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Abstract
The objective of the article is to improve the algorithms for the resolution of the
spectral discretization of the vorticity–velocity–pressure formulation of the
Navier–Stokes problem in two and three domains. Two algorithms are proposed. The
first one is based on the Uzawa method. In the second one we consider a modified
global resolution. The two algorithms are implemented and their results are
compared.
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1 Introduction
The Navier–Stokes system models the flow of a fluid, for example, the movements of air
in the atmosphere, ocean currents, the flow of water in a pipeline and many other fluid-
flow phenomena. The change of one of the parameters associated with the Navier–Stokes
equations (the domain, the boundary conditions, the data, the variational formulation, the
approximation method, . . . ) gives us a new research problem. In the reference article [1],
the authors handle the Navier–Stokes equations with no standard boundary conditions
on the velocity and the pressure in a convex domain.

In this work, � is assumed to be a bounded simply connected domain of Rd (d = 2, 3)
and ∂� is its continuous Lipschitz boundary. We focus on the following Navier–Stokes
system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–ν�ϕ + (ϕ · ∇ϕ) + ∇P = f in �,

divϕ = 0 in �,

ϕ · n = 0 on ∂�,

η(curl ϕ) = 0 on ∂�,

(1)
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where ϕ is the velocity, P the pressure, f is the density of forces, ϕ is the fluid viscosity and
n is an outer unit vector normal to ∂�.

System (1) can be written as (see [2, 3]):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν(curl μ) + (μ × ϕ) + ∇p = f in �,

divϕ = 0 in �,

μ = curl ϕ in �,

ϕ · n = 0 on ∂�,

η(μ) = 0 on ∂�.

(2)

where
• μ = curl ϕ is the vorticity verifying ϕ · ∇ϕ = μ × ϕ + 1

2 grad |ϕ|2,
• p = P + 1

2 |ϕ|2 is the dynamic pressure,
• η is an operator such that η(curl ϕ) is the normal (resp. the tangential) boundary

component of curl ϕ when d = 2 (resp. d = 3).
The above problem has been solved in several previous works using finite-element dis-

cretization, see [2–6], while the extension to the discretization by the spectral method has
been handled in [7, 8] for solving stationary and nonstationary Navier–Stokes equations.
In a previous work [8], we studied (2) using the spectral discretization method. The re-
sulting linear system has been solved using the GMRES iterative method (see [9]) since
the matrix of the resulting linear system is not symmetric.

To improve the resolution of this problem, we propose in this work two new methods in
order to reduce the number of iterations and execution time. The first method consists in
applying the Uzawa algorithm (see [10, 11]) after reducing the unknowns of the system by
eliminating the vorticity. The second method consists of modifying the iterative algorithm
used to linearize the resolution of the Navier–Stokes problem in order to obtain a linear
system with a symmetric positive-definite matrix. Then, the conjugate gradient method is
used.

The paper is organized as follows:
• The continuous and discrete weak formulation are described in Sect. 2.
• Sect. 3 provides the details of the obtained linear system and its implementation using

the two proposed algorithms.
• In Sect. 4, we present and compare the two algorithms for the resolution of the discrete

problem based on some numerical tests.

2 Continuous and the discrete weak formulations
The weak formulation of problem (2) can be written as: find (μ,ϕ, p) ∈ H0(curl,�) ×
H0(div,�) × L2

0(�) solution of

a(μ,ϕ; v) + T(μ,ϕ; v) + b(v, p) = 〈f , v〉, ∀v ∈ H0(div,�),

b(ϕ, q) = 0, ∀q ∈ L2
0(�),

c(μ,ϕ;ψ) = 0, ∀ψ ∈ H0(curl,�),

(3)

where
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• H0(curl,�) = {ϕ ∈ H(curl,�);η(ϕ) = 0 on ∂�}
with H(div,�) = {ϕ ∈ L2(�)d; divϕ ∈ L2(�)},

• H0(curl,�) = {ϕ ∈ H(curl,�);η(ϕ) = 0 on ∂�}
with H(curl,�) = {ϕ ∈ L2(�)

d(d–1)
2 ; curlϕ ∈ L2(�)d},

• L2
0(�) be the space of L2(�) functions with a null integral on �,

• 〈·, ·〉 denotes the duality product between H0(div,�) and its dual space,
• a(·, ·; ·), b(·, ·) and c(·, ·; ·) are bilinear forms defined by

a(μ,ϕ; v) = ν

∫

�

(curlμ)(x) · v(x) dx, b(v, q) = –
∫

�

(divv)(x)q(x) dx

and c(μ,ϕ;ψ) =
∫

�

μ(x) · ψ(x) dx –
∫

�

ϕ(x) · (curlψ)(x) dx,

• T is a trilinear form defined as

T(μ,ϕ; v) =
∫

�

(μ × ϕ)(x) · v(x) dx.

We note that b(., .) verifies the inf-sup condition

sup
v∈H0(div,�)

b(v, q)
‖v‖H(div,�)

≥ α‖q‖L2(�), ∀q ∈ L2
0(�), (4)

where α > 0 is a constant that depends on � (see [12] or ([10] Chap. I, Cor. 2.4)). We can
easily show that problem (3) is well posed (see [13]).

Hereinafter, we suppose that the domain � is a square in dimension two and a cube in
dimension three. Using the Nédélec’s finite-element spaces on cubic three-dimensional
meshes (see [14, Sect. 2]), we construct our discrete spectral spaces as follows.

Let an integer N ≥ 2; we consider XN the discrete space of the velocity

XN = H0(div,�) ∩
⎧
⎨

⎩

PN ,N–1(�) × PN–1,N (�) if d = 2,

PN ,N–1,N–1(�) × PN–1,N ,N–1(�) × PN–1,N–1,N (�) if d = 3,

YN the discrete space of the vorticity

YN =

⎧
⎨

⎩

H1
0 (�) ∩ PN (�) if d = 2,

H0(curl,�) ∩ (PN–1,N ,N (�) × PN ,N–1,N (�) × PN ,N ,N–1(�)) if d = 3

and MN the discrete space of the pressure

MN = L2
0(�) ∩ PN–1(�).

In the following, we use the Gauss–Lobatto quadrature formula to construct the discrete
problem

∫ 1

–1
ϕ(x) dx =

N∑

j=0

ϕ(ξj)ρj, ∀ϕ ∈ P2N–1(–1, 1), (5)
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where ξj, 0 ≤ j ≤ N , are the roots of the polynomial (1 – x2)χ ′
N , χN is the Legendre polyno-

mial of degree N defined on [–1, 1], and ρj, 0 ≤ j ≤ N , is the associated set of the positive
weights.

The following inequality

‖ϕN‖2
L2(–1,1) ≤

N∑

j=0

ϕ2
N (ξj)ρj ≤ 3‖ϕN‖2

L2(–1,1), ∀ϕN ∈ PN (–1, 1)

enables us to show that the continuous and discrete norms are equivalent (see [15]).
The discrete scalar product is defined such that for the continuous functions ϕ and ψ

on �̄, we have:

(ϕ,ψ)N =

⎧
⎨

⎩

∑N
i=0

∑N
l=0 ϕ(ξi, ξl)ψ(ξi, ξl)ρiρl if d = 2,

∑N
i=0

∑N
l=0

∑N
r=0 ϕ(ξi, ξl, ξr)ψ(ξi, ξl, ξr)ρiρlρr if d = 3.

Then, using the Galerkin method and the numerical integration based on the Gauss–
Lobatto quadrature formula (5), we deduce for a continuous data f on � the following
discrete variational formulation:

Find (μN ,ϕN , pN ) in YN ×XN ×MN such that

aN (μN ,ϕN ; vN ) + TN (μN ,ϕN ; vN ) + bN (vN , pN ) = (f , vN )N , ∀vN ∈XN ,

bN (ϕN , qN ) = 0, ∀qN ∈MN ,

cN (μN ,ϕN ;ψN ) = 0 ∀ψN ∈ YN .

(6)

The bilinear forms aN (·, ·; ·), bN (·, ·), and cN (·, ·; ·) are continuous and are formulated as
follows:

aN (μN ,ϕN ; vN ) = ν(curlμN , vN )N , bN (ϕN , qN ) = –(divϕN , qN )N ,

cN (μN ,ϕN ;ψN ) = (μN ,ψN )N – (ϕN , curlψN )N .

However, the discrete trilinear form TN (·, ·; ·) is defined as:

TN (μN ,ϕN ; vN ) = (μN × ϕN , vN )N .

Using Brouwer’s fixed-point theorem ([10], Chap. IV, Cor. 1.1), problem (6) has a unique
solution, since the discrete bilinear form bN (·, ·) coincides with the continuous one on
XN ×MN due to the exactness of the quadrature formula and verifies the inf-sup condition
(see [8], Lem. 3.9)

sup
vN ∈XN

bN (vN , pN )
‖vN‖H(div,�)

≥ α‖pN‖L2(�), ∀pN ∈MN . (7)

In the case of d = 2 the error estimate between the continuous and discrete problems is
given by (see [7] for the proof )

‖μ – μN‖H(curl,�) + ‖ϕ – ϕN‖H(div,�) +
∣
∣Log(N)

∣
∣– 1

2 ‖p – pN‖L2(�)

≤ c
(
N–s(‖μ‖Hs+1(�) + ‖ϕ‖Hs(�)2 + ‖p‖Hs(�)

)
+ N–τ‖f‖Hτ (�)2

)
. (8)
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where c is a positive constant independent of N , (μN ,ϕN , pN ) in YN × XN × MN and
(μ,ϕ, p) ∈ Hs+1(�) × Hs(�)2 × Hs(�), s > 1.

In the case d = 3, the error estimate is difficult to prove and remains an open problem.

3 Numerical algorithms
We present in this section two numerical algorithms to improve the numerical resolution
of discrete problem (6). In the following we consider � =] – 1, 1[2.

3.1 The iterative algorithm
To linearize the Navier–Stokes problem, we consider the following iterative algorithm.

• Step 1: Solve the following linear Stokes problem:
Find (μ0

N ,ϕ0
N ; p0

N ) in YN ×XN ×MN such that,

∀vN ∈XN , aN
(
μ0

N ,ϕ0
N ; vN

)
+ bN

(
vN , p0

N
)

= (f , vN )N ,

∀qN ∈MN , bN
(
ϕ0

N , qN
)

= 0,

∀ψN ∈YN , cN
(
μ0

N ,ϕ0
N ;ψN

)
= 0.

(9)

• Step 2: Solve the following problem, by assuming that the i – 1 iterative solution
(μi–1

N ,ϕi–1
N ; pi–1

N ) is known.
Find (μi

N ,ϕi
N ; pi

N ) in YN ×XN ×MN such that,

aN
(
μi

N ,ϕi
N ; wN

)
+ TN

(
μi–1

N ,ϕi
N ; wN

)
+ TN

(
μi–1

N ,ϕi
N ; wN

)

+ bN
(
wN , pi

N
)

= (fN , wN )N + TN
(
μi–1

N ,ϕi–1
N ; wN

)
, ∀wN ∈ XN ,

bN
(
ϕi

N , qN
)

= 0, ∀qN ∈MN ,

cN
(
μi

N ,ϕi
N ;ϑN

)
= 0 ∀ϑN ∈YN .

(10)

We stop the iterations when the following inequality is satisfied

(∥
∥μi

N – μi–1
N

∥
∥2

H(curl,�) +
∥
∥ϕi

N – ϕi–1
N

∥
∥2

H(div,�)

) 1
2 ≤ ε,

where ε a positive small real number.

3.2 The linear matrix system
Consider the Lagrange polynomials of degree ≤ 1, κj ∈ PN ([–1, 1]), such that for, 0 ≤ j, k ≤
N , κj(ξk) = δjk (the Kronecker symbol).

Since the discrete velocity function does not have the same degree in the different direc-
tions, we consider j� ∈ 0, . . . , N the fixed integer and we define the following polynomial
of degree N – 1

κ
�
j (x) = κj(x)

ξj – ξj�

x – ξj�
, j ∈ J�,
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where J� is the set {0, . . . , N} \ {j�}. Then, we write the unknowns (μi
N ,ϕi

N ; pi
N ) in two di-

mensions as:

μi
N (x, y) =

N–1∑

j=1

N–1∑

k=1

μi
jkκj(x)κk(y),

ϕi
Nx(x, y) =

N–1∑

j=1

∑

k∈I�
ϕix

jkκj(x)κ�

k (y), ϕi
Ny(x, y) =

∑

j∈J�

N–1∑

k=1

ϕ
iy
jkκ

�
j (x)κk(y),

p̌i
N (x, y) =

∑

j∈J� ,k∈J� ,(j,k) �=(0,0)

pi
jkκ

�
j (x)κ�

k (y).

We consider the real pressure

pi
N (x, y) = p̌i

N (x, y) –
1
4
(
p̌i

N , 1
)

N ,

since the pseudopressure p̌ is not in L2
0(�).

We denote by (μi
N ,ϕi

N ; pi
N ) the components of the solution (W , U , P) on grid (ξj, ξk) 0 ≤

j, k ≤ N . Problem (10) can be written as the following linear system:

⎧
⎪⎪⎨

⎪⎪⎩

MW – AT U = 0,

AW + (DU + DU) – BT P = F + N ,

BU = 0,

(11)

where
• AT and BT are, respectively, the transposed matrix of A and B.
• The matrix A is defined as:

A = ν

(
A1 0
0 A2

)

.

Since curl(μi
N ) = (∂yμ

i
N , –∂xμ

i
N ), the coefficient of the matrices A1 and A2 correspond,

respectively, to the terms (∂yμ
i
N ,ϕi

Nx)N and (∂xμ
i
N ,ϕi

Ny)N . In two dimensions, the
matrices A1 and A2 are square, their dimension is (N – 1)2.

• The matrix B = [B1, B2] where B1 and B2 are two matrices, the coefficients of which
are deduced, respectively, from the terms (∂xϕ

i
Nx, pN )N and (∂yϕ

i
Ny, pN )N . We note that

the matrices B1 and B2 are not square, their dimension is N2 – 1 lines and 2N(N – 1)
columns.

• M is a diagonal matrix, the coefficients of which are found from the values of
(μi

N ,μi
N )N . Its dimension is N(N – 1)2.

• The matrices D and N are, respectively, written as D = (D1, D2) and N1 = (N1, N2) and
are, respectively, calculated from the terms TN (μi–1

N ,ϕi
N ; vN ) and TN (μi–1

N ,ϕi–1
N ; vN ).

3.3 Algorithm 1
To solve the linear system (11), we propose to remove the vorticity from the first equation
and replace it in the second one.
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This modification permits us to use the Uzawa algorithm (see [10, 11]) with only the
velocity and the pressure as unknowns.

⎧
⎪⎪⎨

⎪⎪⎩

W = (M–1AT )U ,

(AM–1AT + 2D)U – BT P = F + N ,

BU = 0.

(12)

Let Ã = AM–1AT + 2D. The second and third equations of (12) can be decoupled as

U = Ã–1((F + N) – BT P
)
, (13)

and

(
BÃ–1BT)

P = Ã–1(F + N). (14)

Since BÃ–1 BT is symmetric and positive defined, we use the conjugate gradient method
to solve system (14) at each iteration. Then, we deduce the velocity U and vorticity W ,
respectively, from (13) and the first equation of (12).

The Uzawa algorithm used is written as:
Uzawa algorithm
• Let P0 = 0.
• Initialization step:

U0 = Ã–1((F + N) – BT P0
)

W0 =
(
M–1AT)

U0.

• Iterations: n ≥ 0
From Un and Pn:

Gn = –BUn,

Vn = Ã–1BT Gn,

ρn =
‖Gn‖2

(BT Gn, Vn)
,

Pn+1 = Pn – ρnGn,

Un+1 = Un + ρnVn,

Wn+1 = M–1AT Un+1.

3.4 Algorithm 2
We propose a second algorithm to solve problem (11). We begin first by inverting the
matrix G given by

G =

⎛

⎜
⎝

M –AT 0
–A 2D BT

0 B 0

⎞

⎟
⎠ .
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and then find U , W and P.
Since G is symmetric and positive defined, we use the preconditioned gradient conjugate

method.

4 Numerical results
4.1 Comparision of two algorithms
We consider the Bercovier–Engelman continuous solution of problem (2) (see [16]) given
by

μ(x, y) = 6
((

1 – x2)(1 – 4x2)(1 – y2)3 +
(
1 – y2)(1 – 4y2)(1 – x2)3),

ϕx(x, y) = –6
(
1 – y2)2y

(
1 – x2)3,

ϕy(x, y) = 6
(
1 – x2)2x

(
1 – y2)3,

p(x, y) = xy.

(15)

The aim of this first numerical test is to study the accuracy of the two methods. We con-
sider the viscosity ν = 5.10–2 and the tolerance ε = 10–10.

In Fig. 1 we present a comparison of the convergence order of the two presented algo-
rithms based on the error curves on the solution (μ,ϕ, p) when N varies between 5 and
20. Figure 1(a) and (b) correspond, respectively, to the resolution using Algorithms 1 and
2. This shows clearly that the obtained error is better when using Algorithm 2.

κ(Ã) and κ(G) are, respectively, the condition number of the matrix Ã and that of the
matrix G.

Tables 1 and 2 show the number of convergence iterations and the corresponding av-
erage error for the unknowns (vorticity, velocity and pressure). While comparing the two
results, it is clear once again that the second method has a better accuracy and converges
within a few iterations.

Figure 1 Convergence for the solution defined in (15)

Table 1 Iterations and errors for Algorithm 1

N 5 7 15 20

Iterations 45 192 345 677
Error 2.0012 0.5672 0.0032 10–3
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Table 2 Iterations and errors for Algorithm 2

N 5 7 15 20

Iterations 7 15 21 28
Error 3.1411 0.0012 10–15 10–25

Table 3 The condition number for the matrices of the two algorithms

N 5 7 12 20

κ (Ã) 50.21 501.36 1.708× 105 5.708× 107

κ (G) 11.12 27.08 67.05 91.38

Figure 2 The discrete solution (μN ,ϕNx ,ϕNy ,pN)

We conclude that:
• Although Algorithm 1 based on the Uzawa method it is easier to implement and

requires much less memory space, it converges after a large number of iterations,
which is due to the fact that the conditioning κ(Ã) of the matrix A is high if we
compare it with the conditioning κ(G) of the matrix G, see Table 3 (hundreds of
iterations for an error of 10–5 order, see Fig. 1 and Table 1).

• The convergence order of Algorithm 2 is much better than the order produced by
Algorithm 1 (22 iterations for a relative error approximatively equal to 10–25, see Fig. 1
and Table 2).

4.2 Solution using Algorithm 2
Consider the numerical resolution of the problem (6) with f = (0, x2y) using Algorithm 2.

Figure 2 shows, from top to bottom and left to right, the obtained values of the vorticity
μN , the two components of the velocity (ϕNx,ϕNy) and the pressure pN , for N = 30.
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Figure 3 The vector field of the velocity for f = (0, 0) and g defined in (16)

In Fig. 3 we present the vector field of the velocity corresponding to the data f = (0, 0),
and a boundary condition g given by (see [8]),

g(–1, y) = –
(
1 – y2), g(1, y) =

(
1 – y2), g(x,±1) = 0, (16)

where N = 40. We note that the vorticity μN and pressure pN are null, since we handle a
Poiseuille linear flow.

5 Conclusion and future work
In this work, we show the efficiency of the global resolution compared to the Uzawa algo-
rithm adapted to the resolution of the discrete problem issued from the spectral discretiza-
tion of the vorticity, velocity and pressure formulation of the Navier–Stokes problem. We
achieved a good convergence with the global resolution through the transformation of the
matrix to a symmetric and positive defined one. As future work, we are looking at apply-
ing the global method to the discretization by the spectral element methods for handling
more complex domains.
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