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Abstract
We investigate the free-boundary problem of a steadily advancing meniscus in a
circular capillary tube. The problem is described using the “interface formation
model,” which was originally introduced with the aim of avoiding the singularities
that arise when classical hydrodynamics is applied to problems with a moving
contact line. We prove the existence of an axially symmetric solution in weighted
Hölder spaces for low meniscus speeds.
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1 Introduction
When a liquid moves across a substrate surface, the line along which the free interface in-
tersects with the surface is called the contact line. Free-surface flows with moving contact
lines are commonly encountered in our daily lives. However, mathematical descriptions
of such flows are beyond the capabilities of classical hydrodynamics. More precisely, if the
classical no-slip condition is applied to a moving contact-line problem, a non-integrable
stress singularity arises near the contact line (see, e.g., [5]).

The most common approach for avoiding this situation is to replace the no-slip condi-
tion with conditions that allow for slipping near the contact line (see, e.g., the review of
slip models in Chap. 3 of [25]). This approach removes the above-mentioned stress sin-
gularity, but other issues remain unresolved. One such issue concerns the modeling of
the dynamic contact angle. In slip models, the contact angle has to be prescribed, and in
many cases it is assumed to be a function of the contact-line speed. However, a previous
experimental study [2] suggests that the variation in the contact angle depends not only
on the contact-line speed, but also on the flow field in the vicinity of the contact line. An-
other issue concerns the description of the flow kinematics. The experiments reported in
[5] imply that a rolling motion arises in an actual flow. However, as reported in [24], two
typical slip models (one that prescribes the fluid velocity on a solid surface and another
that adopts the Navier slip condition) fail to reproduce the rolling motion.
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With the aim of overcoming the above-mentioned shortcomings of conventional mod-
els, Shikhmurzaev developed a new “interface formation model” [22]. Physically, the in-
terface is considered to be a thin layer in which the density varies drastically because of
the asymmetric action of intermolecular forces from the different phases. The interface
formation model simulates this layer as a separate phase with zero thickness characterized
by its surface density and surface velocity, where the surface density is related to the sur-
face tension through an equation of state. This treatment of the interface makes it possible
to describe the process of interface formation/disappearance occurring at the contact line
and the variation in surface tension induced by these processes. The equations governing
the relaxation process for the interface are derived by applying irreversible thermodynam-
ics to the surface phase. The resultant equations consist of the balance laws for mass and
momentum in the surface phase, which are coupled with the Navier–Stokes equations in
the bulk phase by constitutive relations of the fluxes between the surface and bulk phases
derived by applying Onsager’s principle.

The main issues of dynamic wetting described above are consistently resolved by the
interface formation model on the basis of the mechanism of interface formation and dis-
appearance. This is the primary advantage of this model. The interface formation model
naturally describes a flux at the contact line (see [22]), which is observed in the actual
rolling motion. This flux is missing in the conventional models. The interface formation
model relates the surface tension to the bulk velocity through boundary conditions. Thus,
the contact angle is the response of the overall velocity field. In addition, the thermody-
namics applied to the liquid–solid interface means that the no-slip condition is replaced
with the generalized Navier slip condition. Thus, the interface formation model eliminates
the non-integrable stress singularity at the contact line as a physical consequence.

As seen in [25], the interface formation model can describe various flows with mov-
ing contact lines, including dynamic wetting, cusp formation, and drop coalescence, in
a unified way. This is another advantage of this model. In addition to Shikhmurzaev’s
studies (see [25] and the references therein), this model has been examined through
applications to various flows using computational and asymptotic methods (see, e.g.,
[1, 3, 4, 7, 8, 16, 17, 26]).

By contrast, we have relatively few mathematically rigorous results for the interface for-
mation model. Mathematical studies on the solvability of free boundary problems for the
Navier–Stokes (or Stokes) equations with moving contact lines have mainly been con-
ducted for models with conventional boundary conditions (see, e.g., [9, 21, 28, 31, 32, 35]).
If we restrict ourselves to the interface formation model, the solvability was studied in
[11, 12]; however, no situations involving contact lines were investigated in these stud-
ies, and to the best of the author’s knowledge, there are no results on the solvability of
Shikhmurzaev’s full model describing flows with moving contact lines.

In this paper, we apply the interface formation model to the steadily advancing meniscus
of an incompressible viscous fluid in a circular capillary tube, and prove that there exists
an axially symmetric solution for low meniscus speeds. As stated in [24] or Sect. 2.5.2 in
[25], for a hydrodynamic model describing the moving contact line to be physically valid,
the solution of the model must remain finite near the contact line. We construct the above
solution in weighted Hölder spaces to clarify the regularity of the solution near the contact
line in the classical sense. As will be described in detail in the next section, we need to add
one more condition on the contact line to ensure that the interface formation model is well
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posed. Following Shikhmurzaev’s treatment in [24], a condition whereby the pressure is
finite at the contact line is added. This treatment enables us to determine the contact angle
as part of the solution without generating any singularity from the motion of the contact
line. However, the case in which the contact angle is π/2 is an exception (see the next
section in this regard). The pressure diverges at the contact line when the contact angle
is in the range (π/2,π ), because the contact line is a ridge of the domain. It is shown that
the singularity arising in this problem is caused only by the presence of the corner of the
domain, and the regularity of the solution near the contact line is determined by the size
of the contact angle.

The remainder of this paper is organized as follows. In Sect. 2, we formulate the prob-
lem. In Sect. 3, we introduce function spaces and state our main result. In Sect. 4, we
give some results for the Stokes equations with the slip boundary condition defined in a
sectorial domain. The regularity of the solution to our problem near the contact line is de-
termined from the distribution of eigenvalues of the operator pencil associated with this
model problem. In Sect. 5, we derive an estimate of the solution to the linearized problem.
The estimate is obtained by combining Schauder’s method with an exponential decay es-
timate for the Dirichlet integral obtained by means of differential inequalities techniques.
In Sect. 6, we solve the nonlinear problem using the contraction mapping principle with
the estimates established for the linearized problem. We construct a solution in a neigh-
borhood of the rest state of the fluid. We assume that the static contact angle differs from
0 and π , and we do not consider the situation where the dynamic contact angle reaches
0 and π . In our problem, the location of the interface is not known a priori; hence, for
technical convenience, we transform the problem onto a prescribed domain with fixed
boundaries. However, as the contact angle is unknown in advance, the regularity of the
solution near the contact line cannot be determined directly from the transformed prob-
lem. The regularity of the solution is determined after the contact angle has been found
by solving the transformed problem. Finally, in Sect. 7, the overall conclusions from this
study and future tasks are described.

2 Formulation of the problem
Consider the situation in which a meniscus is moving at a constant speed W > 0 in an
infinite circular tube � = {|x′| ≡ √

x2
1 + x2

2 < 1}. We assume that the total flux across an
arbitrary cross-section of the part filled with the liquid is prescribed and given by ρ|B|W ,
where ρ is the density of the liquid and |B| is the area of the cross-section. In the formu-
lation below, we assume that the flow is steady in the coordinate system moving with the
meniscus.

First, we establish the governing equations. Let the region �h = {x3 < h(x′), x′ ∈ B} (B :
|x′| < 1) be filled with a liquid and �h = {x3 = h(x′), x′ ∈ B} be the free interface of the liquid.
The interface is assumed to meet the surface ∂� at the contact line M ≡ �̄h ∩ ∂� = {x ∈
∂�|x3 = 0}, and � ≡ {x ∈ ∂�|x3 < 0} is the liquid–solid interface.

We assume that the flow over �h is governed by the steady Navier–Stokes equations

–ν	v + (v · ∇)v + ∇p = 0, ∇ · v = 0, (1)

where v is the velocity, p is the pressure, and ν is the kinematic viscosity.
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For �h, where n is the unit outward normal to �h, we consider the following equations:


T(v, p)n = ∇�σ1, n · T(v, p)n = σ1H , (2)

∇� · ρ1v1 = –
ρ1 – ρ1,e

τ1
, (3)

v · n = –
ρ1 – ρ1,e

ρτ1
, 
(v – v1) = –χ∇�σ1, (4)

σ1 = γ (ρ0 – ρ1), (5)

where v1 and ρ1 are the velocity and surface density of the liquid–gas interface, respec-
tively; T(v, p) = 2νD(v) – pI is the stress tensor, where

D(v) =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)

i,j=1,2,3

is the strain-rate tensor; H is twice the mean curvature of �h, which is assumed to be
negative where �h is convex; 
 is the projection operator onto the tangent plane of �h;
∇� is the gradient operator defined on �h; and ρ1,e, τ1, χ , γ , and ρ0 are positive constants.
In particular, ρ1,e is the equilibrium surface density.

For �, we assume that


T(v, p)n –
1
2
∇�σ2 = –β
(v – W), (6)

∇� · ρ2v2 = –
ρ2 – ρ2,e

τ2
, (7)

v · n = –
ρ2 – ρ2,e

ρτ2
, 
v2 =

1
2

(v + W) + α∇�σ2, (8)

σ2 = γ (ρ0 – ρ2), (9)

where v2 and ρ2 are the velocity and surface density of the liquid–solid interface, respec-
tively; W = (0, 0, –W ); n, 
, and ∇� are defined for � in the same way as for �h; and ρ2,e,
τ2, α, and β are positive constants. In particular, ρ2,e is the equilibrium surface density.

In regard to the interfaces, (2) and (6) represent the momentum balance, (3) and (7) rep-
resent the mass balance, (5) and (9) are equations of state, and (4) and (8) are phenomeno-
logical laws between fluxes and thermodynamic forces arising in the entropy production
rate of the interface (for details of the derivation, see [22, 23, 25]).

Remark 1 In the present paper, we assume that the right-hand sides of (4)1 and (8)1 van-
ish. In the original version of the interface formation model, Shikhmurzaev derived these
conditions by assuming that the effect of mass exchange on the bulk is negligible (see, e.g.,
[23]). However, as revealed in [24], these terms play an essential role in describing the flow
in the immediate vicinity of the contact lines more accurately. We have not yet succeeded
in proving the solvability of the same problem when the right-hand sides of (4)1 and (8)1

do not vanish. The main difficulty lies in the derivation of an inequality corresponding to
(54), which is essential in proving the solvability of the linear problem.
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On M, we assume the conservation of mass, i.e.,

ρ1v1 · e1 + ρ2v2 · e2 = 0, (10)

where e1 and e2 are unit normal vectors to M that are tangential to �h and �, respectively.
We also assume the following force balance:

σ1 cos θd = σsg – σ2, (11)

where θd is the contact angle determined by cos θd = e1 ·e2, and σsg is the solid–gas surface
tension, assumed to be a nonnegative constant.

Now, let us formulate our problem. After eliminating the surface velocity v1 with the aid
of (4)2 and v2 with the aid of (8)2, the above equations can be written as follows:

–ν	v + (v · ∇)v + ∇p = 0, ∇ · v = 0 in �h, (12)
⎧
⎪⎪⎨

⎪⎪⎩


T(v, p)n + γ∇�ρ1 = 0, n · T(v, p)n = σ1H ,

–χγ∇� · ρ1∇�ρ1 + ∇� · ρ1v = – ρ1–ρ1,e
τ1

,

v · n = 0 on �h,

(13)

⎧
⎪⎪⎨

⎪⎪⎩


T(v, p)n + γ

2 ∇�ρ2 = –β(v – W),

–αγ∇� · ρ2∇�ρ2 + 1
2∇� · ρ2(v + W) = – ρ2–ρ2,e

τ2
,

v · n = 0 on �,

(14)

ρ1(v – χγ∇�ρ1) · e1

= –ρ2

{
1
2

(v + W) – αγ∇�ρ2

}
· e2 on M, (15)

(ρ0 – ρ1) cos θd = σ3 – (ρ0 – ρ2)(σ3 = σsg/γ ) on M, (16)

and
∫

B
v3
(
x′, x3

)
dx′ = 0 (x3 ≤ 0). (17)

Further, we assume that the liquid–solid interface reaches its equilibrium state and that
the flow is fully developed in the far field, and we impose the following condition:

(v,ρ2) −→ (V,ρ2,e) (x3 −→ –∞). (18)

Here, V is the Poiseuille flow given by the pair (V, P), where

⎧
⎨

⎩
V = (0, 0, –W – W 2

1+4ν/β (|x′|2 – 1 – 2ν
β

)),

P = –W 8ν
1+4ν/β x3.

(19)

This Poiseuille flow was derived in [34].
As seen in (13)3 and (14)2, the surface densities ρ1 and ρ2 satisfy second-order ellip-

tic partial differential equations. Therefore, from a mathematical point of view, we need



Kusaka Boundary Value Problems          (2022) 2022:1 Page 6 of 33

two boundary conditions on M to determine the surface densities using these equations.
However, between conditions (15) and (16) on M, we can use only (15) for that purpose,
because condition (16) is used to determine the contact angle. To use (16) as a boundary
condition to determine the surface densities, we need to prescribe the contact angle, but
doing so would eliminate the main advantage of this model. This “lack of a condition” was
first pointed out in [1].

When the contact line is moving, the term βW arises in the generalized Navier condi-
tion (6). Shikhmurzaev [24] adds condition (50) (see [24]) to remove a pressure singularity
caused by the above term and constructs an asymptotic solution without a pressure sin-
gularity. We follow the above treatment and assume his condition (50) in the following
equivalent form:

βW · e2 –
γ

2
∇�ρ2 · e2 – γ∇�ρ1 · e1 = 0 on M. (20)

We can also find this condition from the right-hand side of conditions (13)1,4 and (14)1,3 by
setting a1 = γ∇�ρ1 · e1, b1 = –( γ

2 ∇ρ2 + β
(v – W)) · e2, a2 = b2 = 0 and applying condition
(26) to these terms (in this case the problem domain is not a sector, so the term ∂a2

∂τ
is

replaced by ∂a2
∂τ

– v · ∂n
∂τ

).

Remark 2 Another approach for adding a condition at the contact line can be found in
[1], where a boundary condition is added by accounting for the entropy produced at the
contact line. Shikhmurzaev disagrees with this modeling approach from a physical point
of view (see Sect. 4.3.5.3 in [25]).

Condition (20) ensures that the compatibility condition corresponding to (34) is satisfied
for problem (91), which makes it possible to construct a solution without a singularity at
the contact line when θd < π/2. However, when θd > π/2, the pressure becomes singular
because the model problem (23) has singular eigensolutions. When θd = π/2, in addition
to (20), the condition that

βW · e2 –
γ

2
∇�ρ2 · e2 + γ∇�ρ1 · e1 = 0 on M, (21)

which comes from condition (30), has to be imposed for the pressure to be regular at the
contact line. However, if we further assume condition (21), our problem becomes overde-
termined. In addition, it is impossible to impose a condition for a specific contact angle in
advance for a problem where the contact angle is not known. For these reasons, we cannot
construct a regular solution when θd = π/2.

We hereafter denote the problem consisting of equations (12)–(20) for unknown func-
tions (v, p,ρ1,ρ2, h) as problem (P).

3 Main result
To state our main result, we first introduce the function spaces used throughout this paper.
Let D be a domain in R

n, l be a nonnegative integer, and α ∈ (0, 1). We use Cl+α(D) to
denote the space of functions f (x), x ∈ D with the norms

|f |(l+α)
D ≡

∑

|m|≤l

∣∣∂m
x f
∣∣(0)
D + [f ](l+α)

D , |f |(0)
D ≡ sup

x∈D

∣∣f (x)
∣∣,
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[f ](l+α)
D ≡

∑

|m|=l

[
∂m

x f
](α)

D ≡ sup
x,y∈D,

x 
=y

∑

|m|=l

|∂m
x f (x) – ∂m

y f (y)|
|x – y|α ,

where

|m| =
n∑

i=1

mi
(
mi(≥ 0) ∈ Z

)
, ∂m

x =
∂ |m|

∂
m1
x1 · · · ∂mn

xn
.

Below, we introduce weighted Hölder spaces. Let s ∈ R and M ⊂ ∂D be a closed set.
Using

◦
Cl+α

s (D, M), we denote the function space with the norm

〈f 〉(l+α)
s,D,M ≡

∑

0≤|m|≤l

∣∣ρ |m|–s∂m
x f
∣∣(0)
D + [f ](l+α)

s,D,M,

where

[f ](l+α)
s,D,M ≡

∑

|m|=l

sup
x∈D

ρ l+α–s(x) sup
y∈K (x)

|∂m
x f (x) – ∂m

y f (y)|
|x – y|α ,

K(x) = {y ∈ D||y – x| < 1
2ρ(x)}, and ρ(x) = dist(x, M).

Let s( /∈ Z) ∈ (0, l + α]. Let Cl+α
s (D, M) be the function space with the norm

|f |(l+α)
s,D,M ≡ |f |(s)

D +
∑

s<|m|≤l

∣∣ρ |m|–s∂m
x f
∣∣(0)
D + [f ](l+α)

s,D,M.

For s < 0, we assume that Cl+α
s (D, M) =

◦
Cl+α

s (D, M).
Further, we introduce a weighted Hölder space defined on the infinite semi-cylinder �h.

Let μ > 0, �t = {x ∈ �h|x3 < –t}, and �0,t = {x ∈ �h|x3 > –t}, where t > 0. Let Cl+α,μ
s (�h, M)

be the function space with the norm

|f |(l+α,μ)
s,�h ,M ≡ |f |(l+α)

s,�0,2,M + |f |(l+α,μ)
�1

, |f |(l+α,μ)
�1

≡ ∣∣e–μx3 f
∣∣(l+α)
�1

.

We also introduce the space Cl+α,μ
s (�, M) of functions defined on the lateral surface �,

which is defined in the same manner as Cl+α,μ
s (�h, M), except that �h is replaced by �.

Finally, let W l
2(D) be the function space with the norm

‖f ‖(l)
2,D ≡

∑

|m|≤l

∥∥∂m
x f
∥∥

2,D, ‖f ‖2,D ≡
(∫

D

∣∣f (x)
∣∣2 dx

) 1
2

.

The following is our main result.

Theorem 1 Let λ0 > 0 be the smallest noninteger solution of the equation

sin(1 + λ)θd · sin(1 – λ)θd = 0. (22)

When θd = π/2, we assume that λ0 = 1. Let 0 < α < 1 and s satisfy the conditions s /∈ Z,
0 < s ≤ 2 + α, and 0 < s < min(π/θd,λ0). Assume that 2ρ2,eα – ρ1,eχ 
= 0 and |(σsg – σ̄2)/σ̄1| <
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δ0 < 1 for a constant δ0, where σ̄1 = γ (ρ0 –ρ1,e), σ̄2 = γ (ρ0 –ρ2,e). Then, if W > 0 is sufficiently
small, for some constant μ > 0, problem (P) has an axisymmetric solution (v, p,ρ1,ρ2, h)
with the following properties:

• The angular component of v around the x3-axis vanishes;
• θd 
= 0,π ;
• The solution belongs to the following classes:

v – ζV ∈ C2+α,μ
s (�h, M), ∇(p – ζP) ∈ Cα,μ

s–2 (�h, M), p ∈ C1+α
s–1 (�0,1, M),

ρ1 ∈ C3+α
s+1 (�h, M), ρ2 – ρ2,e ∈ C3+α,μ

s+1 (�, M), h ∈ C3+α
s+1 (B, M),

where ζ is the function given in (75).

Remark 3 The condition 2ρ2,eα – ρ1,eχ 
= 0 is required for conditions (15) and (20) to be
written as two independent conditions (91)9,10.

4 Auxiliary problem in a sectorial domain
Assume that 0 < θ < π . Let dθ , γθ , γ0, and M be defined by {x2 > 0, x1 > x2

tan θ
}, {x2 > 0, x2 =

x1 tan θ}, {x1 > 0, x2 = 0}, and γ̄θ ∩ γ̄0, respectively. When θ = π/2, dθ and γθ are replaced
by {x2 > 0, x1 > 0} and {x2 > 0, x1 = 0}, respectively. We consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

–ν	u + ∇q = f , ∇ · u = g in dθ ,

2νD(u)n · τ = a1, u · n = a2 on γ0,

2νD(u)n · τ = b1, u · n = b2 on γθ ,

(23)

where τ = (1, 0) on γ0, (cos θ , sin θ ) on γθ , and n = (–τ2, τ1).
The following lemma for the above problem will be used in the next section. As we can

prove this lemma in a standard manner (see, e.g., [29]), the proof is omitted.

Lemma 1 Let λ0 > 0 be the smallest noninteger solution of the equation

sin(1 + λ)θ · sin(1 – λ)θ = 0. (24)

If θ = π/2, assume that λ0 = 1. Assume that 0 < α < 1, s /∈ Z, 0 < s < λ0, and s ≤ 2 + α.
Further, assume that f ∈ Cα

s–2(dθ , M), g ∈ C1+α
s–1 (dθ , M), a1 ∈ C1+α

s–1 (γ0, M), a2 ∈ C2+α
s (γ0, M),

b1 ∈ C1+α
s–1 (γθ , M), and b2 ∈ C2+α

s (γθ , M), and that their supports are compact. Additionally,
assume that the condition

∫

dθ

g dx = –
∫

γ0

a2 dl +
∫

γθ

b2 dl (25)

is satisfied, and, if λ0 > 1, further assume that the following compatibility condition is sat-
isfied:

a1 – 2ν
∂a2

∂τ

∣∣∣∣
M

= b1 – 2ν
∂b2

∂τ

∣∣∣∣
M

. (26)
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Then (23) has a unique solution (u,∇q) ∈ C2+α
s (dθ , M) × Cα

s–2(dθ , M) that satisfies the
estimate

|u|(2+α)
s,dθ ,M + |∇q|(α)

s–2,dθ ,M ≤ C
(|f|(α)

s–2,dθ ,M + |g|(1+α)
s–1,dθ ,M

+ |a1|(1+α)
s–1,γ0,M + |a2|(2+α)

s,γ0,M + |b1|(1+α)
s–1,γθ ,M + |b2|(2+α)

s,γθ ,M
)

(27)

for a constant C > 0 that is independent of the data.

Rewrite problem (23) with ν = 1 in the polar coordinates (r,φ) defined by x1 =
r cosφ, x2 = r sinφ, then apply the Mellin transform with respect to r:

M[f ](λ) = f̃ (λ) ≡
∫ ∞

0
r–λ–1f (r) dr.

Thus, we have the following system of ordinary differential equations for ur = u1 cosφ +
u2 sinφ, uφ = –u1 sinφ + u2 cosφ:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–ũ′′
r + (1 – λ2)ũr + 2ũ′

φ + (λ – 1)q̃ = f̃1,

–ũ′′
φ + (1 – λ2)ũφ – 2ũ′

r + q̃′ = f̃2,

ũ′
φ + (λ + 1)ũr = g̃,

(λ – 1)ũφ + ũ′
r|φ=0 = ã1, ũφ |φ=0 = ã2,

(λ – 1)ũφ + ũ′
r|φ=θ = b̃1, ũφ |φ=θ = b̃2.

(28)

We denote the operator of this boundary value problem by U (λ). If λ is not a root of (24),
this problem has a unique solution. The roots of (24) are called eigenvalues of problem
(28). A nontrivial solution corresponding to each eigenvalue is called an eigenvector.

The asymptotic formula (29) in the following lemma describes the singularity of solu-
tions to problem (23). (For the derivation, see, e.g., [10, 15].)

Lemma 2 Let
◦
Sα

s ≡ ◦
C2+α

s (dθ ) × ◦
C1+α

s–1 (dθ ) and
◦
Dα

s ≡ ◦
Cα

s–2(dθ ) × ◦
C1+α

s–1 (dθ ) × ◦
C1+α

s–1 (γ0) ×
◦
C2+α

s (γ0) × ◦
C1+α

s–1 (γθ ) × ◦
C2+α

s (γθ ). Assume that s1, s2 (0 < s1 < s2) /∈ Z are not roots of (24).
Let (f , g, a1, a2, b1, b2) ∈ ◦

Dα
s1 ∩ ◦

Dα
s2 , and let λ1, . . . ,λn be the eigenvalues of problem (28) that

exist in the range (s1, s2). Then the solutions (u1, q1) ∈ ◦
Sα

s1 and (u2, q2) ∈ ◦
Sα

s2 of problem (23)
are related by the formula

(u1, q1) =
n∑

j=1

cj
(
rλj u(λj), rλj–1q(λj)

)
+ (u2, q2), (29)

where cj are constants depending on the data, and (u(λj), q(λj)) is the eigenvector of problem
(28) corresponding to eigenvalue λj.

From (29), we can see how q behaves near the corner M. Let λ1 in (29) be the smallest
positive eigenvalue. When 0 < θ < π/2, λ1 is greater than 1, which indicates that q remains
bounded near M. In contrast, when π/2 < θ < π , q diverges at M.

When θ = π/2, all nonnegative eigenvalues are given by λ = 2k + 1 (k = 0, 1, 2, . . .).
These eigenvalues are all double roots, and the corresponding eigenvectors are given
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by (u(λ), q(λ)) = (cos 2(k + 1)φ, – sin 2(k + 1)φ, 0) and (–k cos 2kφ, (k + 1) sin 2kφ, –2(2k +
1) cos 2kφ). If the associated eigenvector (v(λ), p(λ)) defined as a solution of the equation

U (λ)
(
v(λ), p(λ)

)
+ U ′(λ)

(
u(λ), q(λ)

)
= (0, 0)

exists for λj, the term cj(rλj u(λj), rλj–1q(λj)) in (29) is replaced by

cj
{(

rλj v(λj), rλj–1p(λj)
)

+ log r
(
rλj u(λj), rλj–1q(λj)

)}
.

However, elementary calculations show that no associated eigenvectors exist for all the
eigenvalues given above. This implies that the solution to problem (23) is regular near the
corner M. Indeed, we can obtain the following result in a similar manner to Sect. 6 of [20].

Lemma 3 Assume that 0 < α < 1. Assume that f ∈ Cα(dθ ), g ∈ C1+α(dθ ), a1 ∈ C1+α(γ0), a2 ∈
C2+α(γ0), b1 ∈ C1+α(γθ ), and b2 ∈ C2+α(γθ ), and that their supports are compact. Further,
assume that compatibility conditions (25), (26), and

a1|M = –b1|M (30)

hold.
Then (23) has a unique solution (u,∇q) ∈ C2+α(dθ ) × Cα(dθ ) that satisfies the estimate

|u|(2+α)
dθ

+ |∇q|(α)
dθ

≤ C
(|f|(α)

dθ
+ |g|(1+α)

dθ

+ |a1|(1+α)
γ0 + |a2|(2+α)

γ0 + |b1|(1+α)
γθ

+ |b2|(2+α)
γθ

)
(31)

for a constant C > 0 that is independent of the data.

5 Linear problem
In this section, we consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–ν	v + ∇p = f , ∇ · v = g in �,

2ν
D(v)n + γ∇�ρ1 = a, v · n = a3,

–κ1∇2
�ρ1 + χ1ρ1 + ∇� · v = h1 on �,

2ν
D(v)n + β
v + γ

2 ∇�ρ2 = b, v · n = b3,

–κ2∇2
�ρ2 + χ2ρ2 + 1

2∇� · v = h2 on �,

(v – κ1∇�ρ1) · e1 = m1,

( 1
2 v – κ2∇�ρ2) · e2 = m2 on M,

v −→ 0, ρ2 −→ 0 as x3 −→ –∞,

(32)

where ν , γ , κ1, κ2, β , χ1, and χ2 are positive constants, and � is defined for a given function
h ∈ C3+α

s+1 (B) in the same manner as �h was defined in Sect. 2. Similarly, �, �, M, n, e1, e2,
∇� , and ∇� are defined in the same way as in Sect. 2. We assume that the domain � and the
data f , g , a, a3, b, b3, h1, h2, m1, and m2 do not depend on the rotation angle φ around the
x3-axis, and the φ-components of f , a, and b vanish in the cylindrical coordinates (r,φ, z)
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defined by (x1, x2, x3) = (r cosφ, r sinφ, z). We denote the contact angle between � and �

as θ and assume that θ 
= 0,π .
The following is the main result in this section.

Theorem 2 Let 0 < α < 1 and s be a constant satisfying the conditions s ≤ 2 + α, s /∈
Z, and 0 < s < min(λ0,π/θ ), where λ0 is the constant given in Lemma 1. Assume that
f ∈ Cα,μ

s–2 (�, M), g ∈ C1+α,μ
s–1 (�, M), a ∈ C1+α

s–1 (�, M), a3 ∈ C2+α
s (�, M), b ∈ C1+α,μ

s–1 (�, M),
b3 ∈ C2+α,μ

s (�, M), h1 ∈ C1+α
s–1 (�, M), h2 ∈ C1+α,μ

s–1 (�, M), and m1, m2 ∈ Cs(M). In addition,
the following condition holds:

∫

�

g dx =
∫

�

a3 dS +
∫

�

b3 dS. (33)

For the case θ < π
2 , we also assume the compatibility condition at the contact line M:

0 = b · e2 – βv|M · e2 +
γ

2κ2

(
m2 –

1
2

v|M · e2

)
+ a · e1

+
γ

κ1
(m1 – v|M · e1) + 2ν∂zb3 + 2ν

(
∂a3

∂τ
– v|M · ∂n

∂τ

)
(34)

with

v|M = (vr , vφ , vz)|M =
(
b3, vφ , h′(1)b3 +

√
1 + h′(1)2a3

)
,

where τ is given by ( 1√
1+h′(r)2

, 0, h′(r)√
1+h′(r)2

) in the cylindrical coordinates introduced above.

Then there exists a constant μ > 0 such that problem (32) has a unique axisymmetric
solution with the following properties: the φ-component of v vanishes, v ∈ C2+α,μ

s (�, M),
∇p ∈ Cα,μ

s–2 (�, M), ρ1 ∈ C3+α
s+1 (�, M), and ρ2 ∈ C3+α,μ

s+1 (�, M), and these functions satisfy the
estimate

|v|(2+α,μ)
s,�,M + |∇p|(α,μ)

s–2,�,M + |ρ1|(3+α)
s+1,�,M + |ρ2|(3+α,μ)

s+1,�,M

≤ C
(|f|(α,μ)

s–2,�,M + |g|(1+α,μ)
s–1,�,M + |a|(1+α)

s–1,�,M + |a3|(2+α)
s,�,M + |b|(1+α,μ)

s–1,�,M

+ |b3|(2+α,μ)
s,�,M + |h1|(1+α)

s–1,�,M + |h2|(1+α,μ)
s–1,�,M + |m1|(s)

M + |m2|(s)
M
)

(35)

for some constant C > 0 that is independent of the data.

We begin with the following lemma.

Lemma 4 Under the assumption stated in Theorem 2 for g , a3, and b3, there exists a vector
field w ∈ C2+α,μ

s (�, M) satisfying
⎧
⎨

⎩
∇ · w = g in �,

w · n = a3 on �, w · n = b3 on �
(36)

and the estimate

|w|(2+α,μ)
s,�,M ≤ C

(|g|(1+α,μ)
s–1,�,M + |a3|(2+α)

s,�,M + |b3|(2+α,μ)
s,�,M

)
(37)

for a constant C > 0 that is independent of the data.
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Proof We construct the function in the form w = ∇�, where � is a solution of

⎧
⎨

⎩
	� = g in �,
∂�
∂n |� = a3, ∂�

∂n |� = b3.
(38)

We first construct a function �′ satisfying conditions (38)2,3 and the estimate

∣∣�′∣∣(3+α,μ)
s+1,�,M ≤ C

(|a3|(2+α)
s,�,M + |b3|(2+α,μ)

s,�,M
)
.

Then we introduce the new unknown � – �′ to reduce problem (38) to one in which
a3 = b3 = 0. In the following argument, we again denote � – �′ and g – 	�′ by � and g ,
respectively.

Now, let us set

D1
2(�) =

{
u ∈ L2,loc(�)|∂xu ∈ L2(�)

}
.

For u ∈ D1
2(�), we set

[u] =
{

w ∈ D1
2(�)|w = u + c for a constant c

}
,

and let Ḋ1
2(�) be the space of all equivalence classes [u]. As shown in [6], the space Ḋ1

2(�)
is a Hilbert space with the scalar product

(u, v) =
∫

�

∇u · ∇v dx.

We prove the weak solvability of problem (38) with a3 = b3 = 0 in class Ḋ1
2(�) for arbi-

trary g ∈ L2(�). Let ζk (k ∈N) be the cut-off function such that

ζk(x) =

⎧
⎨

⎩
1 (x3 ≥ –k),

0 (x3 ≤ –(k + 1)).

Set gk = ζkg and let �k be the corresponding solution of the problem with g = gk . We
multiply the equation 	�k = gk by φ ∈ Ḋ1

2(�) and integrate both sides to obtain

–
∫

�

∇�k · ∇φ dx =
∫

�

gkφ dx. (39)

The Riesz representation theorem then implies that there exists a unique solution �k ∈
Ḋ1

2(�) of (39), and we obtain the estimate

‖∇�k‖2,� ≤ C‖gk‖2,�.

Thus, by taking the limit k → ∞ in (39), we have a solution � ∈ Ḋ1
2(�) satisfying the

estimate

‖∇�‖2,� ≤ C‖g‖2,�.
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For problem (38) with a3 = b3 = 0, we can obtain a decay estimate that is similar to (56).
Based on this estimate, we can obtain estimate (37) using a method of localization similar
to that used to obtain estimates (71) and (73). Because of the axial symmetry of the data
and the domain, the solution constructed above is axially symmetric. Therefore, we can
perform the above localization procedure for a two-dimensional problem using estimate
(41) given below. In Lemma 5, dθ , γθ , γ0, and M are defined in the manner specified in
Sect. 4. As the result is well known, the proof is omitted.

Lemma 5 Assume that 0 < α < 1, s /∈ Z, 0 < s < π/θ , and s ≤ 2 +α. Further, assume that g ∈
C1+α

s–1 (dθ , M), a3 ∈ C2+α
s (γθ , M), and b3 ∈ C2+α

s (γ0, M), and that their supports are compact.
Additionally, assume that the condition

∫

dθ

g dx =
∫

γθ

a3 dS +
∫

γ0

b3 dS (40)

is satisfied. Then problem (38) with � = dθ , � = γθ , and � = γ0 has a unique solution ∇� ∈
C2+α

s (dθ , M) that satisfies the estimate

|∇�|(2+α)
s,dθ ,M ≤ C

(|g|(1+α)
s–1,γθ ,M + |a3|(2+α)

s,γθ ,M + |b3|(2+α)
s,γ0,M

)
(41)

for a constant C > 0 that is independent of the data.

Thus, we have proved Lemma 4. �

Lemma 6 Under the assumptions stated in Theorem 2 for h1, h2, m1, and m2, there exists
a unique solution (s1, s2) to the problem

⎧
⎪⎪⎨

⎪⎪⎩

–κ1∇2
�s1 + χ1s1 = h1 on �,

–κ2∇2
�s2 + χ2s2 = h2 on �,

–κ1∇�s1 · e1 = m1, –κ2∇�s2 · e2 = m2 on M

(42)

satisfying the estimate

|s1|(3+α)
s+1,�,M + |s2|(3+α,μ)

s+1,�,M

≤ C
(|h1|(1+α)

s–1,�,M + |h2|(1+α,μ)
s–1,�,M + |m1|(s)

M + |m2|(s)
M
)

(43)

for a constant C > 0 that is independent of the data.

Proof The proof is similar to that of Lemma 4. The existence of a weak solution of problem
(42) is easily shown. In addition, for the problem

⎧
⎨

⎩
–	ρ + χρ = h in R

2
+ ≡ {(z1, z2) ∈ R

2|z2 > 0},
∂z2ρ|z2=0 = H , ρ → 0 (z2 → ∞),

where χ ≥ 0 is a constant, we can obtain the following estimate in the same manner as in
the proof of Theorem 7.1 in [30] under the assumption that the supports of the data are
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compact:

|ρ|(3+α)
s+1,R2

+,R ≤ C
(|h|(1+α)

s–1,R2
+,R + |H|(s)

R

)
. (44)

Using this estimate, in addition to a decay estimate for s1, s2 similar to that in (56), we
achieve the desired result in a similar manner to that used to obtain estimates (71) and
(73). �

With the aid of Lemmas 4 and 6, problem (32) reduces to the problem with g = a3 = b3 =
h1 = h2 = m1 = m2 = 0. Therefore, we hereafter consider (32) under this assumption.

Let us prove the weak solvability of the problem. After multiplying (32)1 by v′, (32)5 by
ρ ′

1, and (32)8 by ρ ′
2, we use integration by parts to obtain

2ν

∫

�

D(v) : D
(
v′)dx + β

∫

�

v · v′ dS + κ1γ

∫

�

∇�ρ1 · ∇�ρ ′
1 dS

+ χ1γ

∫

�

ρ1ρ
′
1 dS + κ2γ

∫

�

∇�ρ2 · ∇�ρ ′
2 dS + χ2γ

∫

�

ρ2ρ
′
2 dS

+ γ

∫

�

(∇�ρ1 · v′ – ∇�ρ ′
1 · v

)
dS +

γ

2

∫

�

(∇�ρ2 · v′ – ∇�ρ ′
2 · v

)
dS

=
∫

�

f · v′ dx +
∫

�

a · v′ dS +
∫

�

b · v′ dS. (45)

Let J(�) be the function space defined by

J(�) ≡ {f ∈ W 1
2 (�)|∇ · f = 0, f · n|�∪� = 0

}
.

We now prove the following inequality. The main difficulty is in the estimation of ‖v‖2,�.
A similar inequality in an infinite strip domain is derived in [18]. Because the domain is
three-dimensional in the present case, more complicated arguments are necessary.

Lemma 7 For arbitrary v ∈ J(�), the following inequality holds:

(‖v‖(1)
2,�
)2 ≤ C

∫

�

D(v) : D(v) dx. (46)

Proof For any v ∈ J(�), with the aid of Korn’s inequality, we have

‖∂xv‖2
2,� ≤ C

(∫

�

D(v) : D(v) dx + ‖v‖2
2,�

)
.

As � is compact, using a similar argument as in the proof of Lemma 4 in [33] implies that
there exists a constant C(ε) satisfying the inequality

‖v‖2
2,� ≤ ε‖∂xv‖2

2,� + C(ε)
∫

�

D(v) : D(v) dx

for arbitrary ε > 0. Combining these inequalities, we have

‖∂xv‖2
2,� ≤ C

∫

�

D(v) : D(v) dx. (47)
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Now, from the conditions ∇ · v = 0 and v · n|� = 0,
∫

B v3(x′, x3) dx′ = 0 holds for arbitrary
x3 < 0. From this, we have

∥∥v3(·, x3)
∥∥

2,B ≤ C
∥∥∇x′v3(·, x3)

∥∥
2,B. (48)

By integrating the identity with n = 2,

n∑

i,j=1

{
∂xi (vixjvj) – (∂xi vi)xjvj – vixj(∂xi vj)

}
– |v|2 = 0 (49)

on B under the condition that v · n|∂B = 0, we obtain

∥∥v′(·, x3)
∥∥

2,B ≤ C
∥∥∂x′v′(·, x3)

∥∥
2,B, (50)

where v′ = (v1, v2). We integrate (48) and (50) with respect to x3 to obtain

‖v‖2,�1 ≤ C‖∂xv‖2,�1 . (51)

Next, we integrate (49) with n = 3 in the domain �0,1 and find that

‖v‖2,�0,1 ≤ C
(‖∂xv‖2,�0,1 +

∥∥v(·, –1)
∥∥

2,B

)
, (52)

and we note the estimate

∥∥v(·, –1)
∥∥

2,B ≤ C‖v‖(1)
2,�1

from (51) and (52) to obtain

‖v‖2,� ≤ C‖∂xv‖2,�. (53)

Estimate (46) is obtained by combining inequalities (47) and (53). �

We now introduce the Lax–Milgram theorem.

Theorem 3 (Lax–Milgram [14]) Let H be a real Hilbert space with the norm ‖ · ‖ and
B : H × H →R be a bilinear mapping. If there exist constants α,β > 0 such that

∣∣B[u, v]
∣∣≤ α‖u‖‖v‖ (u, v ∈ H),

β‖u‖2 ≤ B[u, u] (u ∈ H).

Then, for every linear functional f : H → R, there exists a unique element u ∈ H such that
B[u, v] = f (v) for all v ∈ H .

Lemma 7 indicates that the bilinear form defined by the left-hand side of (45), which we
denote as B[(v,ρ1,ρ2), (v′,ρ ′

1,ρ ′
2)], satisfies the condition

B
[
(v,ρ1,ρ2), (v,ρ1,ρ2)

]≥ C
{(‖v‖(1)

2,�
)2 +

(‖ρ1‖(1)
2,�
)2 +

(‖ρ2‖(1)
2,�
)2}. (54)

Thus, from Theorem 3, we have the following.
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Theorem 4 For arbitrary (f , a, b) ∈ L2(�) × L2(�) × L2(�), there exists a unique solution
(v,ρ1,ρ2) ∈ J(�) × W 1

2 (�) × W 1
2 (�) satisfying (45) for all (v′,ρ ′

1,ρ ′
2) ∈ J(�) × W 1

2 (�) ×
W 1

2 (�) and the estimate

‖v‖(1)
2,� + ‖ρ1‖(1)

2,� + ‖ρ2‖(1)
2,� ≤ C

(‖f‖2,� + ‖a‖2,� + ‖b‖2,�
)

(55)

for a constant C > 0 that is independent of the data.

For the solution (v,ρ1,ρ2) obtained above, the pressure p is determined from the follow-
ing equation defined for arbitrary η ∈ H(�) ≡ {f ∈ W 1

2 (�)|f · n|�∪� = 0} with a compact
support:

2ν

∫

�

D(v) : D(η) dx + β

∫

�

v · η dS –
∫

�

p∇ · η dx

=
∫

�

f · η dx +
∫

�

(a – γ∇�ρ1) · η dS +
∫

�

(
b –

γ

2
∇�ρ2

)
· η dS.

If we take the vector η such that

∇ · η = p in �′, η = 0 in �\�′, ‖∂xη‖2,� ≤ C‖p‖2,�′ ,

where �′ ⊂ � is a bounded domain (for the construction of η, see, e.g., [13]), we have the
estimate

‖p‖2,�′ ≤ C
(‖f‖2,� + ‖a‖2,� + ‖b‖2,�

)
.

Here, p is normalized by the condition
∫
�′ p dx = 0.

The axial symmetry of the solution constructed above readily follows from the sym-
metry of the data and the domain. In addition, when fφ = aφ = bφ = 0, if we take vφeφ

(eφ = (–x2/|x′|, x1/|x′|, 0)) as v′ in (45) and take 0 as ρ ′
1 and ρ ′

2, we have the equality

ν

2

∫

�

(
∂vφ

∂z

)2

+
(

∂vφ

∂r
–

vφ

r

)2

r dr dφ dz + β

∫

�

v2
φ dφ dz = 0,

which indicates that vφ = 0.
The following decay estimate is obtained in a similar manner to the proofs of Theo-

rem 5.3 in [27] and Lemma 1 in [19].

Lemma 8 Let �(λ, t) = {x ∈ �|λ– t < x3 < λ+ t} and �(λ, t) = {x ∈ �|λ– t < x3 < λ+ t} (λ <
–4). Assume that f , a, and b possess the same regularity assumed in Theorem 2. Then the
solutions v and ρ2 of (45) satisfy the inequality

‖v‖(1)
2,�(λ,1) + ‖ρ2‖(1)

2,�(λ,1) ≤ Ceμλ
(|f|(α,μ)

s–2,�,M + |a|(1+α)
s–1,�,M + |b|(1+α,μ)

s–1,�,M
)

(56)

for constants μ > 0 and C > 0 that are independent of the data.
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Proof We use integration by parts in the domain �(λ, t) in a manner similar to that for
(45) to obtain

2ν

∫

�(λ,t)
D(v) : D(v) dx + β

∫

�(λ,t)
|v|2 dS

+ γ κ2

∫

�(λ,t)
|∇�ρ2|2 dS + γχ2

∫

�(λ,t)
ρ2

2 dS

+ γ

∫

∂ω(λ+t)
ρ2

(
v
2

– κ2∇�ρ2

)
· e3 dl – γ

∫

∂ω(λ–t)
ρ2

(
v
2

– κ2∇�ρ2

)
· e3 dl

–
∫

ω(λ+t)
T(v, p)e3 · v dx′ +

∫

ω(λ–t)
T(v, p)e3 · v dx′

=
∫

�(λ,t)
f · v dx +

∫

�(λ,t)
b · v dS, (57)

where e3 = (0, 0, 1) and ω(t) = {x3 = t, x′ ∈ B}.
We integrate (57) with respect to t over the interval (η – 1,η)(1 < η) to obtain

Z(λ,η) ≡
∫ η

η–1

(‖v‖(1)
2,�(λ,t)

)2 +
(‖ρ2‖(1)

2,�(λ,t)
)2 dt

≤ C
{∣∣∣∣

∫

D̃(λ,η)
T(v, p)e3 · v dx

∣∣∣∣ +
∣∣∣∣

∫

D(λ,η)
T(v, p)e3 · v dx

∣∣∣∣

+
∣∣∣∣

∫

S̃(λ,η)
ρ2

(
1
2

v – ∇�ρ2

)
· e3 dS

∣∣∣∣ +
∣∣∣∣

∫

S(λ,η)
ρ2

(
1
2

v – ∇�ρ2

)
· e3 dS

∣∣∣∣

+
∣∣∣∣

∫ η

η–1

(∫

�(λ,t)
f · v dx

)
dt
∣∣∣∣ +
∣∣∣∣

∫ η

η–1

(∫

�(λ,t)
b · v dS

)
dt
∣∣∣∣

}
, (58)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D̃(λ,η) = {x ∈ �|λ + η – 1 < x3 < λ + η},
D(λ,η) = {x ∈ �|λ – η < x3 < λ – η + 1},
S̃(λ,η) = {x ∈ �|λ + η – 1 < x3 < λ + η},
S(λ,η) = {x ∈ �|λ – η < x3 < λ – η + 1}.

The terms on the right-hand side are estimated as follows:

∣∣∣∣

∫

D̃(λ,η)
T(v, p)e3 · v dx

∣∣∣∣≤ C
{(‖v‖(1)

2,D̃(λ,η)

)2 + ‖f‖2
2,D̃(λ,η)

}
,

∣∣∣∣

∫

D(λ,η)
T(v, p)e3 · v dx

∣∣∣∣≤ C
{(‖v‖(1)

2,D(λ,η)
)2 + ‖f‖2

2,D(λ,η)
}

,

∣∣∣∣

∫

S̃(λ,η)
ρ2

(
1
2

v – ∇�ρ2

)
· e3 dS

∣∣∣∣≤ C
{(‖v‖(1)

2,D̃(λ,η)

)2 +
(‖ρ2‖(1)

2,S̃(λ,η)

)2},

∣∣∣∣

∫

S(λ,η)
ρ2

(
1
2

v – ∇�ρ2

)
· e3 dS

∣∣∣∣≤ C
{(‖v‖(1)

2,D(λ,η)
)2 +

(‖ρ2‖(1)
2,S(λ,η)

)2},
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and
∣∣∣∣

∫ η

η–1

(∫

�(λ,t)
f · v dx

)
dt
∣∣∣∣ +
∣∣∣∣

∫ η

η–1

(∫

�(λ,t)
b · v dS

)
dt
∣∣∣∣

≤ εZ(λ,η) + C(ε)
(‖f‖2

2,�(λ,η) + ‖b‖2
2,�(λ,η)

)
,

where ε > 0 is an arbitrary constant.
Thus, from (58), we have

Z(λ,η) ≤ C1
{(‖v‖(1)

2,D̃(λ,η)

)2 +
(‖v‖(1)

2,D(λ,η)
)2

+
(‖ρ2‖(1)

2,S̃(λ,η)

)2 +
(‖ρ2‖(1)

2,S(λ,η)
)2} + C2

(‖f‖2
2,�(λ,η) + ‖b‖2

2,�(λ,η)
)

= C1
d

dη
Z(λ,η) + C2

(‖f‖2
2,�(λ,η) + ‖b‖2

2,�(λ,η)
)
.

Multiplying this inequality by e–η/c1 and integrating over the interval (2, –λ/2) with respect
to η gives

Z(λ, 2)

≤ Z
(

λ, –
λ

2

)
e

λ+4
2C1 +

C2

C1

∫ – λ
2

2

(‖f‖2
2,�(λ,η) + ‖b‖2

2,�(λ,η)
)
e– η–2

C1 dη. (59)

Now, we note the following inequalities:

(‖v‖(1)
2,�(λ,1)

)2 +
(‖ρ2‖(1)

2,�(λ,1)
)2 ≤ Z(λ, 2),

Z
(

λ, –
λ

2

)
≤ (‖v‖(1)

2,�
)2 +

(‖ρ2‖(1)
2,�
)2

≤ C
{(|f|(α,μ)

s–2,�,M
)2 +

(|a|(1+α)
s–1,�,M

)2 +
(|b|(1+α,μ)

s–1,�,M
)2},

and

∫ – λ
2

2

(‖f‖2
2,�(λ,η) + ‖b‖2

2,�(λ,η)
)
e– η–2

C1 dη

≤ Ce2μλ
{(|f|(α,μ)

s–2,�,M
)2 +

(|b|(1+α,μ)
s–1,�,M

)2}

to obtain the desired estimate (56) for 0 < μ < 1/2C1. �

Let us proceed to the estimation of the higher-order derivatives of the solution through
Schauder’s method. We introduce a covering {Ui}i∈N of �̄, where {Ui} is a family of balls
with the following properties:

(i) if Ui ∩ M 
= φ, then ξi, the center of Ui, is on M; if Ui ∩ M = φ and Ui ∩ ∂� 
= φ, then
ξi is on � or �;

(ii) the radius of Ui (Ui ∩ ∂� 
= φ) is sufficiently small that Ui divides the surface ∂� into
two connected parts; and
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(iii) there exists an integer N0 such that the intersection of N0 + 1 arbitrary different balls
is empty.

We further introduce a partition of unity {ζi} corresponding to the covering {Ui}.
For Ui with ξi /∈ M, the following estimates are obtained (for the derivation, see [11]):

|v|(2+α)
�′

i
+ |∇p|(α)

�′
i
≤ C

(|f|(α)
�i

+ ‖v‖2,�i

)
(ξi ∈ �), (60)

|v|(2+α)
�′

i
+ |∇p|(α)

�′
i

+ |ρ1|(3+α)
�′

i

≤ C
(|f|(α)

�i
+ |a|(1+α)

�i
+ ‖v‖2,�i + ‖ρ1‖2,�i

)
(ξi ∈ �), (61)

|v|(2+α)
�′

i
+ |∇p|(α)

�′
i

+ |ρ2|(3+α)
�′

i

≤ C
(|f|(α)

�i
+ |b|(1+α)

�i
+ ‖v‖2,�i + ‖ρ2‖2,�i

)
(ξi ∈ �), (62)

where Di and D′
i denote the domains D ∩ Ui and D ∩ U ′

i , respectively, for D = �,�,�, and
U ′

i denotes a subset of Ui on which ζi = 1 holds. To estimate the solution defined on Ui

with ξi ∈ M, we use the axial symmetry of the solution and rewrite problem (32) as the
following two-dimensional problem in cylindrical coordinates:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–ν	v + ∇p = F ,

∂rvr + ∂zvz = – vr
r ≡ G in �,

(2νD(v)n + γ∇�ρ1) · τ = a · τ , v · n = 0

– κ1
r
√

1+(h′)2
d
dr ( r√

1+(h′)2
dρ1
dr )

+ χ1ρ1 + ∇� · v = 0 on �,

(2νD(v)n + βv + γ

2 ∇�ρ2) · τ = b · τ , v · n = 0

–κ2
d2ρ2
dz2 + χ2ρ2 + 1

2∇� · v = 0 on �,
κ1√

1+h′(1)2
dρ1
dr + v · e1 = 0,

κ2
dρ2
dz + 1

2 v · e2 = 0 at M,

(63)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	 = ∂2
r + ∂2

z , ∇ =
(
∂r
∂z

)
, F = (ν( 1

r ∂rvr – vr
r2 ) + fr , ν

r ∂rvz + fz),

D(v) = 1
2

⎛

⎝ 2∂rvr ∂zvr + ∂rvz

∂zvr + ∂rvz 2∂zvz

⎞

⎠ ,

� = {z < h(r), 0 ≤ r < 1}, � = {z = h(r), 0 ≤ r < 1},
� = {r = 1, z < 0}, M = �̄ ∩ �̄ = (1, 0),

n = (nr , nz) =

⎧
⎨

⎩

(– h′√
1+(h′)2

, 1√
1+(h′)2

) on �,

(1, 0) on �,

τ = (τr , τz) = (nz, –nr),

e1 =
(

– 1√
1+h′(1)2

, – h′(1)√
1+h′(1)2

)
, e2 = (0, –1),

(64)

and fr and fz denote the r-component and z-component, respectively, of the term f .
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We rewrite the above problem in the coordinates (y1, y2), which are related to the original
coordinates by

(y1
y2

)
= R

(r–1
z
)
, where R is the matrix of rotation θ – (3/2)π around the

origin. In the coordinates {y}, � is given by the line y2 = y1 tan θ (or y1 = 0 when θ = π/2),
and we represent � as the curve y2 = g(y1).

We now introduce a mapping y = �(η) = (η1,η2) + (�1(η),�2(η)), where �1 and �2 are
constructed to satisfy the following conditions:

(
�1(η),�2(η)

)|γ0 =
(
0, g̃(η1)

)
,

(
�1(η),�2(η)

)|γθ
= (0, 0),

in which g̃ is an extension of g on the half-line R+ in the class C3+α
s+1 (R+, 0).

Then, the functions u = (u1, u2) = ζ̂ v̂ ≡ (ζv) ◦ �, q = ζ̂ p̂ ≡ (ζp) ◦ �, r1 = ζ̂ ρ̂1 ≡ (ζρ1) ◦
�|γ0 , and r2 = ζ̂ ρ̂2 ≡ (ζρ2)◦�|γθ

(here the same symbols v, p, ρ1, and ρ2 are used to denote
the unknowns defined in the coordinates {y}), where

ζ (y) ∈ C∞
0
(
R2), ζ = 1

(
|y| <

δ

2

)
, ζ = 0

(|y| > δ
)

for a constant δ > 0 satisfy the following equations in the sectorial domain dθ :

⎧
⎨

⎩
–ν	u + ∇q = ζ̂ F̂ – ν(∇2 – ∇̂2)u + (∇ – ∇̂)q + F,

∇ · u = ζ̂ Ĝ + (∇ – ∇̂) · u + G in dθ ,
(65)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2νD(u)n · τ = ζ̂ (â – γ ∇̂�ρ̂1) · τ̂
+ 2ν{D(u)n · τ – D̂(u)n̂ · τ̂ } + A,

u · n = u · (n – n̂),

–κ1
d2r1
dη2

1
+ χ1r1 = –ζ̂ ∇̂� · v̂

– κ1(( d
dη1

)2 – ( d̂
dη1

)2)r1 + H1 on γ0,

(66)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2νD(u)n · τ = ζ̂ (b̂ – βv̂ – γ

2 ∇̂�ρ̂2) · τ̂
+ 2ν{D(u)n · τ – D̂(u)n̂ · τ̂ } + B,

u · n = u · (n – n̂),

–κ2 cos2 θ
d2r2
dη2

1
+ χ2r2 = – 1

2 ζ̂ ∇̂� · v̂

– κ2 cos2 θ (( d
dη1

)2 – ( d̂
dη1

)2)r2 + H2 on γθ ,

(67)

⎧
⎪⎪⎨

⎪⎪⎩

–κ1
dr1
dη1

= –ζ̂ v̂ · ê1 – κ1( d
dη1

– d̂
dη1

)r1 – κ1ρ̂1( d̂
dη1

)ζ̂ ,

–κ2 cos θ
dr2
dη1

= – 1
2 ζ̂ v̂ · ê2 – κ2 cos θ ( d

dη1
– d̂

dη1
)r2

–κ2 cos θρ̂2( d̂
dη1

)ζ̂ on M ≡ γ̄0 ∩ γ̄θ ,

(68)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F = –ν{2(∇̂ ζ̂ · ∇̂)v̂ + v̂∇̂2ζ̂ } + (∇̂ ζ̂ )p̂, G = ∇̂ ζ̂ · v̂,

A = B = ν{∇̂ ζ̂ (v̂ · n̂) + v̂(∇̂ ζ̂ · n̂) – 2(v̂ · n̂)(∇̂ ζ̂ · n̂)n̂},
H1 = –κ1{( d̂

dη1
)2r1 – ζ̂G1

d̂
dη1

(G2
d̂

dη1
ρ̂1)},

H2 = –κ2 cos2 θ{( d̂
dη1

)2r2 – ζ̂ ( d̂
dη1

)2ρ̂2}.

(69)
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When θ = π/2, equations (67)3 and (68)2 are replaced by –κ2
d2r2
dη2

2
+ χ2r2 = – 1

2 ζ̂ ∇̂� · v̂ and

–κ2
dr2
dη2

= – 1
2 ζ̂ v̂ · ê2, respectively.

Here, ∇̂ = (tA–1)∇ , where A is the Jacobian matrix of the mapping � and tA de-
notes the transpose of matrix A; D̂(v̂) denotes the tensor with elements 1

2
∑3

k=1(aik∂ηk v̂j +
ajk∂ηk v̂i) (i, j = 1, 2), where aij is the (i, j)th element of tA–1; ∇̂� and ∇̂� are defined

by ∇̂ – (n̂ · ∇̂)n̂; d̂
dη1

= ∂̂η1 + d ˆ̃g
dη1

∂̂η2 (
(∂̂η1
∂̂η2

)
= ∇̂) on γ0; d̂

dη1
= ∂̂η1 + tan θ∂̂η2 on γθ ; G1 =

1
(1–y1 sin θ+y2 cos θ )

√
1+(g̃′)2

◦ �; and G2 = 1–y1 sin θ+y2 cos θ√
1+(g̃′)2

◦ �.

By applying estimate (27) to the system consisting of (65), (66)1,2, and (67)1,2 and applying
estimate (44) to the system consisting of (66)3, (67)3, and (68), we have

|v|(2+α)
s,�′

i ,M
′
i

+ |∇p|(α)
s–2,�′

i ,M
′
i

+ |ρ1|(3+α)
s+1,�′

i ,M
′
i

+ |ρ2|(3+α)
s+1,�′

i ,M′
i

≤ C
(|f|(α)

s–2,�i ,Mi
+ |a|(1+α)

s–1,�i,Mi
+ |b|(1+α)

s–1,�i ,Mi

+ ‖v‖2,�i + ‖ρ1‖2,�i + ‖ρ2‖2,�i

)
. (70)

Let {Ui}i∈I be a finite covering of �̄0,4 which is chosen from the set {Ui}i∈N. If we assume
that each element of {Ui}i∈I1(⊂I) satisfies Ui ∩ M = φ, then the norms | · |(l+α)

s,�i ,M and | · |(l+α)
�i

are equivalent for i ∈ I1, since any point in �i (i ∈ I1) is away from M by a positive distance.
Thus, by summing estimates (60)–(62) and (70) for all i ∈ I and then using (55), we can
obtain the estimate

|v|(2+α)
s,�0,4,M + |∇p|(α)

s–2,�0,4,M + |ρ1|(3+α)
s+1,�,M + |ρ2|(3+α)

s+1,�0,4,M

≤ C
(|f|(α,μ)

s–2,�,M + |a|(1+α)
s–1,�,M + |b|(1+α,μ)

s–1,�,M
)
. (71)

In a similar manner, we take estimates (60) and (62) and use (56) in the domain �(λ, 1–δ)
to obtain the estimate

|v|(2+α)
�(λ,1–δ) + |∇p|(α)

�(λ,1–δ) + |ρ2|(3+α)
�(λ,1–δ)

≤ C
(|f|(α)

�(λ,1) + |b|(1+α)
�(λ,1) + ‖v‖2,�(λ,1) + ‖ρ2‖2,�(λ,1)

)

≤ C
{|f|(α)

�(λ,1) + |b|(1+α)
�(λ,1)

+ eμλ
(|f|(α,μ)

s–2,�,M + |a|(1+α)
s–1,�,M + |b|(1+α,μ)

s–1,�,M
)}

, (72)

where 0 < δ < 1 is a constant. Multiplying both sides of (72) by e–μλ and taking the supre-
mum for λ < –4, and then noting that the norms |e–μx3 v|(2+α)

�3+δ
and supλ<–4 e–μλ|v|(2+α)

�(λ,1–δ) are
equivalent, we have

|v|(2+α,μ)
�3+δ

+ |∇p|(α,μ)
�3+δ

+ |ρ2|(3+α,μ)
�3+δ

≤ C
(|f|(α,μ)

s–2,�,M + |a|(1+α)
s–1,�,M + |b|(1+α,μ)

s–1,�,M
)
. (73)

Thus, from (71) and (73), we reach the desired result.

6 Nonlinear problem
In this section, we prove Theorem 1.



Kusaka Boundary Value Problems          (2022) 2022:1 Page 22 of 33

Assume that W = 0 and v = v1 = v2 = 0. Then, from (1)1, (3), and (7), it follows that
p = p̄ = const., ρ1 = ρ1,e, and ρ2 = ρ2,e.

Thus, the functions

(v, p,ρ1,ρ2, h) = (0, p̄,ρ1,e,ρ2,e, h̄)

describe the rest state of problem (P). Here, h̄ is a solution of the equation

⎧
⎪⎨

⎪⎩

σ̄1∇′ · ∇′h̄√
1+|∇′h̄|2

= –p̄ in B,

∇′h̄√
1+|∇′h̄|2

· ν = σsg –σ̄2
σ̄1

, h̄ = 0 on M,
(74)

where ∇′ = (∂x1 , ∂x2 ) and ν is the unit outward normal to ∂� with the starting point located
on M.

It is easy to see that h̄ is defined uniquely by a part of the sphere

x2
1 + x2

2 + (x3 + tan θ̄ )2 =
(

1
cos θ̄

)2

with cos θ̄ = (σsg – σ̄2)/σ̄1. Note that p̄ is uniquely determined as p̄ = –2(σsg – σ̄2) from the
compatibility condition of problem (74).

We seek a solution of the form

u = v – ζV, q = p – p̄ – ζP, r1 = ρ1 – ρ1,e, r2 = ρ2 – ρ2,e, δh = h – h̄,

where ζ is a smooth cut-off function satisfying

ζ (x) = 1 if x3 ≤ –2, ζ (x) = 0 if x3 ≥ –1. (75)

In terms of the new unknowns in the above formulation, conditions (13)2 and (16) can
be written as

σ̄1∇′ · A
(
x′)∇′δh = γ r1∇′ · ∇′h

√
1 + |∇′h|2 – q + 2νn · D(u)n

– σ̄1
∑

j=1,2

∂xj

[
∇′δh ·

∫ 1

0
(1 – τ )B(j)(∇′h̄ + τ∇′δh

)
dτ∇′δh

]

≡F (u, q, r1, δh) in B (76)

and

A
(
x′)∇′δh · ν|M =

σ3 – ρ0 + ρ2,e

(ρ0 – ρ1,e – r1)(ρ0 – ρ1,e)
r1 +

1
ρ0 – ρ1,e – r1

r2

–
∑

j=1,2

νj∇′δh ·
∫ 1

0
(1 – τ )B(j)(∇′h̄ + τ∇′δh

)
dτ∇′δh

≡ G(r1, r2, δh), (77)
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where A(x′) and B(j)(ξ ′) are matrices whose (k, l)th components are ∂ξl Fk|ξ ′=∇′h̄ and
∂2
ξkξl

Fj(ξ ′), respectively, and Fj(ξ ′) = ξj/
√

1 + |ξ ′|2 (ξ ′ = (ξ1, ξ2)).
We now prove the following theorem, which will be applied to the problem consisting

of (76) and (77).

Theorem 5 Let 0 < α < 1, s /∈ Z, and 0 < s ≤ 3 + α. Assume that h̄ ∈ C3+α(B), f ∈
Cα+1

s–1 (B, M), and g ∈ C(M), and that h̄, f , and g are axially symmetric with respect to the
x3-axis. Further, assume that the compatibility condition

∫

B
f dx′ =

∫

M
g dl (78)

is satisfied. Then the problem

⎧
⎨

⎩
∇′ · A(x′)∇′u = f in B,

A(x′)∇′u · ν = g on M
(79)

has an axisymmetric solution satisfying the estimate

|u|(3+α)
s+1,B,M ≤ C|f |(1+α)

s–1,B,M (80)

for a constant C > 0 that is independent of the data. This solution is uniquely determined
if u(P) = 0 is satisfied for a point P ∈ M.

Proof When s > 1, the above result is readily obtained with the aid of a standard theory of
second-order elliptic partial differential equations. Therefore, we consider only the case
0 < s < 1.

As the higher-order derivatives of the solution are estimated using Schauder’s method,
we derive only the following estimate:

|u|(s+1)
B ≤ C〈f 〉(1+α)

s–1,B,M. (81)

In the polar coordinate system, problem (79) is written as

⎧
⎨

⎩

1
r ( r

H u′)′ = f on I ≡ (0, 1),

u′(1) = H(1)g(1), u(1) = 0,
(82)

where H = {1 + ( ∂h̄
∂r )2}3/2.

The following function u satisfies the above problem:

u(r) =
∫ r

1

H(s)
s

ds
∫ r

0
ξ f (ξ ) dξ +

∫ 1

r

(∫ ξ

1

H(s)
s

ds
)

ξ f (ξ ) dξ . (83)

From this expression, we have the estimate

|u|(0)
I ≤ C〈f 〉(1+α)

s–1,I,1. (84)
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The first term on the right-hand side is estimated as follows:

∣∣∣∣

∫ r

1

H(s)
s

ds
∫ r

0
ξ f (ξ ) dξ

∣∣∣∣

≤ C(– log r)〈f 〉(1+α)
s–1,I,1

∫ r

0
ξ (1 – ξ )s–1 dξ ≤ C〈f 〉(1+α)

s–1,I,1.

The second term is estimated in the same way.
Next, we derive the estimate

∣∣u′′∣∣(0)
I ≤ C(1 – r)s–1〈f 〉(1+α)

s–1,I,1. (85)

The relation u′′(r) = ( H(r)
r )′

∫ r
0 ξ f (ξ ) dξ + H(r)f (r) can be used to obtain

∣∣u′′(r)
∣∣≤ C

(
1
r2

∫ r

0
ξ f (ξ ) dξ + (1 – r)s–1〈f 〉(1+α)

s–1,I,1

)
. (86)

The first term on the right-hand side is estimated as

1
r2

∣∣∣∣

∫ r

0
ξ f (ξ ) dξ

∣∣∣∣

≤ C
r2 (1 – r)s–1〈f 〉(1+α)

s–1,I,1

∫ r

0
ξ dξ ≤ C(1 – r)s–1〈f 〉(1+α)

s–1,I,1. (87)

Now, let us estimate [u′](s)
I . For this purpose, we use the following two relations:

u′(r + τ ) – u′(r)

=
(

H(r + τ )
r + τ

–
H(r)

r

)∫ r+τ

0
ξ f (ξ ) dξ +

H(r)
r

∫ r+τ

r
ξ f (ξ ) dξ (88)

and

u′(r + τ ) – u′(r) = u′′(t)τ for a number t between r and r + τ . (89)

When 0 < r, r + τ ≤ 1
2 , from (85), |u′′(t)| ≤ C〈f 〉(1+α)

s–1,I,1 holds. Therefore, from (89), we have
the estimate

∣∣u′(r + τ ) – u′(r)
∣∣≤ Cτ s〈f 〉(1+α)

s–1,I,1. (90)

When 1
2 ≤ r, r + τ < 1, with the aid of (88), we have (90). Finally, when 0 < r ≤ 1

2 < r + τ < 1,
noting the inequality

∣∣u′(r + τ ) – u′(r)
∣∣≤

∣∣∣∣u
′(r + τ ) – u′

(
1
2

)∣∣∣∣ +
∣∣∣∣u

′
(

1
2

)
– u′(r)

∣∣∣∣,

we have (90).
Thus, we obtain estimate (81). �
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The remaining equations are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–ν	u + ∇q = f(u), ∇ · u = g in �δh,

2ν
D(u)n + γ∇δhr1 = 0, u · n = 0,

–κ1∇2
δhr1 + χ1r1 + ∇δh · u = h1(u, r1) on �δh,

2ν
D(u)n + γ

2 ∇�r2 + β
u = b, u · n = b3,

–κ2∇2
�r2 + χ2r2 + 1

2∇� · u = h2(u, r2) on �,

(u – κ1∇δhr1) · e1 = m1(r1, r2),

( 1
2 u – κ2∇�r2) · e2 = m2(r1, r2) on M,

u −→ 0, r2 −→ 0 (x3 −→ –∞),

(91)

where �δh = �h and �δh = �h (�h and �h are defined in Sect. 2); ∇δh is the gradient oper-
ator on �δh, κ1 = χγ , χ1 = 1/(τ1ρ1,e), χ2 = 1/(τ2ρ2,e), κ2 = αγ , and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(u) = –(u + ζV · ∇)(u + ζV) + ν	(ζV) – ∇(ζP),

g = –∇ · ζV,

b = –2ν
D(ζV)n – β
(ζV – W),

b3 = –ζV · n,

h1(u, r1) = κ1
ρ1,e

∇δh · r1∇δhr1 – 1
ρ1,e

∇δh · r1u,

h2(u, r2) = κ2
ρ2,e

∇� · r2∇�r2

– 1
2ρ2,e

∇� · r2(u + ζV + W) – 1
2∇� · (ζV + W),

m1(r1, r2) = κ1
(2ρ2,eα–ρ1,eχ )γ {( 1

2ρ2,e – 2ρ2,eαβ)W · e2

–κ1r1∇δhr1 · e1 + r2( 1
2 W – κ2∇�r2) · e2},

m2(r1, r2) = – 2κ2
(2ρ2,eα–ρ1,eχ )γ {( 1

2ρ2,e – ρ1,eχβ)W · e2

–κ1r1∇δhr1 · e1 + r2( 1
2 W – κ2∇�r2) · e2}.

(92)

Let Xε and Yε,δh be function spaces defined by

Xε ≡ {δh ∈ C3+α
s+1 (B, M)||δh|(3+α)

s+1,B,M ≤ 2Kε
}

and

Yε,δh ≡

⎧
⎪⎨

⎪⎩

(u,∇q, r1, r2) ∈ C2+α,μ
s (�δh, M) × Cα,μ

s–2 (�δh, M)
×C3+α

s+1 (�δh, M) × C3+α,μ
s+1 (�, M)||u|(2+α,μ)

s,�δh ,M + |∇q|(α,μ)
s–2,�δh ,M

+|r1|(3+α)
s+1,�δh ,M + |r2|(3+α,μ)

s+1,�,M ≤ ε

⎫
⎪⎬

⎪⎭
,

where ε and K are positive constants.
It is easy to show that the following lemmas hold. Note that an additive constant of

q is determined from the compatibility condition of the problem consisting of (76) and
(77). Thus, the following estimate holds for q: |q|(1+α)

s–1,�0,1,M ≤ C(|u|(2+α,μ)
s,�δh ,M + |r1|(3+α)

s+1,�δh,M +
|r2|(3+α,μ)

s+1,�,M + |δh|(3+α)
s+1,B,M(|δh|(3+α)

s+1,B,M + |r1|(3+α)
s+1,�δh,M)).
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Lemma 9 Assume that (u,∇q, r1, r2) ∈ Yε,δh. Then, for δh ∈ Xε , the following inequality
holds:

∣∣F (u, q, r1, δh)
∣∣(1+α)
s–1,B,M ≤ C

(
ε +
(
K + K2)ε2), (93)

where C is a positive constant that is independent of ε and K .

Lemma 10 Assume that 0 < W < 1 and δh ∈ Xε . Then, for (u, r1, r2), (u′, r′
1, r′

2) ∈ Yε,δh, the
following inequalities hold:

∣∣f(u)
∣∣(α,μ)
s–2,�δh ,M,

∣∣h2(u, r2)
∣∣(1+α,μ)
s–1,�,M,

∣∣m1(r1, r2)
∣∣(s)
M ,
∣∣m2(r1, r2)

∣∣(s)
M ≤ C

(
ε2 + W

)
, (94)

|g|(1+α,μ)
s–1,�δh ,M, |b|(1+α,μ)

s–1,�,M, |b3|(2+α,μ)
s,�,M ≤ CW , (95)

∣∣h1(u, r1)
∣∣(1+α)
s–1,�δh ,M ≤ Cε2, (96)

∣∣f(u) – f
(
u′)∣∣(α,μ)

s–2,�δh ,M ≤ C(ε, W )
∣∣u – u′∣∣(1+α,μ)

s–1,�δh ,M, (97)
∣∣h1(u, r1) – h1

(
u′, r′

1
)∣∣(1+α)

s–1,�δh,M

≤ C(ε)
(∣∣u – u′∣∣(2+α,μ)

s,�δh ,M +
∣∣r1 – r′

1
∣∣(3+α)
s+1,�δh,M

)
, (98)

∣∣h2(u, r2) – h2
(
u′, r′

2
)∣∣(1+α,μ)

s–1,�,M

≤ C(ε, W )
(∣∣u – u′∣∣(2+α,μ)

s,�δh ,M +
∣∣r2 – r′

2
∣∣(3+α,μ)
s+1,�,M

)
, (99)

∣∣m1(r1, r2) – m1
(
r′

1, r′
2
)∣∣(s)

M ,
∣∣m2(r1, r2) – m2

(
r′

1, r′
2
)∣∣(s)

M

≤ C(ε, W )
(∣∣r1 – r′

1
∣∣(3+α)
s+1,�δh,M +

∣∣r2 – r′
2
∣∣(3+α,μ)
s+1,�,M

)
, (100)

where C is a positive constant that is independent of ε and W , and C(ε) and C(ε, W ) denote
positive constants possessing the properties C(ε) → 0 as ε → 0 and C(ε, W ) → 0 as ε, W →
0, respectively.

With the aid of the estimates in Lemma 10 and Theorem 2, we have the following lemma.
The proof is almost the same as that of Lemma 7 in [11], and is thus omitted.

Lemma 11 There exist ε > 0 and W > 0 such that, for any δh ∈ Xε , there exists a unique
solution (u,∇q, r1, r2) ∈ Yε,δh for problem (91).

As the regularity of the solution (u,∇q, r1, r2) is determined by the size of the contact
angle, it depends on δh. To treat the solutions to problem (91) for various δh ∈ Xε in a
common function space, we now assume that the order s satisfies s = s′ ≡ min(λ̄0,π/θ̄ )–δ >
0, where δ > 0 is a constant and λ̄0 is the constant defined in the same way as λ0 in (24)
with θ = θ̄ .

Now, let us introduce a mapping �δh defined by

�δh : x′ = y′, x3 = y3 + χ (y)δh
(
y′),
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where δh ∈ Xε and χ (y) is a smooth function such that

χ (y) =

⎧
⎨

⎩
1 if h̄(y′) – 3Kε ≤ y3 ≤ h̄(y′) + 3Kε,

0 if y3 ≤ h̄(y′) – 6Kε, y3 ≥ h̄(y′) + 6Kε.

For sufficiently small ε > 0, �δh is injective and maps �h̄ onto �δh, and the Jacobian ma-
trices Jδh and Jδh′ of the mappings �δh and �δh′ satisfy the estimate

|Jδh – Jδh′ |(2+α,μ)
s′ ,�h̄ ,M ≤ C

∣∣δh – δh′∣∣(3+α)
s′+1,B,M (101)

for a positive constant C that is independent of δh and δh′.
We write problem (91) simply as

Lδh(u, q, r1, r2) = R(u, r1, r2),

and let (u, q, r1, r2) and (u′, q′, r′
1, r′

2) be solutions to the problems Lδh(u, q, r1, r2) = R(u, r1, r2)
and Lδh′ (u′, q′, r′

1, r′
2) = R(u′, r′

1, r′
2) for given δh and δh′ ∈ Xε .

We rewrite these solutions as equations defined in �h̄ with the aid of the mappings �δh

and �δh′ , and then subtract one from the other to obtain the following equations:

–ν	
(
û – ũ′) + ∇(q̂ – q̃′)

= –ν
(∇2 – ∇̂2)(û – ũ′) + ν

(∇̂2 – ∇̃2)ũ′

+ (∇ – ∇̂)
(
q̂ – q̃′) – (∇̂ – ∇̃)q̃′ + f̂(û) – f̃

(
ũ′)

≡ F1
(
û, ũ′, q̂, q̃′, δh, δh′), (102)

∇ · (û – ũ′) = (∇ – ∇̂) · (û – ũ′) – (∇̂ – ∇̃) · ũ′

+ ĝ – g̃ ≡ F2
(
û, ũ′, δh, δh′) in �h̄, (103)

2ν
D
(
û – ũ′)n + γ∇h̄

(
r̂1 – r̃′

1
)

= 2ν
{

D

(
û – ũ′)n – 
̂D̂

(
û – ũ′)n̂ –

(

̂D̂

(
ũ′)n̂ – 
̃D̃

(
ũ′)ñ

)}

+ γ (∇h̄ – ∇̂δh)
(
r̂1 – r̃′

1
)

– γ (∇̂δh – ∇̃δh′ )r̃′
1

≡ F3
(
û, ũ′, r̂1, r̃′

1, δh, δh′), (104)
(
û – ũ′) · n =

(
û – ũ′) · (n – n̂) – ũ′ · (n̂ – ñ)

≡ F4
(
û, ũ′, δh, δh′), (105)

–κ1∇2
h̄

(
r̂1 – r̃′

1
)

+ χ1
(
r̂1 – r̃′

1
)

+ ∇h̄ · (û – ũ′)

= –κ1
(∇2

h̄ – ∇̂2
δh
)(

r̂1 – r̃′
1
)

+ κ1
(∇̂2

δh – ∇̃2
δh′
)
r̃′

1

+ (∇h̄ – ∇̂δh) · (û – ũ′) – (∇̂δh – ∇̃δh′ ) · ũ′

+ ĥ1(û, r̂1) – h̃1
(
ũ′, r̃′

1
)≡ F5

(
û, ũ′, r̂1, r̃′

1, δh, δh′) on �h̄, (106)

2ν
D
(
û – ũ′)n +

γ

2
∇�

(
r̂2 – r̃′

2
)

+ β
(
û – ũ′) = 0, (107)

(
û – ũ′) · n = 0, (108)
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–κ2∇2
�

(
r̂2 – r̃′

2
)

+ χ2
(
r̂2 – r̃′

2
)

+
1
2
∇� · (û – ũ′)

= ĥ2(û, r̂2) – h̃2
(
ũ′, r̃′

2
)≡ F6

(
û, ũ′, r̂2, r̃′

2
)

on �, (109)
{(

û – ũ′) – κ1∇h̄
(
r̂1 – r̃′

1
)} · ē1

=
(
û – ũ′) · (ē1 – ê1) – ũ′ · (ê1 – ẽ1)

– κ1
{∇h̄

(
r̂1 – r̃′

1
) · ē1 – ∇̂δh

(
r̂1 – r̃′

1
) · ê1 –

(∇̂δhr̃′1 · ê1 – ∇̃δh′ r̃′
1 · ẽ1

)}

+ m̂1(r̂1, r̂2) – m̃1
(
r̃′

1, r̂′
2
)≡ F7

(
û, ũ′, r̂1, r̃′

1, r̂2, r̃′
2, δh, δh′), (110)

{
1
2
(
û – ũ′) – κ2∇�

(
r̂2 – r̃′

2
)} · e2

= m̂2(r̂1, r̂2) – m̃2
(
r̃′

1, r̃′
2
)≡ F8

(
r̂1, r̃′

1, r̂2, r̃′
2
)

on M. (111)

In the above equations, f̂ and f̃ denote the functions f ◦ �δh and f ◦ �δh′ , respectively; ē1

and ∇h̄ are defined for the surface y3 = h̄(y′) in the same way as e1 and ∇δh, respectively,
are defined; 
̂ is the operator defined by 
̂f = f – (n̂ · f)n̂; ∇̂ and ∇̂δh are the operators
defined by ∇̂ = (tJδh)–1∇ and ∇̂δh = ∇̂ – (n̂ · ∇̂)n̂; D̂(û) denotes a tensor with elements
(1/2)

∑3
k=1(Ajk∂yk ûi + Aik∂yk ûj) (i, j = 1, 2, 3), where Aij is the (i,j)th element of (tJδh)–1; and

the operators 
̃, ∇̃ , and ∇̃δh′ and the tensor D̃(ũ′), which arise as a result of the change of
variables x = �δh′ (y), are defined in the same way.

For the terms on the right-hand sides of (102)–(111), we obtain the estimates given in
the following lemma.

Lemma 12 For δh, δh′ ∈ Xε , (u,∇q, r1, r2) ∈ Yε,δh, and (u′,∇q′, r′
1, r′

2) ∈ Yε,δh′ , the following
inequalities hold:

∣∣F1
(
û, ũ′, q̂, q̃′, δh, δh′)∣∣(α,μ)

s′–2,�h̄ ,M

≤ C(ε, W )
(∣∣û – ũ′∣∣(2+α,μ)

s′ ,�h̄ ,M +
∣∣∇q̂ – ∇q̃′∣∣(α,μ)

s′–2,�h̄ ,M +
∣∣δh – δh′∣∣(2+α)

s′ ,B,M

)
, (112)

∣∣F2
(
û, ũ′, δh, δh′)∣∣(1+α,μ)

s′–1,�h̄ ,M

≤ C(ε, W )
(∣∣û – ũ′∣∣(2+α,μ)

s′ ,�h̄ ,M +
∣∣δh – δh′∣∣(2+α)

s′ ,B,M

)
, (113)

∣∣F3
(
û, ũ′, r̂1, r̃′

1, δh, δh′)∣∣(1+α)
s′–1,�h̄,M

≤ C(ε)
(∣∣û – ũ′∣∣(2+α,μ)

s′ ,�h̄ ,M +
∣∣r̂1 – r̃′

1
∣∣(2+α)
s′ ,�h̄ ,M +

∣∣δh – δh′∣∣(2+α)
s′ ,B,M

)
, (114)

∣∣F4
(
û, ũ′, δh, δh′)∣∣(2+α)

s′ ,�h̄ ,M

≤ C(ε)
(∣∣û – ũ′∣∣(2+α,μ)

s′ ,�h̄ ,M +
∣∣δh – δh′∣∣(3+α)

s′+1,B,M

)
, (115)

∣∣F5
(
û, ũ′, r̂1, r̃′

1, δh, δh′)∣∣(1+α)
s′–1,�h̄ ,M

≤ C(ε)
(∣∣û – ũ′∣∣(2+α,μ)

s′ ,�h̄ ,M +
∣∣r̂1 – r̃′

1
∣∣(3+α)
s′+1,�h̄ ,M +

∣∣δh – δh′∣∣(3+α)
s′+1,B,M

)
, (116)

∣∣F6
(
û, ũ′, r̂2, r̃′

2
)∣∣(1+α,μ)

s′–1,�,M

≤ C(ε, W )
(∣∣û – ũ′∣∣(2+α,μ)

s′ ,�h̄ ,M +
∣∣r̂2 – r̃′

2
∣∣(3+α,μ)
s′+1,�,M

)
, (117)
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∣∣F7
(
û, ũ′, r̂1, r̃′

1, r̂2, r̃′
2, δh, δh′)∣∣(s′)

M

≤ C(ε, W )
(∣∣û – ũ′∣∣(2+α,μ)

s′ ,�h̄ ,M +
∣∣r̂1 – r̃′

1
∣∣(3+α)
s′+1,�h̄ ,M

+
∣∣r̂2 – r̃′

2
∣∣(3+α,μ)
s′+1,�,M +

∣∣δh – δh′∣∣(3+α)
s′+1,B,M

)
, (118)

∣∣F8
(
r̂1, r̃′

2, r̂2, r̃′
2
)∣∣(s′)

M

≤ C(ε, W )
(∣∣r̂1 – r̃′

1
∣∣(3+α)
s′+1,�h̄ ,M +

∣∣r̂2 – r̃′
2
∣∣(3+α,μ)
s′+1,�,M

)
, (119)

where C(ε) and C(ε, W ) denote positive constants possessing the same property as the cor-
responding expressions in Lemma 10.

With the aid of the above estimates, applying Theorem 2 to the problem given in (102)–
(111) yields the following estimate for sufficiently small ε and W :

∣∣û – ũ′∣∣(2+α,μ)
s′ ,�h̄ ,M +

∣∣∇q̂ – ∇q̃′∣∣(α,μ)
s′–2,�h̄ ,M +

∣∣r̂1 – r̃′
1
∣∣(3+α)
s′+1,�h̄ ,M

+
∣∣r̂2 – r̃′

2
∣∣(3+α,μ)
s′+1,�,M ≤ C(ε, W )

∣∣δh – δh′∣∣(3+α)
s′+1,B,M. (120)

We now turn to the problem given by (76)–(77). For notational simplicity, we represent
the problem as L(δh) = R(u, q, r1, r2, δh).

Let the mapping F map each δh ∈ Xε to the solution δ̃h of the problem

L(δ̃h) = R(u, q, r1, r2, δh),

where (u, q, r1, r2) ∈ Yε,δh is a solution to problem (91) defined for δh given above.
Then, with the aid of Theorem 5 and estimate (93), we have

|δ̃h|(3+α)
s′+1,B,M ≤ C1

(
ε +
(
K + K2)ε2). (121)

Thus, if we choose C1 as K and choose ε such that (K + K2)ε < 1/2, we obtain |δ̃h|(3+α)
s′+1,B,M ≤

(3/2)Kε. This implies that F maps Xε into itself.
Next, we consider the problem

L
(
δ̃h – δ̃h′) = R(u, q, r1, r2, δh) – R

(
u′, q′, r′

1, r′
2, δh′), (122)

where (u′, q′, r′
1, r′

2) ∈ Yε,δh′ is the solution to problem (91) with δh = δh′.
Then, with the aid of estimate (120), we have

∣∣δ̃h – δ̃h′∣∣(3+α)
s′+1,B,M ≤ ∣∣F (u, q, r1, δh) – F

(
u′, q′, r′

1, δh′)∣∣(1+α)
s′–1,B,M

≤ C(ε, W )
∣∣δh – δh′∣∣(3+α)

s′+1,B,M. (123)

Thus, if we choose ε and W such that C(ε, W ) < 1, the estimate indicates that F is a con-
traction in Xε . Thus, by the contraction mapping principle, we have proved the existence
of a solution to our problem.
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Finally, we prove that the solution constructed above belongs to the classes stated in
Theorem 1. For that purpose, it is convenient to rewrite problem (91) in cylindrical coor-
dinates:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–ν(∂2
r + ∂2

z )ur + ∂rq = ν( 1
r ∂rur – ur

r2 ) + fr(u) ≡ Fr ,

–ν(∂2
r + ∂2

z )uz + ∂zq = ν
r ∂ruz + fz(u) ≡ Fz,

∂rur + ∂zuz = – ur
r + g in �,

2νD(u)n · τ = –γ∇δhr1 · τ , u · n = 0

– κ1
r
√

1+(h′)2
d
dr ( r√

1+(h′)2
dr1
dr ) + χ1r1

= –∇δh · u + h1(u, r1) on �,

2νD(u)n · τ = –(βu + γ

2 ∇�r2 – b) · τ , u · n = b3,

–κ2
d2r2
dz2 + χ2r2 = – 1

2∇� · u + h2(u, r2) on �,
κ1√

1+h′(1)2
dr1
dr = –u · e1 + m1(r1, r2),

κ2
dr2
dz = – 1

2 u · e2 + m2(r1, r2) at M.

(124)

Here, �,�, n, τ , and e1 are defined in the same way as in (64) for h = h̄ + δh.
After localizing the above problem near the contact point M in the same manner as used

to obtain (65)–(68), we have the following equations for the functions w = (w1, w2) = ζ̂ û,
π = ζ̂ q̂, s1 = ζ̂ r̂1, and s2 = ζ̂ r̂2:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–ν	w1 + ∂η1π = H1(û, q̂) + L1(û, q̂),

–ν	w2 + ∂η2π = H2(û, q̂) + L2(û, q̂),

∇ · w = H3(û) + L3(û) in dθd ,

2νD(w)n · τ = H4(û) + L4(û, r̂1),

w · n = H5(û) + L5(û),

–κ1
d2s1
dη2

1
+ χ1s1 = H6(r̂1) + L6(û, r̂1) on γ0,

2νD(w)n · τ = H7(û) + L7(û, r̂2),

w · n = H8(û) + L8(û),

–κ2 cos2 θd
d2s2
dη2

1
+ χ2s2 = H9(r̂2) + L9(û, r̂2) on γθd ,

–κ1
ds1
dη1

= H10(r̂1) + L10(û, r̂1, r̂2),

–κ2 cos θd
ds2
dη1

= H11(r̂2) + L11(û, r̂1, r̂2) at M ≡ γ̄0 ∩ ¯γθd .

(125)

Here, Hi (i = 1, . . . , 11) are the terms involving the highest-order derivatives of u, q, r1,
and r2, while Li (i = 1, . . . , 11) comprises the remaining terms. For example, H1 and L1 are
specifically expressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1(û, q̂) = –νζ̂
∑

i,j,k=1,2(δijδik – aijaik)∂ηj∂ηk û1

+ ζ̂
∑

i=1,2(δ1i – a1i)∂ηi q̂,

L1(û, q̂) = –ν
∑

i,j,k=1,2{(δijδik – aijaik)(û1∂ηj∂ηk ζ̂ + ∂ηj ζ̂ ∂ηk û1

+ ∂ηj û1∂ηk ζ̂ ) – aij(∂ηj aik)(û1∂ηk ζ̂ + ζ̂ ∂ηk û1)} + q̂
∑

i=1,2(δ1i – a1i)∂ηi ζ̂

– 2ν∇̂ ζ̂ · ∇̂û1 – νû1∇̂2ζ + q̂∂̂η1 ζ̂ + ζ̂ F̂1,
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where u1 = –(ur – 1) sin θ – uz cos θ , F1 = –(Fr – 1) sin θ – Fz cos θ , aij denotes the (i, j)th
component of (tA)–1, in which A is the Jacobian matrix of the mapping �, and δij denotes
the Kronecker delta.

We note that δijδik – aijaik (the coefficients of the highest-order derivatives of u) vanish
at the origin and that δijδik – aijaik ∈ C2+α

s′ (dθd , M), from which we obtain

|δijδik – aijaik| ≤ C|η|s′ .

With the aid of this inequality, it is easily found that (δijδik – aijaik)∂2
ηi ,ηj

û1 ∈ ◦
Cα

2s′–2(dθd , M);
therefore, H1 + L1 ∈ Cα

2s′–2(dθd , M). In a similar manner (we also use the fact that û ∈
◦
C2+α

s′ (dθd , M) to estimate H5(û) = ζ̂ û · (n – n̂)), we see that the terms Hi + Li (i = 2, . . . , 11)
are smoother by the order of s′ than the highest-order derivatives of the solutions involved
in each Hi. Therefore, the solution (w,∇π , s1, s2) becomes smoother by the same order:

(w,∇π , s1, s2) ∈ C2+α
2s′ (dθd , M) × Cα

2s′–2(dθd , M) × C3+α
2s′+1(γθ0 , M) × C3+α

2s′+1(γθd , M).

As a result, we have

(u,∇q, q, r1, r2) ∈ C2+α,μ
2s′ (�h, M) × Cα,μ

2s′–2(�h, M) × C1+α
2s′–1(�0,1, M)

× C3+α
2s′+1(�h, M) × C3+α,μ

2s′+1 (�, M).

Then, from equations (76)–(77), we have δ ∈ C3+α
2s′+1(B, M). By repeating this procedure, we

reach the desired result.

7 Conclusion
A free boundary problem describing a steadily advancing meniscus in an infinite circular
tube has been investigated. The problem was formulated using the interface formation
model, and it was proved that an axisymmetric solution exists in weighted Hölder spaces
when the velocity of the meniscus is low. The problem was closed by adding a condition
stating that the pressure must be finite at the contact line. Our analysis shows that this
treatment determines the contact angle as part of the solution and removes the singularity
caused by the motion of the contact line (with the exception of the case in which the
contact angle is π/2). It was also shown that the singularity of the solution is caused by the
presence of a corner of the domain, and the regularity of the solution near the contact line
is determined by the size of the contact angle. For a technical reason, this paper neglected
the term representing the mass exchange between the bulk and the interface arising in the
normal component of the velocity on the interface. Shikhmurzaev [24] has suggested that
the corner of the domain causes no singularity if this term is not neglected—a rigorous
verification of this point will be considered in future work.

Acknowledgements
We thank the anonymous reviewers for their valuable comments to improve the quality of the manuscript. We also thank
Stuart Jenkinson, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of the manuscript.

Funding
This research received no external funding.

Availability of data and materials
Not applicable.

https://jp.edanz.com/ac


Kusaka Boundary Value Problems          (2022) 2022:1 Page 32 of 33

Declarations

Competing interests
The author declares that he has no competing interests.

Author’s contributions
The author proposed the main idea of this paper and performed all the steps of the proofs in this research. He read and
approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 4 September 2021 Accepted: 8 December 2021

References
1. Billingham, J.: On a model for the motion of a contact line on a smooth solid surface. Eur. J. Appl. Math. 17(3),

347–382 (2006)
2. Blake, T.D., Bracke, M., Shikhmurzaev, Y.D.: Experimental evidence of nonlocal hydrodynamic influence on the

dynamic contact angle. Phys. Fluids 11, 1995–2007 (1999)
3. Decent, S.P.: Hydrodynamic assist and the dynamic contact angle in the coalescence of liquid drops. IMA J. Appl.

Math. 71(5), 740–767 (2006)
4. Decent, S.P.: The spreading of a viscous microdrop on a solid surface. Microfluid. Nanofluid. 2, 537–549 (2006)
5. DussanV, E.B., Davis, S.H.: On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 65, 71–95 (1974)
6. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Vol. I. Linearized Steady

Problems. Springer, New York (1994)
7. Griebel, M., Klitz, M.: Simulation of droplet impact with dynamic contact angle boundary conditions. In: Griebel, M.

(ed.) Singular Phenomena and Scaling in Mathematical Models, pp. 297–325. Springer, Berlin (2014)
8. Griebel, M., Klitz, M.: Simulation of micron-droplet impact. Comput. Math. Appl. 78, 3027–3043 (2019)
9. Guo, Y., Tice, I.: Stability of contact lines in fluids: 2D Stokes flow. Arch. Ration. Mech. Anal. 227(2), 767–854 (2018)
10. Kozlov, V.A., Mazya, V.G., Rossmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities. Math.

Surv. Monogr., vol. 52. Am. Math. Soc., Providence (1997)
11. Kusaka, Y.: Classical solvability of a stationary free boundary problem for an incompressible viscous fluid describing

the process of interface formation. Anal. Math. Phys. 5(1), 67–86 (2015)
12. Kusaka, Y.: Classical solvability of the stationary free boundary problem describing the interface formation between

two immiscible fluids. Anal. Math. Phys. 6(2), 109–140 (2016)
13. Ladyzhenskaya, O.A., Solonnikov, V.A.: Some problems of vector analysis and generalized formulations of

boundary-value problems for the Navier–Stokes equations. Zap. Nauč. Semin. POMI 59, 81–116 (1976); English transl.
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