma 1.32]),

∫

RN
|∇un|2 dx =

∫

RN
|∇vn|2 dx +

∫

RN
|∇u|2 dx + o(1)

and
∫

RN
|un|2 dx =

∫

RN
|vn|2 dx +

∫

RN
|u|2 dx + o(1).

According to the situation of p, q, α, and N , we divide the discussion into three cases.
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Case (i): q = N+α
N–2 , N ≥ 4, and p ∈ ( N+α

N , N+α
N–2 ) or N = 3 and p ∈ (1 + α

N–2 , N+α
N–2 ).

From Lemma 2.1, Propositions 2.4 and 2.5 in [14], we see that
∫

RN

(
Iα ∗ |un|p

)|un|p dx =
∫

RN

(
Iα ∗ |u|p)|u|p dx + o(1),

∫

RN

(
Iα ∗ |un|q

)|un|q dx =
∫

RN

(
Iα ∗ |vn|q

)|vn|q dx +
∫

RN

(
Iα ∗ |u|q)|u|q dx + o(1),

and
∫

RN

(
Iα ∗ |un|p

)|un|q dx =
∫

RN

(
Iα ∗ |u|p)|u|q dx + o(1).

Then we have

〈
�′(un), un

〉
=

∫

RN

[|∇un|2 + u2
n
]

dx –
∫

RN

(
Iα ∗ F(un)

)
f (uu) dx

=
〈
�′(v), v

〉
+

∫

RN

[|∇vn|2 + v2
n
]

dx –
1
q

∫

RN

(
Iα ∗ |vn|q

)|vn|q dx + o(1).
(25)

From 〈�′(v), v〉 = 0 and 〈�′(un), un〉 → 0,
∫

RN

[|∇vn|2 + v2
n
]

dx =
1
q

∫

RN

(
Iα ∗ |vn|q

)|vn|q dx + o(1). (26)

We also have

P(un) =
N – 2

2

∫

RN
|∇un|2 dx +

N
2

∫

RN
u2

n dx –
N + α

2

∫

RN

(
Iα ∗ F(un)

)
F(un) dx

= P(u) +
N – 2

2

∫

RN
|∇vn|2 dx +

N
2

∫

RN
v2

n dx

–
N
2q

∫

RN

(
Iα ∗ |vn|q

)|vn|q dx + o(1).

Thus

N – 2
2

∫

RN
|∇vn|2 dx +

N
2

∫

RN
v2

n dx =
N – 2

2q

∫

RN

(
Iα ∗ |vn|q

)|vn|q dx + o(1). (27)

Combining (26) and (27), we deduce that
∫

RN
|∇vn|2 dx =

1
q

∫

RN

(
Iα ∗ |vn|q

)|vn|q dx + o(1)

and
∫

RN
v2

n dx = o(1).

We may assume that
∫

RN
|∇vn|2 dx → a,

1
q

∫

RN

(
Iα ∗ |vn|q

)|vn|q dx → a,

where a is a nonnegative constant.
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We claim that a = 0. If a 
= 0, by the definition of S1, we have

∫

RN
|∇vn|2 dx ≥ S1

[∫

RN

(
Iα ∗ |vn|q

)|vn|q dx
]1/q

.

It follows that a ≥ S1(q · a)1/q, which yields

a ≥ q
1

q–1 S
N+α
2+α

1 . (28)

Similarly to the discussion of (25), we have

�(un) =
1
2

∫

RN

[|∇un|2 + u2
n
]

dx –
1
2

∫

RN

(
Iα ∗ F(un)

)
F(un) dx

= �(u) +
1
2

∫

RN
|∇vn|2 dx –

1
2q2

∫

RN

(
Iα ∗ |vn|q

)|vn|q dx + o(1).

It follows from �(u) ≥ 0 and (28) that

c = lim
n→∞�(un)

≥ lim
n→∞

[
1
2

∫

RN
|∇vn|2 dx –

1
2q2

∫

RN

(
Iα ∗ |vn|q

)|vn|q dx
]

=
1
2

(
1 –

1
q

)
q

1
q–1 S

N+α
2+α

1 ,

which contradicts (22). Hence a = 0. This gives vn → 0 in H1
r (Rn).

Case (ii): p = N+α
N , N > 4 + α, and q ∈ ( N+α

N , N+α
N–2 ) or N < 4 + α and q ∈ ( N+α

N , N+α+4
N ).

From Lemma 2.1, Propositions 2.4 and 2.5 in [14], we see that

∫

RN

(
Iα ∗ |un|p

)|un|p dx =
∫

RN

(
Iα ∗ |vn|p

)|vn|p dx +
∫

RN

(
Iα ∗ |u|p)|u|p dx + o(1),

∫

RN

(
Iα ∗ |un|q

)|un|q dx =
∫

RN

(
Iα ∗ |u|q)|u|q dx + o(1),

and
∫

RN

(
Iα ∗ |un|p

)|un|q dx =
∫

RN

(
Iα ∗ |u|p)|u|q dx + o(1).

Then we have

〈
�′(un), un

〉
=

∫

RN

[|∇un|2 + u2
n
]

dx –
∫

RN

(
Iα ∗ F(un)

)
f (uu) dx

=
〈
�′(v), v

〉
+

∫

RN

[|∇vn|2 + v2
n
]

dx –
1
p

∫

RN

(
Iα ∗ |vn|p

)|vn|p dx + o(1).
(29)

From 〈�′(v), v〉 = 0 and 〈�′(un), un〉 → 0,

∫

RN

[|∇vn|2 + v2
n
]

dx =
1
p

∫

RN

(
Iα ∗ |vn|p

)|vn|p dx + o(1). (30)
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We also have

P(un) =
N – 2

2

∫

RN
|∇un|2 dx +

N
2

∫

RN
u2

n dx –
N + α

2

∫

RN

(
Iα ∗ F(un)

)
F(un) dx

= P(u) +
N – 2

2

∫

RN
|∇vn|2 dx +

N
2

∫

RN
v2

n dx

–
N – 2

2p

∫

RN

(
Iα ∗ |vn|p

)|vn|p dx + o(1).

Thus

N – 2
2

∫

RN
|∇vn|2 dx +

N
2

∫

RN
v2

n dx =
N
2p

∫

RN

(
Iα ∗ |vn|p

)|vn|p dx + o(1). (31)

Combining (30) and (31), we deduce that

∫

RN
|∇vn|2 dx = o(1)

and

∫

RN
v2

n dx =
1
p

∫

RN

(
Iα ∗ |vn|p

)|vn|p dx + o(1).

We may assume that

∫

RN
v2

n dx → b,
1
p

∫

RN

(
Iα ∗ |vn|p

)|vn|p dx → b,

where b is a nonnegative constant.
We claim that b = 0. If b 
= 0, by the definition of S2, we have

∫

RN
|vn|2 dx ≥ S2

[∫

RN

(
Iα ∗ |vn|p

)|vn|p dx
]1/p

.

It follows that b ≥ S2(p · b)1/p, which yields

b ≥ p
1

p–1 S
N+α

α
2 . (32)

Similarly to the discussion of (29), we have

�(un) =
1
2

∫

RN

[|∇un|2 + u2
n
]

dx –
1
2

∫

RN

(
Iα ∗ F(un)

)
F(un) dx

= �(u) +
1
2

∫

RN
v2

n dx –
1

2p2

∫

RN

(
Iα ∗ |vn|p

)|vn|p dx + o(1).



Li and Wang Boundary Value Problems        (2021) 2021:102 Page 18 of 20

It follows from �(u) ≥ 0, and (36) or (37) that

c = lim
n→∞�(un)

≥ lim
n→∞

[
1
2

∫

RN
v2

n dx –
1

2p2

∫

RN

(
Iα ∗ |vn|p

)|vn|p dx
]

=
1
2

(
1 –

1
p

)
p

1
p–1 S

N+α
α

2 ,

which contradicts (23). Hence b = 0. This gives vn → 0 in H1
r (Rn).

Case (iii): q = N+α
N–2 , p = N+α

N , and N > 4 + α.
From Lemma 2.1, Propositions 2.4 and 2.5 in [14], we see that

∫

RN

(
Iα ∗ |un|p

)|un|p dx =
∫

RN

(
Iα ∗ |vn|p

)|vn|p dx +
∫

RN

(
Iα ∗ |u|p)|u|p dx + o(1),

∫

RN

(
Iα ∗ |un|q

)|un|q dx =
∫

RN

(
Iα ∗ |vn|q

)|vn|q dx +
∫

RN

(
Iα ∗ |u|q)|u|p dx + o(1),

and

∫

RN

(
Iα ∗ |un|p

)|un|q dx =
∫

RN

(
Iα ∗ |u|p)|u|q dx + o(1).

Then we have

〈
�′(un), un

〉
=

∫

RN

[|∇un|2 + u2
n
]

dx –
∫

RN

(
Iα ∗ F(un)

)
f (uu) dx

=
〈
�′(v), v

〉
+

∫

RN

[|∇vn|2 + v2
n
]

dx –
1
p

∫

RN

(
Iα ∗ |vn|p

)|vn|p dx

–
1
q

∫

RN

(
Iα ∗ |vn|q

)|vn|q dx + o(1).

(33)

From 〈�′(v), v〉 = 0 and 〈�′(un), un〉 → 0,

∫

RN

[|∇vn|2 + v2
n
]

dx

=
1
p

∫

RN

(
Iα ∗ |vn|p

)|vn|p dx +
1
q

∫

RN

(
Iα ∗ |vn|q

)|vn|q dx + o(1).
(34)

We also have

P(un) =
N – 2

2

∫

RN
|∇un|2 dx +

N
2

∫

RN
u2

n dx –
N + α

2

∫

RN

(
Iα ∗ F(un)

)
F(un) dx

= P(u) +
N – 2

2

∫

RN
|∇vn|2 dx +

N
2

∫

RN
v2

n dx

–
N – 2

2p

∫

RN

(
Iα ∗ |vn|p

)|vn|p dx –
N
2q

∫

RN

(
Iα ∗ |vn|q

)|vn|q dx + o(1).
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Thus

N – 2
2

∫

RN
|∇vn|2 dx +

N
2

∫

RN
v2

n dx

=
N
2p

∫

RN

(
Iα ∗ |vn|p

)|vn|p dx +
N – 2

2q

∫

RN

(
Iα ∗ |vn|q

)|vn|q dx + o(1).
(35)

Combining (34) and (35), we deduce that

∫

RN
|∇vn|2 dx =

1
q

∫

RN

(
Iα ∗ |vn|q

)|vn|q dx + o(1),
∫

RN
v2

n dx =
1
p

∫

RN

(
Iα ∗ |vn|p

)|vn|p dx + o(1).

We may assume that

∫

RN
|∇vn|2 dx → a,

1
q

∫

RN

(
Iα ∗ |vn|q

)|vn|q dx → a,
∫

RN
v2

n dx → b,
1
p

∫

RN

(
Iα ∗ |vn|p

)|vn|p dx → b,

where a, b are nonnegative constants.
We claim that a = b = 0. We prove this by taking off any other cases: (1) a 
= 0, b = 0; (2)

a = 0, b 
= 0; (3) a 
= 0, b 
= 0. If a 
= 0, by the definition of S1, we have

∫

RN
|∇vn|2 dx ≥ S1

[∫

RN

(
Iα ∗ |vn|q

)|vn|q dx
]1/q

.

It follows that a ≥ S1(q · a)1/q, which yields

a ≥ q
1

q–1 S
N+α
2+α

1 . (36)

If b 
= 0, by the definition of S2, we have

∫

RN
|vn|2 dx ≥ S2

[∫

RN

(
Iα ∗ |vn|p

)|vn|p dx
]1/p

.

It follows that b ≥ S2(p · b)1/p, which yields

b ≥ p
1

p–1 S
N+α

α
2 . (37)

Similarly to the discussion of (33), we have

�(un) =
1
2

∫

RN

[|∇un|2 + u2
n
]

dx –
1
2

∫

RN

(
Iα ∗ F(un)

)
F(un) dx

= �(u) +
1
2

∫

RN
|∇vn|2 dx +

1
2

∫

RN
v2

n dx

–
1

2p2

∫

RN

(
Iα ∗ |vn|p

)|vn|p dx –
1

2q2

∫

RN

(
Iα ∗ |vn|q

)|vn|q dx + o(1).
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It follows from �(u) ≥ 0, and (36) or (37) that

c = lim
n→∞�(un)

≥ lim
n→∞

[
1
2

∫

RN
|∇vn|2 dx +

1
2

∫

RN
v2

n dx

–
1

2p2

∫

RN

(
Iα ∗ |vn|p

)|vn|p dx –
1

2q2

∫

RN

(
Iα ∗ |vn|q

)|vn|q dx
]

=
1
2

(
1 –

1
q

)
q

1
q–1 S

N+α
2+α

1 or
1
2

(
1 –

1
p

)
p

1
p–1 S

N+α
α

2 ,

which contradicts (24). Hence a = b = 0. This gives vn → 0 in H1
r (Rn).

Combining Cases (i)–(iii), we can assume, going if necessary to a subsequence, un → u in
H1

r (RN ). Clearly, �′(u) = 0 and �(u) = c. Thus problem (P) has a nontrivial critical point u.
Then, by the same approaches which appear in [8, Sect. 4], we obtain Theorem 1.1.
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