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Abstract
In the present paper, we consider the following discrete Schrödinger equations

–
(
a + b

∑
k∈Z

|�uk–1|2
)
�2uk–1 + Vkuk = fk(uk) k ∈ Z,

where a, b are two positive constants and V = {Vk} is a positive potential.
�uk–1 = uk – uk–1 and �2 =�(�) is the one-dimensional discrete Laplacian operator.
Infinitely many high-energy solutions are obtained by the Symmetric Mountain Pass
Theorem when the nonlinearities {fk} satisfy 4-superlinear growth conditions.
Moreover, if the nonlinearities are sublinear at infinity, we obtain infinitely many small
solutions by the new version of the Symmetric Mountain Pass Theorem of Kajikiya.
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1 Introduction
In the present paper, we consider the following discrete Schrödinger equations

–
(

a + b
∑
k∈Z

|�uk–1|2
)

�2uk–1 + Vkuk = fk(uk) k ∈ Z, (1)

where a, b are two positive constants and V = {Vk} is a positive potential. �uk–1 = uk –uk–1

and �2 = �(�) is the one-dimensional discrete Laplacian operator.
The discrete Schrödinger equations play a significant role in many areas, such as non-

linear optics [7], biomolecular chains [11] and Bose–Einstein condensates [16]. If a = 1
and b = 0, problem (1) reduces to the classical discrete Schrödinger equations, which have
been extensively studied by many authors in the past several decades. In Ma and Guo
[17] and Zhang and Pankov [32], the authors studied the nontrivial solution of discrete
Schrödinger equations with a coercive potential by variation methods. In Lin et al. [15],
the authors considered a class of discrete nonlinear nonperiodic systems and obtained
the existence of the homoclinic solutions. For more related works, we refer to [4–6, 18–
20, 25, 28] and their references.

The problem (1) is a discrete case for a class of nonlocal problems and we call this non-
local term a Kirchhoff type. This class of nonlocal equations is an extension of the classi-
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cal d’Alembert’s wave equations because of the effects of the changes in the length of the
string during the vibrations. There is a large number of papers concerning the solutions
of Kirchhof-type problems in the continuous case, such as [9, 12, 26, 29, 31] and their
references. As for the discrete equations with a nonlocal term, Yang and Liu in [30] in-
vestigated the existence of the nontrivial solutions via critical groups. In [3], Chakrone et
al. considered the multiplicity results for a p-Laplacian discrete problem with Neumann
boundary conditions. For more related works, we refer to [1, 2, 8, 13, 14, 22–24, 34] and
their references. Recently, Wu and Huang [27] have studied the statistical solutions for
nonautonomous discrete Klein–Gordon–Schrödinger-type equations.

Most of the previous works have been concerned with boundary value problems, while
little has been done in discrete Schrödinger equations of the Kirchhoff type. We will con-
sider the existence of infinitely many nontrivial solutions for this class of discrete equa-
tions. In this paper, the potential V satisfies the coercive condition:

(V1) V = {Vk} is positive and lim|k|→+∞ Vk = +∞.
Set L := –�2 + V , where Luk = –�2uk–1 + Vkuk , then L is a self-adjoint operator and un-
bounded in l2. With the help of the condition (V1), the authors in [32] proved that the
spectrum σ (L) is discrete going to +∞ and we assume that λi are the eigenvalues of L. If
we set that

E =
{

u ∈ l2 :
∑
k∈Z

Vk|uk|2 < +∞
}

,

then E is a Hilbert space, in which the norm and the inner product are defined by

‖u‖ :=
{∑

k∈Z

(|�uk–1|2 + Vk|uk|2
)}1/2

and 〈u, v〉E =
∑
k∈Z

(�uk–1�vk–1 + Vkukvk),

respectively. Denote the standard norms of lq by ‖ · ‖q for q ∈ [2, +∞]. First, we consider
the 4-superlinear nonlinearities as follows:

(f1) fk ∈ C(R, R) and there exist C > 0 and p > 2 such that

∣∣fk(t)
∣∣ ≤ C

(|t| + |t|p–1) for any k ∈ Z and t ∈ R.

(f2) lim|t|→+∞ Fk (t)
t4 = +∞ uniformly in k, where Fk(t) :=

∫ t
0 fk(s)ds.

(f3) There exists α > 0 such that

Fk(t) ≤ 1
4

fk(t)t + αt2 for any k ∈ Z and t ∈ R.

(f ′
3) There exists L > 0 such that

Fk(t) ≤ 1
4

fk(t)t for any k ∈ Z and |t| ≥ L.

(f4) fk(–t) = –fk(t) for any k ∈ Z and t ∈ R.
If u = {uk} satisfies problem (1) for any k ∈ Z, we call that u a solution of this problem.
Moreover, if u �= 0, we call that u a nontrivial solution. With the above assumptions (V1)
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and (f1), the energy functional I : E → R is well defined by

I(u) =
1
2

∑
k∈Z

(
a|�uk–1|2 + Vku2

k
)

+
1
4

b
(∑

k∈Z

|�uk–1|2
)2

–
∑
k∈Z

Fk(uk).

Moreover, I is a class of C1(E, R) and

〈
I ′(u), v

〉
=

(
a + b‖�u‖2

2
)∑

k∈Z

�uk–1�vk–1 +
∑
k∈Z

Vkukvk –
∑
k∈Z

fk(uk)vk ,

for any u, v in E. Thus, u is a critical point of I in E if and only if u is a solution of prob-
lem (1). Now, the first result is stated concerning the infinitely many solutions when the
nonlinearities are 4-superlinear growth.

Theorem 1.1 If (V1) and (f1)–(f4) hold, problem (1) possesses infinitely many nontrivial
solutions {un} in E with high energies, i.e., I(un) → +∞ as n → ∞.

It is evident to check that (f1) and (f ′
3) imply (f3). Hence, we have the following result.

Theorem 1.2 If (V1), (f1), (f2), (f ′
3) and (f4) hold, problem (1) possesses infinitely many non-

trivial solutions {un} in E with high energies, i.e., I(un) → +∞ as n → ∞.

The above two results obtained infinitely many high-energy solutions are strictly depen-
dent on the 4-superlinear growth assumption. The standard Symmetric Mountain Pass
Theorem may be invalid without the superlinear assumption. In this case, we try to estab-
lish the existence of infinitely many small solutions by the new version of the Symmetric
Mountain Pass Theorem of Kajikiya in [10] when the nonlinearities fk(t) are sublinear at
infinity. More precisely, we assume that

(f5) fk(t) = κξk|t|κ–2t, where κ ∈ (1, 2) is a constant and ξ = {ξk} ∈ l 2
2–κ .

Theorem 1.3 If (V1) and (f5) hold, problem (1) possesses infinitely many nontrivial solu-
tions {un} in E with small energy, i.e., I(un) → 0– as n → ∞.

In fact, we will prove a more general result than the above theorem.

Theorem 1.4 If (V1), (f4) and the following assumption hold,
(f6) there exist κ , δ,σ ∈ (1, 2), p > 2 and C such that

ξk|t|κ ≤ fk(t)t

and

∣∣fk(t)
∣∣ ≤ wk|t|δ–1 + hk|t|σ–1 + C|t|p–1 for any k ∈ Z and t ∈ R,

where ξ = {ξk}, w = {wk}, h = {hk} are three positive sequences satisfying ξ ∈ l 2
2–κ , w ∈

l
2

2–δ and h ∈ l 2
2–σ .

Then, problem (1) possesses infinitely many nontrivial solutions {un} in E with small ener-
gies, i.e., I(un) → 0– as n → ∞.
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Remark 1.1 It is obvious to check that Theorem 1.4 generalizes Theorem 1.3. For example,
let

fk(t) = κξk|t|κ–2t + σhk|t|σ–2t + C|t|p–2t for k ∈ Z and t ∈ R,

where κ ,σ ∈ (1, 2), ξ = {ξk} and h = {hk} are two positive sequences satisfying ξ ∈ l 2
2–κ and

h ∈ l 2
2–σ . It is easy to see that fk satisfy all the assumptions of Theorem 1.4, but fk do not

satisfy (f5).

2 The 4-superlinear case
The following Symmetric Mountain Pass Theorem is crucial in proving the existence of
infinitely many solutions with 4-superlinear nonlinearities.

Proposition 2.1 (Symmetric Mountain Pass Theorem [21]) Let X be an infinite-
dimensional Banach space, X = Y ⊕Z, where Y is a finite-dimensional space. If J ∈ C1(X, R)
satisfies the (Ce) condition, and

(J1) J(0) = 0, J(–u) = J(u) for all u ∈ X ;
(J2) there exist two constants δ,α > 0 such that J|∂Bδ∩Z ≥ α;
(J3) for any finite-dimensional subspace X̃ ⊂ X , there exists R = R(X̃) > 0 such that J(u) ≤ 0

on X̃ \ BR,
then J possesses an unbounded sequence of critical values.

In [21], the Symmetric Mountain Pass Theorem is established under the (PS) condition.
Since the Deformation Theorem is still valid under the (Ce) condition, we see that the
Symmetric Mountain Pass Theorem also holds under the (Ce) condition. The following
embedding lemma, which follows from [17] or [33], plays a significant role in recovering
the compactness result.

Lemma 2.1 If V satisfies the condition (V1), then the embedding map from E into lq is
compact for 2 ≤ q ≤ +∞.

With the help of Lemma 2.1, we have the following compactness result.

Lemma 2.2 Under the assumption of Theorem 1.1, the functional I satisfies the (Ce) con-
dition.

Proof Suppose that {un} is a (Ce) sequence,

∣∣I(un)∣∣ ≤ M,
(
1 +

∥∥un∥∥)
I ′(un) → 0 as n → ∞.

It suffices to prove that {un} has a converging subsequence in E. We first obtain that {un} is
bounded in E. Otherwise, ‖un‖ → +∞ as n → ∞. Let vn = un/‖un‖. Moving, if necessary,
to a subsequence, we assume vn ⇀ v in E, by Lemma 2.1, vn → v in lq and vn

k → vk for any



Xie and Xiao Boundary Value Problems          (2022) 2022:2 Page 5 of 12

k ∈ Z as n → ∞. There are only two cases v = 0 or v �= 0. If v = 0, by (f3), we have

1
‖un‖2 (M + 1) ≥ 1

‖un‖2

(
I
(
un) –

1
4
〈
I ′(un), un〉

)

≥ 1
4

min{a, 1} +
1

‖un‖2

∑
k∈Z

(
1
4

fk
(
un

k
)
un

k – Fk
(
un

k
))

≥ 1
4

min{a, 1} – α
∑
k∈Z

∣∣vn
k
∣∣2,

which implies that 1
4 min{a, 1} ≤ 0. That is impossible. If v �= 0, then �1 := {k ∈ Z|vk �=

0} �= ∅. For any k ∈ �1, we have |un
k | → +∞ as n → ∞. By (f2), one obtains that for any

k ∈ �1,

Fk(un
k )

|un
k |4

∣∣vn
k
∣∣4 → +∞ as n → ∞,

combined with Fatou’s Lemma, which implies that

∑
k∈�1

Fk(un
k )

|un
k |4

∣∣vn
k
∣∣4 → +∞ as n → ∞. (2)

It follows from (f2) that there exists L1 > 0 such that

Fk(t) ≥ 0 for any k ∈ Z and |t| ≥ L1. (3)

By (f1), we obtain |Fk(t)| ≤ Ct2 for any k ∈ Z and |t| ≤ L1. Combining with (3), we have

Fk(t) ≥ –Ct2 for any k ∈ Z and t ∈ R.

Hence, we obtain

∑
k∈Z\�1

Fk(un
k )

‖un‖4 ≥ –
C

‖un‖4

∑
k∈Z\�1

∣∣un
k
∣∣2 ≥ –C

‖un‖2
2

‖un‖4 ≥ –
C

‖un‖2 ,

which implies that

lim inf
n→∞

∑
k∈Z\�1

Fk(un
k )

‖un‖4 ≥ 0. (4)

Note that

I
(
un) +

∑
k∈Z

Fk
(
un

k
) ≤ 1

2
max{a, 1}∥∥un∥∥2 +

b
4
∥∥un∥∥4.
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Dividing by ‖un‖4 on both sides and letting n → ∞, we obtain

b
4

≥ lim sup
n→∞

∑
k∈Z

Fk(un
k )

‖un‖4

≥ lim sup
n→∞

( ∑
k∈Z\�1

Fk(un
k )

‖un‖4 +
∑
k∈�1

Fk(un
k )

‖un‖4

)
→ +∞,

via (2) and (4), which is impossible. In any case, we obtain a contradiction and hence {un}
is bounded in E.

Moving if necessary to a subsequence, we can assume un ⇀ u in E. It follows that

〈
I ′(un) – I ′(u), un – u

〉

=
(
a + b

∥∥�un∥∥2
2

)∑
k∈Z

�un
k–1�

(
un

k–1 – uk–1
)

+
∑
k∈Z

Vkun
k
(
un

k – uk
)

–
(
a + b‖�u‖2

2
)∑

k∈Z

�uk–1�
(
un

k–1 – uk–1
)

–
∑
k∈Z

Vkuk
(
un

k – uk
)

–
∑
k∈Z

(
fk

(
un

k
)

– fk(uk)
)(

un
k – uk

)

=
(
a + b

∥∥�un∥∥2
2

)∑
k∈Z

∣∣�(
un

k–1 – uk–1
)∣∣2 +

∑
k∈Z

Vk
∣∣un

k – uk
∣∣2

– b
(‖�u‖2

2 –
∥∥�un∥∥2

2

)∑
k∈Z

�uk–1�
(
un

k–1 – uk–1
)

–
∑
k∈Z

(
fk

(
un

k
)

– fk(uk)
)(

un
k – uk

)

≥ min{a, 1}∥∥un – u
∥∥2 – b

(‖�u‖2
2 –

∥∥�un∥∥2
2

)∑
k∈Z

�uk–1�
(
un

k–1 – uk–1
)

–
∑
k∈Z

(
fk

(
un

k
)

– fk(uk)
)(

un
k – uk

)
.

One has

min{a, 1}∥∥un – u
∥∥2 ≤ 〈

I ′(un) – I ′(u), un – u
〉

+
∑
k∈Z

(
fk

(
un

k
)

– fk(uk)
)(

un
k – uk

)

+ b
(‖�u‖2

2 –
∥∥�un∥∥2

2

)∑
k∈Z

�uk–1�
(
un

k–1 – uk–1
)
.

(5)

By the boundedness of {un} and un ⇀ u in E, it is obvious that

〈
I ′

n
(
un) – I ′(u), un – u

〉 → 0 as n → ∞. (6)

By (f1), Lemma 2.1 and Lebesgue’s dominated convergence theorem

∑
k∈Z

(
fk

(
un

k
)

– fk(uk)
)(

un
k – uk

) → 0 as n → ∞. (7)
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Let us consider the functional P : E → R,

P(w) =
∑
k∈Z

�uk–1�wk–1.

Since |P(w)| ≤ ‖u‖‖w‖, we can deduce that P is a continuous linear functional on E. By
un ⇀ u in E, we obtain

P
(
un – u

)
=

∑
k∈Z

�uk–1�
(
un

k–1 – uk–1
) → 0 as n → ∞.

By the boundedness of {un} in E, we have

b
(‖�u‖2

2 –
∥∥�un∥∥2

2

)∑
k∈Z

�uk–1�
(
un

k–1 – uk–1
) → 0 as n → ∞. (8)

It follows from (5)–(8) that ‖un – u‖ → 0 as n → ∞. Thus, un → u strongly in E as
n → ∞. �

Let {ej} be an orthonormal basis of E and define Xj = span{ej}, Ym =
⊕m

j=1 Xj and Zm =⊕∞
j=m+1 Xj for any m ∈ N.

Lemma 2.3 Under the assumption (V1), for any 2 ≤ q ≤ +∞,

βm(q) := sup
u∈Zm ,‖u‖=1

‖u‖q → 0 as m → ∞. (9)

Proof It is obvious that 0 < βm+1(q) ≤ βm(q), so that βm(q) → β(q) ≥ 0 as m → ∞. For
every m ∈ N, there exists um ∈ Zm with ‖um‖ = 1 such that

∥∥um∥∥
q >

βm(q)
2

. (10)

For any w ∈ E, w =
∑∞

j=1 cjej, by the Cauchy–Schwarz inequality, we have

∣∣〈um, w
〉∣∣ =

∣∣∣∣∣

〈
um,

∞∑
j=1

cjej

〉∣∣∣∣∣ =

∣∣∣∣∣

〈
um,

∞∑
j=m

cjej

〉∣∣∣∣∣

≤ ∥∥um∥∥
∥∥∥∥∥

∞∑
j=m

cjej

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

j=m

cjej

∥∥∥∥∥ → 0

as m → ∞, which implies that um ⇀ 0 in E. The compact embedding of E ↪→ lq, q ∈
[2,∞], implies that um → 0 in lq. Let m → ∞ in (10) and we obtain βm(q) → 0 as
m → ∞. �

The proof of Theorem 1.1 We will make use of the Symmetric Mountain Pass Theorem and
Proposition 2.1 to prove Theorem 1.1. It is easy to see that (J1) follows from the condition
(f4). It follows from (f1) that

Fk(t) ≤ c1t2 + c2|t|p for any k ∈ Z and t ∈ R.
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By Lemma 2.3, there exists m ∈ N large enough such that

‖u‖2
2 ≤ min{a, 1}

4c1
‖u‖2 and ‖u‖p

p ≤ min{a, 1}
4c2

‖u‖p for any u ∈ Zm.

It follows from the above three inequalities that

I(u) =
1
2

min{a, 1}‖u‖2 –
∑
k∈Z

Fk
(
un

k
)

≥ 1
2

min{a, 1}‖u‖2 – c1‖u‖2
2 – c2‖u‖p

p

≥ 1
4

min{a, 1}‖u‖2(1 – ‖u‖p–2).

It follows from p > 2 that there exist δ1, α > 0 such that I|∂Bδ1 ∩Zm ≥ α. Thus, (J2) holds.
It remains to prove (J3). Since all norms are equivalent in a finite-dimensional space,

there exists c4 such that ‖u‖4
4 ≥ c4‖u‖4 for any u ∈ Ẽ.

By (f2), for any M > b
4c4

, there exists L1 > 0 such that Fk(t) ≥ Mt4 for |t| ≥ L1. It follows
from (f1) that there exists C1 > 0 such that Fk(t) ≥ –C1t2 for |t| ≤ L1. From the above two
inequalities, it follows that for any k ∈ Z,

Fk(t) ≥ Mt4 – CMt2 for any k ∈ Z and t ∈ R,

where CM = C1 + ML2
1. It follows that

I(u) ≤ 1
2

max{a, 1}‖u‖2 +
b
4
‖u‖4 –

∑
k∈Z

Fk(uk)

≤ 1
2

max{a, 1}‖u‖2 +
b
4
‖u‖4 – M‖u‖4

4 + CM‖u‖2
2

≤ C‖u‖2 –
(

Mc4 –
b
4

)
‖u‖4,

for all u ∈ Ẽ. Hence, there exists a large R = R(̃E) such that I(u) ≤ 0 on Ẽ \ BR. This com-
pletes the proof. �

3 The proof of Theorem 1.4
To deal with the sublinear case in Theorem 1.4, we need the following Symmetric Moun-
tain Pass Theorem of Kajikiya [10]. Let X be a Banach space and A be a subset of X. Denote
by � the family of closed symmetric subsets A of X,

� =
{

A ∈ X\{0}|A is closed and symmetric with the origin
}

.

We define the Z2-genus of A ∈ � by γ (A). Set �m = {A ∈ �|γ (A) ≥ m}.

Proposition 3.1 Let X be an infinite-dimensional Banach space and J ∈ C1(X, R) satisfies
the following conditions:

(a) J(u) is even, bounded from below, J(0) = 0 and J satisfies the (PS) condition.
(b) For any m ∈ N, there exists Am ∈ �m such that supu∈Am J(u) < 0.

Then, J has a sequence of critical points {un} such that J(un) ≤ 0, un �= 0 and limn→∞ un = 0.
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Lemma 3.1 For the finite-dimensional subspace Ẽ of E, there exists ε > 0 such that

meas
{

k ∈ Z|ξk|uk|κ ≥ ε‖u‖κ
} ≥ 1 for any u ∈ Ẽ \ {0}, (11)

where κ and ξk are given in (f6).

Proof Arguing indirectly, if not, for any positive integer n there exist un ∈ Ẽ such that

meas

{
k ∈ Z|ξk

∣∣un
k
∣∣κ ≥ 1

n
∥∥un∥∥κ

}
= 0.

By the above inequality, we can assume that ‖un‖ = 1 and

meas

{
k ∈ Z|ξk

∣∣un
k
∣∣κ ≥ 1

n

}
= 0.

By the compactness of the unit sphere of the finite-dimensional subspace Ẽ, there exists a
subsequence such that un → u0 in Ẽ and un → u0 in l2. By the Hölder inequality, we have

∑
k∈Z

ξk
∣∣un

k – u0∣∣κ ≤
(∑

k∈Z

|ξk| 2
2–κ

) 2–κ
2

(∑
k∈Z

∣∣un
k – u0

k
∣∣2

) κ
2 → 0 as n → ∞. (12)

Since ‖u0‖ = 1, there exists d1 > 0 such that meas{k ∈ Z|ξk|u0
k|κ ≥ d1} ≥ 1. Otherwise, one

has meas{k ∈ Z|ξk|u0
k|κ ≥ 1

n } = 0, which implies that

0 ≤
∑
k∈Z

ξk
∣∣u0∣∣κ+2 ≤ 1

n
∑
k∈Z

∣∣u0
k
∣∣2 → 0 as n → ∞.

Thus, u0 = 0, which is impossible. Set that �n = {k ∈ Z|ξk|un
k |κ < 1

n } and �0 = {k ∈
Z|ξk|u0

k|κ ≥ d1}. Thus, meas(�0 ∩ �n) ≥ meas(�0) – meas(�c
n) ≥ 1. Then, for n large, we

obtain

∑
k∈Z

ξk
∣∣un

k – u0∣∣κ ≥
∑

�0∩�n

ξk
∣∣un

k – u0∣∣κ ≥ 1
2κ

∑
�0∩�n

ξk
∣∣u0

k
∣∣κ –

∑
�0∩�n

ξk
∣∣un

k
∣∣κ

≥
(

d1

2κ
–

1
n

)
meas(�0 ∩ �n) ≥

(
d1

2κ
–

1
n

)
,

which contradicts (12). �

The proof of Theorem 1.4 We consider the truncated functional

ϕ(u) =
1
2

∑
k∈Z

(
a|�uk–1|2 + Vku2

k
)

+
1
4

b
(∑

k∈Z

|�uk–1|2
)2

– h
(‖u‖)

∑
k∈Z

Fk(uk),

for all u ∈ E, where h ∈ C1(R+, R+) such that 0 ≤ h ≤ 1, h(t) = 1 for 0 ≤ t ≤ 1 and h(t) = 0
for t ≥ 2. To obtain Theorem 1.4, it suffices to show that ϕ possesses a sequence of critical
points {un} such that un → 0 as n → ∞.
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By (f4), we have ϕ(–u) = ϕ(u). For any u ∈ E with ‖u‖ = 2, one has

ϕ(u) =
1
2

∑
k∈Z

(
a|�uk–1|2 + Vku2

k
)

+
1
4

b
(∑

k∈Z

|�uk–1|2
)2

≥ 1
2

min{a, 1}‖u‖2,

which implies that ϕ(u) is bounded from below and coercive. By condition (f6) and
Lemma 2.1, we can prove that ϕ satisfies the (PS) condition. For any Ym, by Lemma 3.1,
there exists εm > 0 such that

meas
{

k ∈ Z|ξk|uk|κ ≥ εm‖u‖κ
} ≥ 1 for any u ∈ Ym \ {0}.

Let �u = {k ∈ Z|ξk|uk|κ ≥ εm‖u‖κ}. For any u ∈ Ym \ {0}, with ‖u‖ ≤ min{1,
( εm

2κ(a+b+1) )1/(2–κ)}, we deduce that

ϕ(u) ≤ 1
2

∑
k∈Z

(
a|�uk–1|2 + Vku2

k
)

+
1
4

b
(∑

k∈Z

|�uk–1|2
)2

–
∑
k∈Z

Fk(uk)

≤ 1
2

max{a, 1}‖u‖2 +
b
4
‖u‖4 –

1
κ

∑
k∈Z

ξk|uk|κ

≤ 1
2

max{a, 1}‖u‖2 +
b
4
‖u‖4 –

1
κ

∑
k∈�u

ξk|uk|κ

≤ (a + b + 1)‖u‖2 –
1
κ

εm‖u‖κ meas(�u)

≤ –(a + b + 1)‖u‖2.

Then, choosing 0 < dm ≤ min{1, ( εm
2κ(a+b+1) )1/(2–κ)}, the above inequality implies that

{
u ∈ Ym|‖u‖ = dm

} ⊂ {
u ∈ E|ϕ(u) ≤ –(a + b + 1)d2

m
}

.

Setting that Am = {u ∈ E|ϕ(u) ≤ –(a + b + 1)d2
m}, we have

γ (Am) ≥ γ
({

u ∈ Ym|‖u‖ = dm
}) ≥ m.

Hence, Am ∈ �m and supu∈Am I(u) ≤ –(a + b + 1)d2
m < 0. This completes the proof. �
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