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Abstract
We consider the following singular semilinear problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u(x) + p(x)uγ = 0, x ∈ D (in the distributional sense),

u > 0, in D,

lim|x|→0 |x|n–2u(x) = 0,

lim|x|→∞ u(x) = 0,

where γ < 1, D =R
n\{0} (n≥ 3) and p is a positive continuous function in D, which

may be singular at x = 0. Under sufficient conditions for the weighted function p(x),
we prove the existence of a positive continuous solution on D, which could blow-up
at the origin. The global asymptotic behavior of this solution is also obtained.
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1 Introduction and the main result
Semilinear elliptic partial differential equations of the type

�u(x) + p(x)uγ = 0 (1.1)

will be considered in D = R
n\{0} (n ≥ 3), where γ < 1 and p is a positive continuous func-

tion in D, which may be singular at x = 0. Our main goal is to establish sufficient conditions
for the existence of a positive continuous solution u(x) of (1.1) with specified asymptotic
behavior as |x| → 0 and as |x| → ∞. Global asymptotic behavior of this solution is also
obtained.

The importance of this type of equation in mathematics and applied mathematics has
been widely recognized; see, for example, [11–13].

The above equation, subjected to homogeneous Dirichlet boundary conditions, has
been intensively studied in the case where D = R

n (n ≥ 3). In this sense, the existence
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of entire positive solutions for any γ < 0, that is the singular case, has been established by
using the sub-supersolutions method in [26] or by other methods in [10]. These results
have been extended to more general nonlinear terms, respectively, in [7, 18, 27], and [20].

In [20], the authors proved the existence and uniqueness of a positive continuous solu-
tion to the nonlinear elliptic problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u(x) + ϕ(·, u) = 0, x ∈ �(in the distributional sense),

u > 0, in �,

u|∂�
= 0,

lim|x|→∞ u(x) = 0,

(1.2)

where � is an unbounded domain in R
n (n ≥ 3), with smooth boundary ∂� and ϕ : � ×

(0,∞) → (0,∞) is continuous and nonincreasing with respect to the second variable, such
that for all c > 0, V (ϕ(·, c)) > 0 and ϕ(·, c) belongs to K∞

n (�), where V = (–�)–1 and K∞
n (�)

is the Kato class (see Definition 2.1).
In [4], the authors studied equation (1.1) on the whole space in the sublinear case. More

precisely, they have proved the existence and uniqueness of the problem

⎧
⎪⎪⎨

⎪⎪⎩

�u(x) + p(x)uγ = 0, x ∈R
n, n ≥ 3

u > 0

lim inf|x|→∞ u(x) = 0,

(1.3)

where 0 < γ < 1 and p is a nonnegative measurable function such that the function x →
∫

Rn
p(y)

|x–y|n–2 dy belongs to L∞(Rn).
In [5], by using Karamata regular variation theory and the sub-supersolutions method,

the authors studied the asymptotic behavior as |x| → ∞ of the unique classical positive
solution of problem (1.3) with γ < 1 and p(x) is a nonnegative function in Cα

loc(Rn), 0 < α <
1, such that there exists c > 0 satisfying

1
c

L(1 + |x|)
(1 + |x|)λ ≤ p(x) ≤ c

L(1 + |x|)
(1 + |x|)λ , (1.4)

where λ ≥ 2 and L belongs to the class of slowly varying functions at infinity (see Defini-
tion 1.1).

In [1], the authors considered equation (1.1) in a punctured bounded domain. Under
some sufficient conditions on the function p(x), the existence of a positive continuous so-
lution with a global behavior is obtained. Their approach is based on the Karamata regular
variation theory and the Schauder fixed-point theorem.

The initial Karamata regular variation theory was developed by Karamata in [14]. In
[8], the authors have shown that the class of Karamata regular variation functions is a
well-suited framework for asymptotic analysis near the boundary for semilinear elliptic
problems. For more works related to the Karamata regular variation theory, we refer the
reader to [15–17, 19, 22, 24] and the reference therein.
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Motivated by the approach used in [1] and [5], in this paper, we consider the existence
and global asymptotic behavior of a positive continuous solution to the following problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u(x) + p(x)uγ = 0, x ∈ D (in the distributional sense),

u > 0, in D,

lim|x|→0 |x|n–2u(x) = 0,

lim|x|→∞ u(x) = 0,

(1.5)

where γ < 1, D = R
n\{0} (n ≥ 3) and the potential function p(x) is required to satisfy some

convenient comparable asymptotic rate related to the class of slowly varying functions
defined as follows; see for example [2, 14, 21, 25]:

Definition 1.1 A positive continuously differentiable function L defined on [A,∞), for
some A > 0 is said to be normalized slowly varying (at infinity) if,

lim
t→∞ t

L′(t)
L(t)

= 0;

we write L ∈NSV∞.

As examples, we quote:
• L(t) =

∏m
k=1(lnk t)ξk , where lnk t = ln lnk–1 t and ξk ∈R.

• L(t) = exp(
∏m

k=1(lnk t)νk ), where 0 < νk < 1.
• L(t) = exp{(ln t) 1

3 cos(ln t) 1
3 }.

The last example shows that the behavior at infinity for a slowly varying function cannot
be predicted. Indeed, it exhibits “infinite oscillation” in the sense that

lim inf
t→∞ L(t) = 0 and lim sup

t→∞
L(t) = ∞.

On the other hand, the growth or decay of a slowly varying function as t → ∞ is limited
in the sense that it satisfies for any ε > 0

lim
t→∞ tεL(t) = ∞, lim

t→∞ t–εL(t) = 0. (1.6)

Similarly, a class of normalized slowly varying (at zero) function is defined as follows:

Definition 1.2 A positive continuously differentiable function L defined on (0, a], for
some a > 0, is said to be normalized slowly varying (at zero) if,

lim
t→0+

t
L′(t)
L(t)

= 0;

we write L ∈NSV0.

Remark 1.3 Note that L belongs to NSV0 if and only if t → L(1/t) belongs to NSV∞.

Throughout this paper, we make the following assumption:
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(H) p is a positive continuous function in D such that there exists c > 0 satisfying

1
c
P(x) ≤ p(x) ≤ cP(x), for x ∈ D, (1.7)

where P(x) := |x|–μL0(min(|x|, 1))(|x| + 1)μ–λL∞(max(|x|, 1)), with γ < 1, μ ≤ n + (2 – n)γ
and λ ≥ 2.

Here, L0 ∈NSV0, defined on (0, a], for some a > 1 and L∞ ∈NSV∞, defined on [1,∞)
such that

∫ a

0
sn+(2–n)γ –μ–1L0(s) ds < ∞ and

∫ ∞

1
s1–λL∞(s) ds < ∞. (1.8)

Note that the comparable asymptotic rate of p(x) in (1.7) determines the asymptotic
behavior of the solution.

Our main result is summarized in the following theorem.

Theorem 1.4 Under assumption (H), problem (1.5) has at least one positive continuous
solution u on D such that

1
c
θ (x) ≤ u(x) ≤ cθ (x), (1.9)

where c is a positive constant and for x ∈ D,

θ (x) := |x|ξ (L̃0
(
min

(|x|, 1
))) 1

1–γ
(|x| + 1

)ζ–ξ (L̃∞
(
max

(|x|, 1
))) 1

1–γ , (1.10)

where ξ = min(0, 2–μ

1–γ
), ζ = max(2 – n, 2–λ

1–γ
) and L̃0 ∈NSV0 (resp., L̃∞ ∈NSV∞) is defined

on (0, a) (resp., on [1,∞)) by

L̃0(t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if μ < 2,
∫ a

t
L0(s)

s ds, if μ = 2,

L0(t), if 2 < μ < n + (2 – n)γ ,
∫ t

0
L0(s)

s ds, if μ = n + (2 – n)γ ,

(1.11)

and

L̃∞(t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫ ∞
t+1

L∞(s)
s ds, , if λ = 2,

L∞(t + 1), if 2 < λ < n + (2 – n)γ ,
∫ t+1

1
L∞(s)

s ds, if λ = n + (2 – n)γ ,

1, if λ > n + (2 – n)γ .

(1.12)

Remark 1.5 From (1.9) and (1.6), we obtain

lim|x|→0
u(x) = ∞, for μ > 2.

That is, the solution blows-up at the origin.
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The outline of this article is as follows. In Sect. 2, we prove some pertinent properties
related to the Kato class and also to the Karamata regular variation theory. In Sect. 3, we
show the existence of a solution to problem (1.5) with the required asymptotic behavior
(1.9).

In this paper, we use the following notations:
(i) D = R

n\{0} (n ≥ 3).
(ii) B(D) denotes the set of all Borel measurable functions in D and B+(D) denotes the

set of nonnegative ones.
(iii) C(D) refers to all continuous functions in D.
(iv) s ∧ t = min(s, t) and s ∨ t = max(s, t), for all s, t ∈R.
(v) For f , g ∈ B+(D), f ≈ g in D, means that there exists c > 0 such that

1
c f (x) ≤ g(x) ≤ cf (x), for all x ∈ D.

(vi) S+(�) denotes the set of all nonnegative superharmonic functions on an open set
� of Rn.

(vii) For x ∈ D,

�0(x) :=
1 + |x|n–2

|x|n–2 .

Note that �0 ∈ S+(Rn) and harmonic on D, see, for example, [3].
(viii) For x, y ∈ R

n, we denote the normalized fundamental solution of Laplace’s
equation by:

�(x, y) =
cn

|x – y|n–2 , with cn =
�( n

2 – 1)
4π

n
2

. (1.13)

(ix) The Newtonian potential N is defined on B+(D) by

N f (x) =
∫

D
�(x, y)f (y) dy. (1.14)

From [6, Proposition 2.10], we learned that if f ∈ B+(D) such that f ∈ L1
loc(D) and N f ∈

L1
loc(D), then

–�(N f ) = f , in D (in the distributional sense). (1.15)

Throughout this paper, the letter c will denote a generic positive constant that may vary
from line to line.

2 Preliminaries
2.1 Kato class K∞

n (D)
Definition 2.1 (See [28]) A function ψ in B(D) is said to be in the Kato class K∞

n (D) if

lim
r→0

(

sup
x∈D

∫

D∩B(x,r)
�(x, y)

∣
∣ψ(y)

∣
∣dy

)

= 0, (2.1)

and

lim
M→∞

(

sup
x∈D

∫

D∩(|y|≥M)
�(x, y)

∣
∣ψ(y)

∣
∣dy

)

= 0, (2.2)

where �(x, y) is given by (1.13).
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Example 2.2 Let p > n
2 . Then, we have

Lp(D) ∩ L1(D) ⊂ K∞
n (D).

Indeed, for ψ ∈ Lp(D), by using the Hölder inequality, it is clear that (2.1) holds. Now,
assume further that ψ ∈ L1(D), then

∫

D∩(|y|≥M)
�(x, y)

∣
∣ψ(y)

∣
∣dy

≤
∫

D∩B(x,r)
�(x, y)

∣
∣ψ(y)

∣
∣dy + cnr2–n

∫

D∩(|y|≥M)∩(|x–y|≥r)

∣
∣ψ(y)

∣
∣dy.

Hence, ψ satisfies (2.2).

The next Lemma is due to Mâagli and Zribi, see [20, Remark 2 and Proposition 1].

Lemma 2.3
(i) Let ψ be a radial function in D, then

ψ ∈ K∞
n (D) if and only if

∫ ∞

0
r
∣
∣ψ(r)

∣
∣dr < ∞.

(ii) Let ψ ∈ B(D) satisfying (2.1). Then, for each M > 0, we have

∫

D∩(|y|≤M)

∣
∣ψ(y)

∣
∣dy < ∞.

Remark 2.4 For all x, y, z ∈R
n, we have

�(x, y)�(y, z)
�(x, z)

≤ 2n–3cn
(
�(x, y) + �(y, z)

)
, (2.3)

where cn = �( n
2 –1)

4π
n
2

.

Proposition 2.5 Let ψ ∈ K∞
n (D), x0 ∈ R

n and h ∈ S+(D). Then, we have

lim
r→0

(

sup
x∈D

1
h(x)

∫

D∩B(x0,r)
�(x, y)h(y)

∣
∣ψ(y)

∣
∣dy

)

= 0, (2.4)

and

lim
M→∞

(

sup
x∈D

1
h(x)

∫

D∩(|y|≥M)
�(x, y)h(y)

∣
∣ψ(y)

∣
∣dy

)

= 0. (2.5)

Proof Since h ∈ S+(D), then by [23, Theorem 2.1, p. 164], there exists a sequence (hk)k ⊂
B+(D) such that

h(y) = sup
k

∫

D
�(y, z)hk(z) dy, for y ∈ D.

Therefore, we need to prove (2.4) and (2.5) only for h(y) = �(y, z) uniformly in z ∈ D.
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Let r > 0. By using Remark 2.4, there exists a constant c > 0, such that for all x, y, z ∈ D,

1
h(x)

∫

D∩B(x0,r)
�(x, y)h(y)

∣
∣ψ(y)

∣
∣dy ≤ 2c sup

ξ∈D

∫

D∩B(x0,r)
�(ξ , y)

∣
∣ψ(y)

∣
∣dy. (2.6)

For ε > 0, by Definition 2.1, there exists s > 0 and M > 0 such that

∫

D∩B(x0,r)
�(ξ , y)

∣
∣ψ(y)

∣
∣dy ≤ ε +

cn

sn–2

∫

D∩B(x0,r)∩(|y|≤M)

∣
∣ψ(y)

∣
∣dy.

Using this fact, (2.6) and Lemma 2.3(ii), we obtain (2.4) by letting r → 0.
Finally, note that assertion (2.5) follows by using similar arguments as above. �

Proposition 2.6 Let ψ ∈ K∞
n (D) and �0(x) := 1+|x|n–2

|x|n–2 . Then, the function

v(x) :=
1

�0(x)

∫

D
�(x, y)�0(y)ψ(y) dy

is continuous on R
n with lim|x|→∞ v(x) = 0. That is, v(x) ∈ C0(Rn).

Proof Let ψ ∈ K∞
n (D) and x0 ∈ R

n. Since �0 ∈ S+(D), then for ε > 0, by Proposition 2.5,
there exists M > r > 0, such that the following holds:

(i) If x0 = 0, then for x ∈ B(x0, r
2 ) ∩ D, we have

∣
∣v(x) – v(x0)

∣
∣ ≤ ε

2
+

∫

D0∩(|y|≤M)

∣
∣
∣
∣

1
�0(x)

�(x, y) –
1

�0(x0)
�(x0, y)

∣
∣
∣
∣�0(y)

∣
∣ψ(y)

∣
∣dy,

where D0 = D ∩ Bc(0, r) ∩ Bc(x0, r).
Since (x, y) �→ 1

�0(x)�(x, y) is continuous on (B(x0, r
2 ) ∩ D) × (D0 ∩ (|y| ≤ M)), we obtain

by Lemma 2.3 (ii) and Lebesgue’s dominated convergence theorem,

∫

D0∩(|y|≤M)

∣
∣
∣
∣

1
�0(x)

�(x, y) –
1

�0(x0)
�(x0, y)

∣
∣
∣
∣�0(y)

∣
∣ψ(y)

∣
∣dy → 0 as x → x0.

Hence, there exists δ > 0 with δ < r
2 such that if x ∈ B(x0, δ) ∩ D,

∫

D0∩(|y|≤M)

∣
∣
∣
∣

1
�0(x)

�(x, y) –
1

�0(x0)
�(x0, y)

∣
∣
∣
∣�0(y)

∣
∣ψ(y)

∣
∣dy ≤ ε

2
.

Hence, for x ∈ B(x0, δ) ∩ D, we have

∣
∣v(x) – v(x0)

∣
∣ ≤ ε.

That is,

lim
x→x0

v(x) = v(x0).

(ii) If x0 = 0 and x ∈ B(0, r
2 ) ∩ D, then we have

∣
∣v(x)

∣
∣ ≤ ε

2
+

∫

D∩Bc(0,r)∩(|y|≤M)

1
�0(x)

�(x, y)�0(y)
∣
∣ψ(y)

∣
∣dy.
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Now, since lim|x|→0
1

�0(x)�(x, y)�0(y) = 0, for all y ∈ D ∩ Bc(0, r) ∩ (|y| ≤ M), we deduce by
similar arguments as above that

lim|x|→0
v(x) = 0 = v(x0).

(iii) It remains to prove that lim|x|→∞ v(x) = 0.
To this end, let x ∈ D such that |x| ≥ M + 1. Using Proposition 2.5 and Lemma 2.3 (ii),

we deduce that

∣
∣v(x)

∣
∣ ≤ ε

2
+

1 + Mn–2

rn–2

∫

D∩Bc(0,r)∩(|y|≤M)
�(x, y)

∣
∣ψ(y)

∣
∣dy

≤ ε

2
+

c
(|x| – M)n–2 ,

where c is some positive constant.
This implies that lim|x|→∞ v(x) = 0. �

2.2 Karamata regular variation theory
Let us recall some basic properties of Karamata regular variation theory (see [2, 14, 21, 24,
25]).

The following result concerns operations that preserve slow variation.

Proposition 2.7 If L1(t), L2(t) are slowly varying at infinity (resp., at zero), then the same
holds for L1(t) + L2(t), L1(t)L2(t), and (L1(t))ν for any ν ∈R.

Proposition 2.8
(i) If L(t) ∈NSV∞, then for any ε > 0

lim
t→∞ tεL(t) = ∞, lim

t→∞ t–εL(t) = 0.

(ii) If L(t) ∈NSV0, then for any ε > 0

lim
t→0+

tεL(t) = 0 and lim
t→0+

t–εL(t) = ∞.

The following result, termed Karamata’s integration theorem, will be used later.

Proposition 2.9 Let L(t) ∈NSV∞. Then,
(i) if ν > –1,

∫ t

A
sνL(s) ds ∼ 1

ν + 1
tν+1L(t), t → ∞;

(ii) if ν < –1,

∫ ∞

t
sνL(s) ds ∼ –

1
ν + 1

tν+1L(t), t → ∞;
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(iii) if ν = –1,

l(t) =
∫ t

A
s–1L(s) ds ∈NSV∞ and lim

t→∞
L(t)
l(t)

= 0;

and if
∫ ∞

A s–1L(s) ds < ∞,

m(t) =
∫ ∞

t
s–1L(s) ds ∈NSV∞ and lim

t→∞
L(t)
m(t)

= 0.

The following is an analog of Proposition 2.9 for L defined at zero instead of ∞.

Proposition 2.10 Let L(t) ∈NSV0. Then,
(i) if ν > –1,

∫ t

0
sνL(s) ds ∼ 1

ν + 1
tν+1L(t), t → 0+;

(ii) if ν < –1,

∫ a

t
sνL(s) ds ∼ –

1
ν + 1

tν+1L(t), t → 0+;

(iii) if ν = –1,

l0(t) =
∫ a

t
s–1L(s) ds ∈NSV0 and lim

t→0+

L(t)
l0(t)

= 0;

and if
∫ a

0 s–1L(s) ds < ∞,

m0(t) =
∫ t

0
s–1L(s) ds ∈NSV0 and lim

t→0+

L(t)
m0(t)

= 0.

The following result, will play a central role in establishing our main result in Sect. 3.

Proposition 2.11 For α ≤ n and β ≥ 2, set

b(x) = |x|–αL0
(|x| ∧ 1

)(|x| + 1
)α–βL∞

(|x| ∨ 1
)
, x ∈ D,

where L0 ∈ NSV0 defined on (0, a], for some a > 1 and L∞ ∈ NSV∞, defined on [1,∞)
such that

∫ a

0
sn–α–1L0(s) ds < ∞ and

∫ ∞

1
s1–βL∞(s) ds < ∞. (2.7)

Then,

Nb(x) ≈ |x|min(0,2–α)̃L0
(|x| ∧ 1

)(|x| + 1
)max(2–n,2–β)–min(0,2–α)̃L∞

(|x| ∨ 1
)
, on D,
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where for t ∈ (0, a),

L̃0(t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if α < 2,
∫ a

t
L0(s)

s ds, if α = 2,

L0(t), if 2 < α < n,
∫ t

0
L0(s)

s ds, if α = n,

and for t ≥ 1,

L̃∞(t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if β > n,
∫ t+1

1
L∞(s)

s ds, if β = n,

L∞(t + 1), if 2 < β < n,
∫ ∞

t+1
L∞(s)

s ds, if β = 2.

Proof Since b is a nonnegative radial measurable function on D, it follows from [23, Propo-
sition 1.7], that

Nb(x) :=
∫

D
�(x, y)b(y) dy = c

∫ ∞

0

rn–1

(|x| ∨ r)n–2 b(r) dr =: cJ
(|x|),

where the function J is defined on [0,∞) by

J(t) =
∫ ∞

0

rn–α–1

(t ∨ r)n–2 (r + 1)α–βL0(r ∧ 1)L∞(r ∨ 1) dr.

We need to estimate J(t). Note that, under condition (2.7), J(t) < ∞.
Let a > 1, then we have

J(t) ≈
∫ a

0

rn–α–1

(t ∨ r)n–2 L0(r) dr +
∫ ∞

a

rn–β–1

(t ∨ r)n–2 L∞(r) dr

:= J1(t) + J2(t).

We discuss the following cases:
Case 1. 0 < t ≤ 1. Clearly from (2.7), we have

J2(t) =
∫ ∞

a
r1–βL∞(r) dr ≈ 1.

On the other hand, by writing

J1(t) = t2–n
∫ t

0
rn–α–1L0(r) dr +

∫ a

t
r1–αL0(r) dr,

we deduce that

J(t) ≈ t2–n
∫ t

0
rn–α–1L0(r) dr +

(

1 +
∫ a

t
r1–αL0(r) dr

)

.
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Therefore, by (2.7) and Propositions 2.8 and 2.10, we obtain

J(t) ≈ φ0(t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if α < 2,
∫ a

t
L0(r)

r dr, if α = 2,

t2–αL0(t), if 2 < α < n,

t2–α
∫ t

0
L0(r)

r dr, if α = n.

That is,

J(t) ≈ tmin(0,2–α)̃L0(t), for 0 < t ≤ 1. (2.8)

Case 2. t ≥ a + 1. From (2.7), we derive that

J1(t) ≈ t2–n
∫ a

0
rn–α–1L0(r) dr ≈ t2–n.

On the other hand, since

J2(t) = t2–n
∫ t

a
rn–β–1L∞(r) dr +

∫ ∞

t
r1–βL∞(r) dr,

we deduce that

J(t) ≈ t2–n
(

1 +
∫ t

a
rn–β–1L∞(r) dr

)

+
∫ ∞

t
r1–βL∞(r) dr.

Hence, by (2.7) and Propositions 2.8 and 2.9, we obtain

J(t) ≈

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t2–n, if β > n,

t2–n ∫ t
a

L∞(s)
s ds, if β = n,

t2–βL∞(t), if 2 < β < n,
∫ ∞

t
L∞(s)

s ds, if β = 2.

Therefore, by using Proposition 2.9 and [5, Lemma 2.3], we conclude that

J(t) ≈ φ∞(t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(t + 1)2–n, if β > n,

(t + 1)2–n ∫ t+1
1

L∞(s)
s ds, if β = n,

(t + 1)2–βL∞(t + 1), if 2 < β < n,
∫ ∞

t+1
L∞(s)

s ds, if β = 2.

Hence,

J(t) ≈ (t + 1)max(2–n,2–β )̃L∞(t), for t ≥ a + 1. (2.9)

Finally, since J(t), φ0(t) and φ∞(t) are positive continuous functions on [1, a + 1], we
deduce that

J(t) ≈ φ0(t)φ∞(t), on [1, a + 1]. (2.10)
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Hence, by combining (2.8), (2.9) and (2.10), we obtain

J(t) ≈ tmin(0,2–α)̃L0(t ∧ 1)(t + 1)max(2–n,2–β)–min(0,2–α)̃L∞(t ∨ 1), on [0,∞).

This completes the proof. �

Proposition 2.12 Assume that p satisfies hypothesis (H), then

N
(
pθγ

)
(x) ≈ θ (x), on D,

where γ < 1 and θ is given in (1.10).

Proof Using (1.7) and (1.10), we obtain

p(x)θγ (x)

≈ |x|–αL0
(|x| ∧ 1

)(
L̃0

(
min

(|x|, 1
))) γ

1–γ
(|x| + 1

)α–βL∞
(|x| ∨ 1

)(
L̃∞

(|x| ∨ 1
)) γ

1–γ ,

where α := μ – γ min(0, 2–μ

1–γ
) and β := λ – γ max(2 – n, 2–λ

1–γ
).

From the fact that μ ≤ n + (2 – n)γ and λ ≥ 2, we derive that α ≤ n and β ≥ 2.
By using the basic properties of Karamata regular variation theory and Proposition 2.11

with L0 = L0(|x| ∧ 1)(L̃0(min(|x|, 1)))
γ

1–γ ∈NSV0 and L∞ = L∞(|x| ∨ 1)(L̃∞(|x| ∨ 1))
γ

1–γ ∈
NSV∞, we deduce that

N
(
pθγ

)
(x) ≈ |x|min(0,2–α)̃L0

(|x| ∧ 1
)(|x| + 1

)max(2–n,2–β)–min(0,2–α)̃L∞
(|x| ∨ 1

)
.

Since min(0, 2 – α) = min(0, 2–μ

1–γ
) := ξ and max(2 – n, 2 – β) = max(2 – n, 2–λ

1–γ
) := ζ , we

deduce that

N
(
pθγ

)
(x) ≈ |x|ξ L̃0

(|x| ∧ 1
)(|x| + 1

)ζ–ξ L̃∞
(|x| ∨ 1

)
≈ θ (x).

This completes the proof. �

3 Proof of Theorem 1.4
In order to prove Theorem 1.4, we need to establish some preliminary results. Our ap-
proach is inspired from methods developed in [20] with necessary modifications.

For ν > 0, we denote by (Pν) the following problem

(Pν)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u(x) + p(x)uγ (x) = 0, x ∈ D (in the distributional sense),

u > 0 in D,

lim|x|→0 |x|n–2u(x) = ν,

lim|x|→∞ u(x) = ν.

We recall that for x ∈ D, �0(x) = 1+|x|n–2

|x|n–2 .
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Note that ν�0(x) is a solution of the following homogeneous problem

(Hν)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�u(x) = 0, x ∈ D,

u > 0 in D,

lim|x|→0 |x|n–2u(x) = ν,

lim|x|→∞ u(x) = ν.

Problem (Pν) can be seen as a perturbation of problem (Hν).

Proposition 3.1 Let γ < 0 and assume that hypothesis (H) is satisfied. Then, for each ν > 0,
problem (Pν) has at least one positive solution uν ∈ C(D ∪ {∞}) satisfying for x ∈ D

uν(x) = ν�0(x) +
∫

D
�(x, y)p(y)uγ

ν (y) dy. (3.1)

In particular,

uν(x) ≈ �0(x), on D.

Proof Let γ < 0 and ν > 0. Due to Lemma 2.3 (i) and hypothesis (H), the function ψ(y) :=
(�0(y))(γ –1)p(y) becomes in K∞

n (D).
Therefore, by Proposition 2.6, we have

x �→ h(x) :=
1

�0(x)

∫

D
�(x, y)

(
�0(y)

)γ p(y) dy ∈ C0
(
R

n). (3.2)

Let β0 := ν + νγ ‖h‖∞ and consider the convex set � given by

� =
{
ϑ ∈ C

(
R

n ∪ {∞}) : ν ≤ ϑ ≤ β0
}

.

Define the operator T on � by

Tϑ(x) = ν +
1

�0(x)

∫

D
�(x, y)p(y)

(
�0(y)

)γ
ϑγ (y) dy.

Since for all ϑ ∈ �, ϑγ ≤ νγ , then as in the proof of Proposition 2.6 we show that the
family T� is equicontinuous in R

n ∪ {∞}. In particular, for all ϑ ∈ �, Tϑ ∈ C(Rn ∪ {∞})
and so T� ⊂ �.

Moreover, the family {Tϑ(x),ϑ ∈ �} is uniformly bounded in R
n ∪ {∞}, then by the

Arzela–Ascoli theorem (see, for example [9, p. 62]) the set T(�) becomes relatively com-
pact in C(Rn ∪ {∞}).

To prove the continuity of T in �, we consider a sequence (ϑk)k ⊂ � and ϑ ∈ � such
that ‖ϑk – ϑ‖∞ → 0 as k → ∞. Then, we have

∣
∣Tϑk(x) – Tϑ(x)

∣
∣ ≤ 1

�0(x)

∫

D
�(x, y)p(y)

(
�0(y)

)γ ∣
∣ϑ

γ

k (y) – ϑγ (y)
∣
∣dy.

Now, since

∣
∣ϑ

γ

k (y) – ϑγ (y)
∣
∣ ≤ 2νγ ,
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we deduce by the dominated convergence theorem and Proposition 2.6 that

∀x ∈R
n ∪ {∞}, Tϑk(x) → Tϑ(x) as k → ∞.

Since T(�) is relatively compact in C(Rn ∪ {∞}), we obtain

‖Tϑk – Tϑ‖∞ → 0 as k → ∞.

Hence, T is a compact mapping of � to itself and by the Schauder fixed-point theorem,
there exists ϑν ∈ � such that for each x ∈ R

n

ϑν(x) = ν +
1

�0(x)

∫

D
�(x, y)p(y)

(
�0(y)

)γ
ϑγ

ν (y) dy. (3.3)

Since ϑ
γ
ν ≤ νγ , we deduce from (3.3) and (3.2) that

lim|x|→∞ϑν(x) = ν and lim|x|→0
ϑν(x) = ϑν(0) = ν. (3.4)

Put uν(x) = �0(x)ϑν(x), for x ∈ D. Then, uν ∈ C(D ∪ {∞}) and we have

uν(x) = ν�0(x) +
∫

D
�(x, y)p(y)uγ

ν (y) dy, (3.5)

and

ν�0(x) ≤ uν(x) ≤ β�0(x). (3.6)

Now, since the function y �→ p(y)uγ
ν (y) ∈ L1

loc(D) and from (3.5) the function x �→
N (puγ

ν )(x) ∈ L1
loc(D), we deduce by (1.15) that uν satisfies

–�uν(x) = p(x)uγ
ν (x), x ∈ D, (in the distributional sense).

By (3.4), we have

lim|x|→0
|x|n–2uν(x) = lim|x|→∞ uν(x) = ν.

This completes the proof. �

The next result is due to Mâagli and Zribi, see [20, Lemma 1].

Lemma 3.2 Let g ∈ B+(D) and v ∈ S+(D). Then, for any w ∈ B(D) such that N (g|w|) < ∞
and w + N (gw) = v, we have

0 ≤ w ≤ v.

Corollary 3.3 Let γ < 0, 0 < ν1 ≤ ν2 and uνi ∈ C(D ∪ {∞}) be the solution of problem (Pνi )
given by (3.1). Then, we have

0 ≤ uν2 (x) – uν1 (x) ≤ (ν2 – ν1)�0(x), for x ∈ D. (3.7)
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Proof Let g be the function defined on D by

g(x) =

⎧
⎨

⎩

p(x) uγ
ν2 (x)–uγ

ν1 (x)
uν1 (x)–uν2 (x) , if uν1 (x) = uν2 (x),

0, if uν1 (x) = uν2 (x).

Since γ < 0, then g ∈ B+(D) and by (3.1) we have

uν2 – uν1 + N
(
g(uν2 – uν1 )

)
= (ν2 – ν1)�0(x). (3.8)

Using (3.6) and (3.2), we obtain for x ∈ D,

N
(
g|uν2 – uν1 |

)
(x) =

∫

D
�(x, y)p(y)

∣
∣uγ

ν2 (y) – uγ
ν1 (y)

∣
∣dy

≤ (
ν

γ
1 + ν

γ
2
)
∫

D
�(x, y)p(y)

(
�0(y)

)γ dy

=
(
ν

γ
1 + ν

γ
2
)
�0(x)h(x) < ∞.

Hence, by (3.8) and Lemma 3.2 with w = uν2 – uν1 , we obtain (3.7). �

Proposition 3.4 Let γ < 0. Under hypothesis (H), problem (1.5) has at least one positive
solution u ∈ C(D) satisfying for x ∈ D

u(x) =
∫

D
�(x, y)p(y)uγ (y) dy.

Proof Let (νk)k be a positive sequence decreasing to zero. Let uk ∈ C(D ∪ {∞}) be the
solution of problem (Pνk ) given by (3.1). By Corollary 3.3, the sequence (uk)k decreases to
a function u, and since γ < 0 the sequence (uk – νk�0(x))k increases to u. Therefore, by
using (3.1), (3.6) and the fact that γ < 0, we obtain for each x ∈ D,

u(x) ≥ uk(x) – νk�0(x) =
∫

D
�(x, y)p(y)uγ

k (y) dy

≥ β
γ

k

∫

D
�(x, y)p(y)

(
�0(y)

)γ dy > 0,

where βk := νk + ν
γ

k ‖h‖∞ and h is given by (3.2).
By the monotone convergence theorem, we obtain

u(x) =
∫

D
�(x, y)p(y)uγ (y) dy. (3.9)

Since for each x ∈ D, u(x) = infk uk(x) = supk(uk(x) – νk�0(x)), then u is an upper and
lower semicontinuous function on D and so u ∈ C(D).

Since the function y �→ p(y)uγ (y) is in L1
loc(D) and from (3.9) the function x �→N (puγ )(x)

is also in L1
loc(D), we deduce by (1.15) that

–�u(x) = p(x)uγ (x), x ∈ D, (in the distributional sense).
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Finally, using the fact that uk is a solution of problem (Pνk ) and that 0 < u(x) ≤ uk(x), for
x ∈ D, we obtain

lim|x|→0
|x|n–2u(x) = 0 and lim|x|→∞ u(x) = 0.

Hence, u is a solution of problem (1.5). �

Proof of Theorem 1.4 Under assumption (H), by Proposition 2.12, there exists M ≥ 1 such
that for each D,

1
M

θ (x) ≤Nq(x) ≤ Mθ (x), (3.10)

where θ is the function defined in (1.10) and q(y) := p(y)θγ (y).
We split the proof into two cases.
Case 1: γ < 0.
By Proposition 3.4 problem (1.5) has a positive continuous solution u satisfying (3.9).

We claim that u satisfies (1.9).
By (3.10), we have

Mγ (Nq)γ (x) ≤ θγ (x) ≤ M–γ (Nq)γ (x). (3.11)

Let m = M– γ
1–γ . Then, by elementary calculus we have

mNq = N
(
p(mNq)γ

)
+ N f , (3.12)

where f (x) := mp(x)[θγ (x) – Mγ (Nq)γ (x)], for x ∈ D.
Clearly, we have f ∈ B+(D) and by using (3.9) and (3.12), we obtain

mNq – u + N
(
p
(
uγ – (mNq)γ

))
= N f . (3.13)

Let g be the function defined on D by

g(x) =

⎧
⎨

⎩

p(x) uγ (x)–(mN q)γ (x)
(mN q)(x)–u(x) , if u(x) = (mNq)(x),

0, if u(x) = (mNq)(x).

Since γ < 0, then g ∈ B+(D) and we have

p
(
uγ – (mNq)γ

)
= g(mNq – u). (3.14)

Therefore, the relation (3.13) becomes

mNq – u + N
(
g(mNq – u)

)
= N f .

Now, since f ∈ B+(D) by using (3.14), (3.9), (3.12) and (3.10), we obtain

N
(
g|mNq – u|) ≤ N

(
puγ

)
+ N

(
p(mNq)γ

)
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≤ u + mNq

≤ u + mMθ < ∞.

Hence, by Lemma 3.2, we obtain

u ≤ mNq.

Similarly, we prove that

1
m
Nq ≤ u.

Thus, by (3.10) u satisfies (1.9).
Case 2: 0 ≤ γ < 1.
Let ω(x) = 1

�0(x)θ (x), for x ∈ D. By (3.10), we have

1
M

ω(x) ≤ 1
�0(x)

Nq(x) ≤ Mω(x). (3.15)

Put c = M
1

1–γ and consider the closed convex set given by

E =
{

v ∈ C0
(
R

n),
1
c
ω ≤ v ≤ cω

}

.

Note that ω ∈ E. So E = φ.
Define the operator T on E by

Tv(x) :=
1

�0(x)

∫

D
�(x, y)p(y)

(
�0(y)

)γ vγ (y) dy, x ∈ D.

By using (3.15), we obtain for all v ∈ E,

1
c
ω ≤ Tv ≤ cω.

For all v ∈ E, we have

∣
∣vγ (y)

∣
∣ ≤ cγ

∥
∥ωγ

∥
∥∞, for all y ∈ D.

Therefore, as in the proof of Proposition 2.6, we deduce that

Tv ∈ C0
(
R

n), for all v ∈ E.

Hence, T(E) ⊂ E.
Let (ωk)k ⊂ C0(Rn) be defined by

ω0 =
1
c
ω and ωk+1 = Tωk , for k ∈ N.
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Since the operator T is nondecreasing and T(E) ⊂ E, we obtain

1
c
ω = ω0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωk ≤ ωk+1 ≤ cω.

So, by the convergence monotone theorem, the sequence (ωk)k converges to a function
v satisfying for each x ∈ D,

1
c
ω(x) ≤ v(x) ≤ cω(x) and v(x) =

1
�0(x)

∫

D
�(x, y)p(y)

(
�0(y)

)γ vγ (y) dy.

Since v is bounded, we prove by similar arguments as in the proof of Proposition 2.6 that
v ∈ C0(Rn).

Put u(x) = �0(x)v(x). Then, u ∈ C(D) and satisfies the equation

u(x) = N
(
puγ

)
(x), for x ∈ D. (3.16)

Finally, since the function y �→ p(y)uγ (y) is in L1
loc(D) and from (3.16) the function x �→

N (puγ )(x) is also in L1
loc(D), we deduce by (1.15) that u is a solution of problem (1.5). The

proof of Theorem 1.4 is completed. �

Example 3.5 Let γ < 1 and p ∈ C(D), such that

p(x) ≈ |x|–μ

(

log

(
3

|x| ∧ 1

))–β(|x| + 1
)μ–2(

log
(
3|x| ∨ 3

))–2,

where μ < n + (2 – n)γ and β ∈ R. Then, by Theorem 1.4, problem (1.5) has at least one
positive solution u ∈ C(D) satisfying the following estimates:

(i) If 2 < μ < n + (2 – n)γ , then for x ∈ D,

u(x) ≈ |x| 2–μ
1–γ

(

log

(
3

|x| ∧ 1

)) –β
1–γ (

log
(
3|x| ∨ 3

)) –1
1–γ .

In particular, lim|x|→0 u(x) = ∞.
(ii) If μ = 2 and β > 1 or μ < 2, then for x ∈ D,

u(x) ≈
(
log

(
3|x| ∨ 3

)) –1
1–γ .

(iii) If μ = 2 and β = 1, then for x ∈ D,

u(x) ≈
(

log2

(
3

|x| ∧ 1

)) 1
1–γ (

log
(
3|x| ∨ 3

)) –1
1–γ .

(iv) If μ = 2 and β < 1, then for x ∈ D,

u(x) ≈
(

log

(
3

|x| ∧ 1

)) 1–β
1–γ (

log
(
3|x| ∨ 3

)) –1
1–γ .
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15. Kusano, T., Manojlović, J.: Asymptotic behavior of positive solutions of sublinear differential equations of

Emden–Fowler type. Comput. Math. Appl. 62(2), 551–565 (2011)
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