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Abstract
The conformable fractional eigenvalue problem

–Dα
x D

α
x y + q(x)y = λρ(x)y

is considered. We employ an easy and efficient method to derive its eigenvalue
asymptotic expansion. On the basis of this result, we also investigate Ambarzumyan
problems related to this eigenvalue problem as an application.
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1 Introduction
Fractional calculus is a generalization of integer differential calculus, allowing to define
integrals and derivatives of real or complex order. Various types of fractional derivatives,
such as Riemann–Liouville, Caputo, Grunwald–Letnikov, Riesz and Weyl, have been in-
troduced. All of them are defined via fractional integrals, thus they inherit nonlocal prop-
erties from integral. This leads to failure to satisfy some of the basic properties owned by
usual derivatives, e.g., the product rule, chain rule, Rolle’s theorem, mean value theorem,
and composition rule. These inconsistencies come with difficulties and inconvenience in
mathematical analysis. For this reason, some scholars introduced the concept of local frac-
tional derivatives [5, 9, 12, 14, 20]. In 2014, Khalil et al. introduced a new local fractional
derivative, called the conformable fractional derivative (CFD) [13]. Now this subject is un-
der strong development, see [2, 7, 10, 11] and the references therein. Later, Al-Refai and
Abdeljawad [6] investigated the conformable fractional Sturm–Liouville problem (CFSLP)
and showed that the eigenvalues are real and simple and the eigenfunctions corresponding
to distinct eigenvalues are orthogonal. Also, they established a fractional Rayleigh quotient
result that can be used to estimate the first eigenvalue.

However, some authors have argued that conformable fractional derivative is not a truly
fractional operator [1, 16–19]. And the physical interpretation and some potential ap-
plications of this derivative seem not solid. In [8], the authors pointed out that the con-
formable derivative really results from the ordinary derivative with the change of x → xα

α
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when applied to differential functions. They also tried to contribute to the physical in-
terpretation when these derivatives are applied to physics and engineering. In another
recent paper [21], the authors provided a good account of heredity/nonheredity and lo-
cality/nonlocality. They introduced a general conformable fractional derivative (GCFD)
and gave the physical and geometrical interpretations of GCFD. The above is done by a
new framework named extended Gâteaux derivative and linear extended Gâteaux deriva-
tive which are natural extensions of Gâteaux derivative. So, in our opinion, the exploration
of the conformable derivative and its generalizations can still be interesting and valuable.

In this note we consider the CFSLP

–Dα
x Dα

x y + q(x)y = λρ(x)y, on (0, 1), (1)

y(0) = y(1) = 0, (2)

where λ is the spectral parameter and Dα
x is the conformable fractional derivative of order

α. In 2020, Mortazaasl and Akbarfam [15] developed some spectral theories for the CF-
SLP with ρ ≡ 1 and deduced the asymptotic behavior of eigenvalues and eigenfunctions
by analyzing the conformable fractional Volterra integral equations. They also showed
that the eigenvalues of the CFSLP with separated boundary conditions are all real and
simple, and the nth eigenfunction has precisely n – 1 nodes in the interval (0, 1) for suf-
ficiently large n. Also in [4], uniqueness theorems for the solutions of inverse problems
according to the Weyl function, two given spectra, classical spectral data, and mixed data
are studied. Ambarzumyan-type problems are investigated for the conformable fractional
Sturm–Liouville operator in [3]. Motivated by the idea in [3, 4, 6, 15], we intend to give
an alternative proof (an easy method) for eigenvalue asymptotic estimates and acquire
an application of Ambarzumyan problems as a consequence. For q ≡ 0 and ρ ≡ 1, it is
known that the eigenfunctions of (1) are sin(nπxα) and the corresponding eigenvalues are
(αnπ )2 via a direct calculation. Note that, for q ≡ 0 and α = 1, (1) is a string equation and
ρ is called a density function. For general q and ρ , we plan to apply an easy and efficient
method, the Prüfer angle approach, to achieve our goal. Throughout this note we assume
that the following conditions hold:

(C1) α ∈ ( 1
2 , 1], q ∈ C[0, 1];

(C2) ρ > 0 with ρ ∈ C2(0, 1).
The following is the first result.

Theorem 1.1 (Eigenvalue asymptotics)
(i) For the potential type of (1)–(2), ρ ≡ 1, the Dirichlet eigenvalue λn satisfies

√
λn = αnπ +

1
2nπ

∫ 1

0
xα–1q(x) dx + o

(
1
n

)
(3)

for sufficiently large n.
(ii) For the density type of (1)–(2), q ≡ 0, the eigenvalue λn satisfies

√
λn

∫ 1

0
xα–1ρ1/2(x) dx = nπ + O

(
1
n

)
(4)

for sufficiently large n.
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In virtue of Theorem 1.1 and the fractional Rayleigh quotient result [6], we turn to study
the Ambarzumyan problems related to (1). The following is the second result.

Theorem 1.2 (Ambarzumyan problems) Consider the potential type of (1), ρ ≡ 1.
(i) If the eigenvalues of (1)–(2) are λn = (αnπ )2, n ∈N, and the function q satisfies

∫ 1

0
xα–1q(x) cos

(
2πxα

)
dx = 0, (5)

then q ≡ 0 on (0, 1).
(ii) If the Neumann eigenvalues of (1) coupled with Dα

x y(0) = Dα
x y(1) = 0 are

μn = [α(n – 1)π ]2, then q ≡ 0 on (0, 1).

2 Some preliminaries and proofs of the main results
In this section, we first recall the elementary definitions and properties of conformable
fractional calculus for the reader’s convenience.

Definition 2.1 (cf. [2, 13]) Let 0 < α ≤ 1 and f : [0,∞) →R.
(i) The conformable fractional derivative of f of order α at x > 0 is defined by

Dα
x f (x) = lim

ε→0

f (x + εx1–α) – f (x)
ε

,

and the conformable fractional derivative at 0 is defined as Dα
x f (0) = limx→0+ Dα

x f (x).
Note that if f is differentiable, then

Dα
x f (x) = x1–αf ′(x), (6)

where ′ = d
dx is the ordinary derivative with respect to x. If Dα

x f (x0) exists, one can
say that f is α-differentiable at x0.

(ii) The conformable fractional integral of f of order α is defined by

Iαf (x) =
∫ x

0
tα–1f (t) dt for x > 0.

Proposition 2.2 (cf. [2, 13, 15])
(i) Let f : [0,∞) →R be any continuous function. Then, for all x > 0, we have

Dα
x Iαf (x) = f (x). (7)

(ii) Let f : (0, b) →R be differentiable. Then, for x > 0, we have

IαDα
x f (x) = f (x) – f (0). (8)

(iii) For all p ∈R, Dα
x (xp) = pxp–α .

(iv) Let f , g : (0,∞) →R be α-differentiable. Then

Dα
x (fg) =

(
Dα

x f
)
g + f

(
Dα

x g
)

(9)
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and

Dα
x

(
f
g

)
=

(Dα
x f )g – f (Dα

x g)
g2 with g �= 0. (10)

(v) (α-chain rule) Let f , g : (0,∞) →R be α-differentiable and h(x) = f (g(x)). Then h(x)
is α-differentiable, and for all x with x �= 0 and g(x) �= 0, we have

Dα
x h(x) = Dα

x f
(
g(x)

) · Dα
x g(x) · g(x)α–1. (11)

(vi) (α-integration by parts) Let f , g : [a, b] →R be two functions such that fg is
differentiable. Then

∫ b

a
xα–1f (x)Dα

x g(x) dx = f (x)g(x)|ba –
∫ b

a
xα–1g(x)Dα

x f (x) dx. (12)

Proof of Theorem 1.1 (i) For ρ ≡ 1, define

y(x) = r(x) sin
(√

λθ (x)
)

and Dα
x y(x) =

√
λr(x) cos

(√
λθ (x)

)
. (13)

Taking

Dα
x

(
Dα

x y(x)
y(x)

)
= Dα

x

(√
λ cos(

√
λθ (x))

sin(
√

λθ (x))

)

and applying (1), one can obtain the phase equation

θ ′(x) = xα–1
[

1 –
q(x)
λ

sin2(√λθ (x)
)]

. (14)

With each eigenvalue λn of (1), one can associate the Prüfer angle θn(x) ≡ θ (x;λn) via (13)
if one also specifies the initial condition

θn(0) = 0, n = 1, 2, 3, . . . .

In particular, θn(1) = nπ . Integrating (14) over [0, x] with λ = λn, one can obtain

θn(x) =
1
α

xα –
1
λn

∫ x

0
tα–1q(t) sin2(√λnθn(t)

)
dt. (15)

Besides, integrating (14) over [0, 1] with λ = λn, one has

nπ√
λn

=
1
α

–
1
λn

∫ 1

0
xα–1q(x) sin2(√λnθn(x)

)
dx. (16)

That is,

√
λn = αnπ +

α√
λn

∫ 1

0
xα–1q(x) sin2(√λnθn(x)

)
dx
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= αnπ +
α

2
√

λn

∫ 1

0
xα–1q(x) dx –

α

2
√

λn

∫ 1

0
xα–1q(x) cos

(
2
√

λnθn(x)
)

dx (17)

= αnπ + O
(

1
n

)
(18)

for sufficiently large n. Substituting (18) into (15), for sufficiently large n one can obtain

√
λnθn(x) = nπxα + O

(
1
n

)
. (19)

Then the second integral term in (17) becomes

∫ 1

0
xα–1q(x) cos

(
2
√

λnθn(x)
)

dx =
∫ 1

0
xα–1q(x) cos

(
2nπxα

)
dx + o(1)

=
1
α

∫ 1

0
q
(
s1/α)

cos(2nπs) ds + o(1)

= o(1) (20)

for sufficiently large n by the Riemann–Lebesgue lemma. Substituting (18) and (20) into
(17), the Dirichlet eigenvalue asymptotic expansion (3) is valid.

(ii) For q ≡ 0, introduce another Prüfer-type substitution

λ1/2ρ1/2(x)y(x) = R(x) sin
(
φ(x)

)
and Dα

x y(x) = R(x) cos
(
φ(x)

)
. (21)

Taking

Dα
x

(
Dα

x y(x)
λ1/2ρ1/2(x)y(x)

)
= Dα

x

(
cos(φ(x))
sin(φ(x))

)

and applying (1), one can obtain

φ′(x) = λ1/2ρ1/2(x)xα–1 +
1
4

(
ρ ′(x)
ρ(x)

)
sin 2φ(x). (22)

With each eigenvalue λn of (1), one can associate the Prüfer angle φn(x) ≡ φ(x;λn) via (21)
if one also specifies the initial condition

φn(0) = 0, n = 1, 2, 3, . . . .

In particular, φn(1) = nπ . Now integrating both sides of (22) with λ = λn, one can obtain

nπ = λ1/2
n

∫ 1

0
xα–1ρ1/2(x) dx +

1
4

∫ 1

0

(
ρ ′(x)
ρ(x)

)
sin 2φn(x) dx. (23)

Note that if φ′
n(x) = 0 is valid in some subinterval of (0, 1), sin 2φn(x) will be constant in this

subinterval. This implies that the function ρ(x) depends on λn in this subinterval from (22).
This will contradict our original problem. Hence, the points satisfying φ′

n(x) = 0 shall be
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isolated. Let f (x) = ρ–1/2(x), and then –2ρ1/2f ′ = ( ρ′
ρ

). Note that, for sufficiently large n, by
(22), one has

1
4

(
ρ ′

ρ

)
sin 2φn =

1
4
(
–2ρ1/2f ′) sin 2φn

φ′
n

λ1/2
n ρ1/2xα–1 + 1

4 (–2ρ1/2f ′) sin 2φn

= –
(

1
2
λ–1/2

n x1–αf ′ sin 2φn

)
φ′

n

1 – 1
2λ–1/2

n x1–αf ′ sin 2φn

= –
∞∑

k=0

(
1
2
λ–1/2

n x1–αf ′ sin 2φn

)k+1

φ′
n

= –
λ–1/2

n
2

x1–αf ′ sin 2φn · φ′
n + O

(
1

λ1/2
n

)
.

Then, by (23), for sufficiently large n, one gets

nπ = λ1/2
n

∫ 1

0
xα–1ρ1/2(x) dx –

λ–1/2
n
2

∫ 1

0
x1–αf ′(x) sin 2φn · φ′

n dx + O
(

1
λ1/2

n

)

= λ1/2
n

∫ 1

0
xα–1ρ1/2(x) dx –

λ–1/2
n
2

(
f ′(1) –

∫ 1

0

d
dx

[
x1–αf ′(x)

]
cos 2φn dx

)

+ O
(

1
λ1/2

n

)

= λ1/2
n

∫ 1

0
xα–1ρ1/2(x) dx + O

(
1

λ1/2
n

)
. (24)

Therefore, one can obtain the eigenvalue asymptotic

√
λn

∫ 1

0
xα–1ρ1/2(x) dx = nπ + O

(
1
n

)
. (25)

�

Remark 2.3 Assume that ρ ≡ 1. For the same issue for (1) coupling with the Neumann
boundary conditions Dα

x y(0) = Dα
x y(1) = 0, one can derive the similar expansion by the

following arguments. From the phase equation (14), let λ = μn with θn(0) = π
2 and θn(1) =

(n – 1
2 )π . Applying the same calculation, one can obtain

√
μn = α(n – 1)π +

1
2(n – 1)π

∫ 1

0
xα–1q(x) dx + o

(
1
n

)
(26)

for sufficiently large n.

Before proving Theorem 1.2, we have to quote the fractional Rayleigh quotient result
from [6].

Proposition 2.4 ([6, Lemma 12]) For the fractional eigenvalue problem (1) it holds that

λ1 = min
y�=0

∫ 1
0 xα–1(Dα

x y(x))2 dx –
∫ 1

0 xα–1q(x)(y(x))2 dx
∫ 1

0 xα–1(y(x))2 dx
. (27)
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Now it suffices to give the proof of Theorem 1.2.

Proof of Theorem 1.2 (i) By the eigenvalue estimates (3), one has

∫ 1

0
xα–1q(x) dx = 0. (28)

Next, under the assumption, we will show that sin(πxα) is the first eigenfunction and then
apply Proposition 2.4. Now sin(πxα) satisfies (2) and

(απ )2 = λ1 ≤
∫ 1

0 xα–1(Dα
x sin(πxα))2 dx –

∫ 1
0 xα–1q(x) sin2(πxα) dx

∫ 1
0 xα–1 sin2(πxα) dx

, (29)

where
∫ 1

0
xα–1(Dα

x sin
(
πxα

))2 dx =
∫ 1

0
xα–1(απ )2 cos2(πxα

)
dx =

απ2

2
,

∫ 1

0
xα–1q(x) sin2(πxα

)
dx =

1
2

(∫ 1

0
xα–1q(x) dx –

∫ 1

0
xα–1q(x) cos

(
2πxα

)
dx

)
= 0

and
∫ 1

0
xα–1 sin2(πxα

)
dx =

1
2

∫ 1

0
xα–1(1 – cos

(
2πxα

))
dx =

1
2α

by (5) and (28). The above shows that sin(πxα) achieves the minimum value and is thus
the first eigenfunction. Substituting this into (1), we obtain q ≡ 0 on (0, 1).

(ii) By (26),

∫ 1

0
xα–1q(x) dx = 0.

Let y1(x) be the first Neumann eigenfunction with μ1 = 0. One may assume, without loss
of generality, that y1(x) > 0 on [0, 1]. Taking into account the relation

Dα
x

(
Dα

x y1(x)
y1(x)

)
= q(x) –

(
Dα

x y1(x)
y1(x)

)2

,

one can obtain

0 =
∫ 1

0
xα–1q(x) dx =

[
Dα

x y1(x)
y1(x)

]1

0
+

∫ 1

0
xα–1

(
Dα

x y1(x)
y1(x)

)2

dx

=
∫ 1

0
xα–1

(
Dα

x y1(x)
y1(x)

)2

dx.

Then Dα
x y1(x) = 0 on (0, 1), and hence y1(x) is a constant on (0, 1). This implies q ≡ 0 on

(0, 1). �
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