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Abstract
In this paper, we propose an optimal control problem for an HIV infection model with
cellular and humoral immune responses, logistic growth of uninfected cells,
cell-to-cell spread, saturated infection, and cure rate. The model describes the
interaction between uninfected cells, infected cells, free viruses, and cellular and
humoral immune responses. We use two control functions in our model to show the
effectiveness of drug therapy on inhibiting virus production and preventing new
infections. We apply Pontryagin maximum principle to study these two control
functions. Next, we simulate the role of optimal therapy in the control of the infection
by numerical simulations and AMPL software.
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1 Introduction
Acquired immune deficiency syndrome (in short, AIDS) is caused by a type of lentivirus
called human immunodeficiency virus (HIV). The life cycle of HIV is not yet completely
understood. Studies show that the spread of the virus leads to the decreasing of immune
cells and the creating of opportunistic infections. When the number of immune cells
reaches less than 200, AIDS happens. The normal time from the entry of the virus to a
cell to the occurring of AIDS is between 7 and 10 years, varying from one person to an-
other person [1–4]. Many countries have been affected by the HIV-1 virus for many years.
The virus is spreading rapidly in some areas. Many researchers [5–17] have been devel-
oped mathematical models to understand the dynamics of HIV. Due to the rapid spread
of HIV-1 in some areas, many countries have been found some ways for fighting HIV-1
[18, 19]. One way is to use drugs that help the immune system to prevent the spread of
HIV infection. These drugs are called antiretroviral drugs. Antiretroviral therapy, used
to treat HIV in most countries, can restore the immune system and prevent opportunis-
tic infections. These treatments reduce the production of new infections and the rate of
HIV transmission. These methods increase the life expectancy of HIV-infected patients.
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One of these drugs is the reverse transcriptase inhibitor (RTI), which prevents the con-
version of viral RNA to DNA and produces infected mature cells. Protease inhibitor (PI)
prevents virus production from infected cells [20, 21]. Since these treatments are singly
detrimental to the patient, an optimal therapy for the treatment of HIV infection using
a combination of multiple appropriate treatment strategies is needed. Due to the lack of
understanding of the mechanisms among host cells, HIV infection, and the happening
of AIDS, many questions have been raised: What is the best combination? When is the
appropriate time to start the treatment? How this treatment should be done? Some HIV
mathematical models [22–29] play a significant role in understanding the dynamics of vi-
ral transmission, drug therapy, and HIV-1 improvement. Optimal control theory [30] is
a branch of mathematical science that helps us to find optimal ways to control infectious
diseases. One of the optimal ways is to use the best drug dosage to treat and control the
infection.

In this paper, we propose a new mathematical model of HIV, which is an extension of
the model developed in [16, 17]. In the presented model, we use the logistic function to
describe the rate of mitotic proliferation of healthy cells, the saturation function for virus-
to-cell transmission, cell-to-cell transmission, and cellular and humoral immune. We also
consider the cure rate (namely, the conversion rate of infected cells to healthy cells) by
gene therapy or loss of all cccDNA from their nucleus [31].

This paper is organized as follows: In Sect. 2, we formulate our new model with five state
variables and two control functions. In Sect. 3, by introducing two drug controllers, we
state the necessary conditions for the existence of optimal control. In Sect. 4, we illustrate
the numerical simulation of the model. In Sect. 5, we conclude.

2 Model formulation
The population of CD+

4 T-cells is stimulated and divided by the antigen, and this prolifer-
ation stops when it reaches its maximum value. Hence, we can use the logistic function to
describe this process [32, 33]. To construct a more realistic model, we use the saturation
function instead of the bilinear infection rate [16, 34]. Besides the virus-to-cell transmis-
sion, we will use the rate of cell-to-cell transmission [9]. Both cellular and humoral im-
mune systems are included in our model for investigating the effectiveness of the Foutz
vaccine design [14]. The principle of the Kaminsky gene therapy states that the cure rate
can be used to avert the infected cells to uninfected cells [31]. Due to the effect of antiviral
drugs on HIV control and personal health, we consider two control functions to study their
effect [15]. In view of the above assumptions, we provide a new model with five state vari-
ables. The state variables of this model are denoted by x, y, v, z, w, which are respectively:
Population of uninfected CD+

4 T-cells, Population of infected CD+
4 T-cells, Population of

infectious HIV virions, Population of T-cells, Population of B-cells. Moreover, two con-
trol functions denoted by u1(t) and u2(t), are introduced as reverse transcriptase inhibitor
(RTI) and protease inhibitor (PI), respectively. RTI prevents the transcription process in
HIV-infected cells and PI blocks the protease enzyme and prevents the production of in-
fection and adult viruses. Our proposed model is given below.

dx
dt

= rx
(

1 –
x + y

m

)
–

(1 – u1(t))β1vx
1 + αv

– β2xy + ρy – dx,

dy
dt

=
(1 – u1(t))β1vx

1 + αv
+ β2xy – (δ + ρ)y – ρ1yz,
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Table 1 Used parameters in HIV mathematical model

Parameters Description

r The rate at which the CD+
4 T-cells are reproduced.

m Maximum value of CD+
4 T-cells in the absence of the virus.

β1 The rate at which the virus infects the CD+
4 T-cells.

β2 The rate at which the CD+
4 T-cells are infected by the infected cells.

α The rate at which the viruses are saturated.
ρ The cure rate of the infected CD+

4 T-cells that reverted to the uninfected T-cells.
d The death rate of the CD+

4 T-cells.
δ The death rate of the infected CD+

4 T-cells.
ρ1 The rate at which the T-cells kill the infected CD+

4 T-cells.
n Number of viruses produced by the infected CD+

4 T-cells.
μ The death rate of the viruses.
ρ2 The rate at which the B-cells kill the viruses.
c1 The rate at which the presence of the infected T-cells activates the T-cells.
b1 The death rate of the T-cells.
c2 The rate at which the presence of the virus activates the B-cells.
b2 The death rate of the B-cells.

dv
dt

=
(
1 – u2(t)

)
nδy – μv – ρ2vw, (2.1)

dz
dt

= c1yz – b1z,

dw
dt

= c2vw – b2w.

All parameters presented in model (2.1) are positive and independent of time. They are
defined in Table 1. The u1 controller shows the impact of reverse transcriptase inhibitors,
and the u2 controller indicates the effect of protease inhibitor. These two controllers are
time-dependent and limited to 0 and 1. The case u1 = u2 = 0 denotes 0% efficacy of the
reverse transcriptase and protease inhibitors, while the case u1 = u2 = 1 indicates 100%

efficacy of the reverse transcriptase and protease inhibitors. To begin, we assume that
�(t) = (x(t), y(t), v(t), z(t), w(t)) is an integral curve of the system (2.1) parameterized by
the time variable t. Now, we define an objective function as follows:

J
(
u1(t), u2(t)

)
=

∫ tf

0

(
x(t) + z(t) + w(t) – v(t) –

E1

2
u2

1(t) –
E2

2
u2

2(t)
)

dt. (2.2)

In the above definition, the parameter tf denotes the terminal time of the treatment, and
the parameters E1 and E2 represent non-negative weight factors of the treatment for in-
hibiting the reverse transcriptase and protease enzymes. The quadratic expressions of u1

and u2 represent non-linear costs of the treatment, as pointed in [35]. We assume that u1

and u2 are piecewise continuous and Lebesgue-integrable.

Remark 2.1 Given a continuous function g(t) on the time interval [a, b]. Its average on this
interval is given by

g =
1

b – a

∫ b

a
g(t) dt.

Therefore, the integral defined in (2.2) denotes the average of the function g(t) = tf (g1(t) –
g2(t)) on the interval [0, tf ], where g1(t) = x(t)+z(t)+w(t) and g2(t) = v(t)+ E1

2 u2
1(t)+ E2

2 u2
2(t).
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We note that g1(t) is the summation of the uninfected, cellular, and humoral immune cells,
while g2(t) is the summation of the population of viruses and the dosage of the drugs at
time t. Hence, the best strategy for treating HIV infection is to maximize the objective
function (2.2).

We aim to find the optimal controls u∗
1 and u∗

2 such that

J
(
u∗

1(t), u∗
2(t)

)
= max

{
J
(
u1(t), u2(t)

)
:
(
u1(t), u2(t)

) ∈ U
}

, (2.3)

where U is a measurable control set described by

U =
{(

u1(t), u2(t)
)

: u1, u2 are measurable on [0, tf ], and 0 ≤ u1, u2 ≤ 1
}

.

3 The necessary conditions for the existence of optimal control
In this section, by using the Pontryagin maximum principle [30], we obtain the necessary
conditions for the existence of optimal control for system (2.1). The Pontryagin maximum
principle states: if u∗(t) = (u∗

1, u∗
2) ∈ U is an optimal control for (2.2) with a fixed terminal

time tf , then there exists an adjoint vector λ(t) with five adjoint variables λ1, λ2, λ3, λ4, λ5,
which is defined as

λ : [0, tf ] →R
5,

λ(t) =
(
λ1(t),λ2(t),λ3(t),λ4(t),λ5(t)

)
,

such that for all t ∈ [0, tf ], the following conditions are satisfied.
1. The state variables are obtained from the below equations:

dx
dt

=
∂H(t, u∗

1, u∗
2,λ(t))

∂λ1
,

dy
dt

=
∂H(t, u∗

1, u∗
2,λ(t))

∂λ2
,

dv
dt

=
∂H(t, u∗

1, u∗
2,λ(t))

∂λ3
,

dz
dt

=
∂H(t, u∗

1, u∗
2,λ(t))

∂λ4
,

dw
dt

=
∂H(t, u∗

1, u∗
2,λ(t))

∂λ5
.

2. The optimal control values u∗
1 and u∗

2 can be obtained from the optimality
conditions:

∂H(t, u∗
1, u∗

2,λ(t))
∂u1

= 0,
∂H(t, u∗

1, u∗
2,λ(t))

∂u2
= 0. (3.1)

3. The adjoint equations can be solved from

dλ1

dt
= –

∂H(t, u∗
1, u∗

2,λ(t))
∂x

,
dλ2

dt
= –

∂H(t, u∗
1, u∗

2,λ(t))
∂y

,

dλ3

dt
= –

∂H(t, u∗
1, u∗

2,λ(t))
∂v

,
dλ4

dt
= –

∂H(t, u∗
1, u∗

2,λ(t))
∂z

,

dλ5

dt
= –

∂H(t, u∗
1, u∗

2,λ(t))
∂w

.
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According to the Pontryagin maximum principle, the Hamiltonian function H for our
problem is defined as

H(x, y, v, z, w,λ1,λ2,λ3,λ4,λ5, u1, u2) (3.2)

= x + z + w – v –
E1

2
u2

1 –
E2

2
u2

2

+ λ1

(
rx

(
1 –

x + y
m

)
–

(1 – u1)β1vx
1 + αv

– β2xy + ρy – dx
)

+ λ2

(
(1 – u1)β1vx

1 + αv
+ β2xy + (δ + ρ)y – ρ1yz

)

+ λ3
(
(1 – u2)nδy – μv – ρ2vw

)
+ λ4z(c1y – b1) + λ5w(c2v – b2).

The adjoint variables satisfy

λ̇1 = –
∂H
∂x

= –1 – λ1

(
r – d –

ry
m

–
2rx
m

–
(1 – u1)β1v

1 + αv
– β2y

)

– λ2

(
(1 – u1)β1v

1 + αv
+ β2y

)
,

λ̇2 = –
∂H
∂y

= –λ1

(
ρ –

rx
m

– β2x
)

– λ2(β2x – δ – ρ – ρ1z) – λ3(1 – u2)nδ – λ4c1z,

λ̇3 = –
∂H
∂v

= 1 + λ1
(1 – u1)β1x

(1 + αv)2 – λ2
(1 – u1)β1x

(1 + αv)2 + λ3(μ + ρ2ω) – λ5(c2v – b2),

λ̇4 = –
∂H
∂z

= –1 + λ2ρ1y + λ4(b1 – c1y),

λ̇5 = –
∂H
∂w

= –1 + λ3ρ2v + λ5(b2 – c2v).

Since λi(tf ) = 0 for i = 1, 2, 3, 4, 5, they are called the transversality conditions.

Theorem 3.1 Consider the objective function J(u1(t), u2(t)) defined in (2.2). Then, there
exists an optimal control (u∗

1(t), u∗
2(t)) ∈ U such that

J
(
u∗

1(t), u∗
2(t)

)
= max

u1,u2∈U
J
(
u1(t), u2(t)

)
.

Moreover, the optimal controls u∗
1 and u∗

2 maximizing the objective function (2.2) are given
by

u∗
1(t) = min

(
max

(
0,

β1(λ1 – λ2)xv
E1(1 + αv)

)
, 1

)
,

u∗
2(t) = min

(
max

(
0, –

nδyλ3

E2

)
, 1

)
,

where x = x∗(t), y = y∗(t), and v = v∗(t) are the solutions of system (2.1).

Proof From the results obtained by Fleming and Rishel [36], we can show the existence of
the solution by using the following facts.
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(i) The set of all controls contained in U are non-negative and Lebesgue-integrable on
[0, tf ].

(ii) The right-hand side of the system (2.1) is bounded by a linear function of the state
and control variables, and thus the solutions exist.

(iii) The set U is convex and closed.
(iv) The integrand of the objective function, x(t) + z(t) + w(t) – v(t) – E1

2 u2
1 – E2

2 u2
2, is

concave on U . To prove this, we use the fact that a multi-variable function as
f (x1, . . . , xn) is concave if and only if the Hessian matrix

H(x) =
[

∂2f (x)
∂xi∂xj

]
,

is semi-negative definite. We set F (u1, u2) = x + z + w – v – E1
2 u2

1 – E2
2 u2

2, which
admits the Hessian matrix

H(u) =

⎡
⎣ ∂2F

∂u2
1

∂2F
∂u1∂u2

∂2F
∂u2∂u1

∂2F
∂u2

2

⎤
⎦ =

[
–E1 0

0 –E2

]
.

Since E1, E2 ≥ 0, we have that H(u) is semi-negative definite, and therefore, the
result follows.

(v) There exist constants a1 > 0, a2 > 0, and β > 1 such that the integrand
L(t, x, y, v, z, w) of the objective function (2.2) is bounded by

L(t, x, y, v, z, w) ≤ a1 – a2
(|u1|2 + |u2|2

)β/2. (3.3)

From (2.2), we have

L(t, x, y, v, z, w) = x(t) + z(t) + w(t) – v(t) –
E1

2
u2

1(t) –
E2

2
u2

2(t). (3.4)

By taking E = min{E1, E2} in (3.4), we find that

L(t, x, y, v, z, w) ≤ 3M –
E
2

(
u2

1(t) + u2
2(t)

)
.

Hence, we can write

L(t, x, y, v, z, w) ≤ a1 – a2
(
u2

1(t) + u2
2(t)

)
, (3.5)

where a1 = 3M > 0, a2 = E
2 > 0, and M is the upper bound of the state solutions x(t),

z(t), w(t). This implies that the inequality (3.3) holds true with β = 2 > 1.
From the above statements (facts), we deduce the existence of the optimal controls u∗

1 and
u∗

2. To obtain the expressions of u∗
1 and u∗

2, we use (3.1) with H defined in (3.2). This gives
that

– E1u1 +
β1vx

1 + αv
(λ1 – λ2) = 0,

– E2u2 – nλ3δy = 0.
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Hence, we find that

u∗
1(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if u1 ≤ 0,
(λ1(t)–λ2(t))β1v∗(t)x∗(t)

E1(1+αv∗(t)) if 0 < u1 < 1,

1 if u1 ≥ 1,

and

u∗
2(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if u2 ≤ 0,

– nδλ3(t)y∗(t)
E2

if 0 < u2 < 1,

1 if u2 ≥ 1. �

4 Numerical simulation
In this section, we investigate the optimal control numerically for studying the effective-
ness of the drug on disease. At first, we replace the values of the parameters of Column
1, Column 2, Column 3, and Column 4 of Table 2 in model (2.1). Next, we choose the
initial values from Table 3 and set E1 = 1, E2 = 10, and tf = 10. To numerically solve the
optimal control problem (2.1) and (2.2), we use the Applied Modeling Programming Lan-
guage AMPL [37]. We work with a grid of Nf = 1000 grid points with nodes ti = ih, h = tf

Nf
,

i = 0, 1, . . . , Nf and use the Euler method. The proliferation of infected cells and viruses for
the values of Column 1 of Table 2 are shown in Fig. 1(a)–(g). Figure 2(a)–(g) shows that for
the values of Column 2 of Table 2, the amount of u1 and u2 affects the spread of disease.
Figure 3(a)–(g) illustrates that for the values of Column 3 of Table 2, the effect of the drug
on the proliferation of infected cells, viruses, cellular and humoral immunes.

In Fig. 4(a)–(b), the population of infected CD+
4 T-cells is represented in the presence

of treatment control functions with an initial value of y(0) = 80, which is initially reduced

Table 2 The values of the parameters in the HIV mathematical model

Parameters Units Column 1 Column 2 Column 3 Column 4 References

r day–1 2 2 2 2 Assumed
m 15,000 100,000 5× 104 300,000 Assumed
β1 ml.(virion.day)–1 4.8× 10–7 4.8× 10–7 4.8× 10–7 4.8× 10–7 [38]
β2 ml.(virion.day)–1 4.7× 10–7 4.7× 10–7 4.7× 10–7 4.7× 10–7 [38]
α cells–1.ml 0.001 0.001 0.001 0.001 [39–42]
ρ day–1 0.01 0.01 0.01 0.01 [39–42]
d day–1 0.02 0.02 0.02 0.02 [39–42]
δ day–1 0.5 0.5 0.5 0.5 [39–42]
ρ1 ml.(cells.day)–1 0.001 0.001 0.001 0.001 [39–42]
n ml.virion 1200 1200 1200 1200 [39–42]
μ day–1 3 3 3 3 [39–42]
ρ2 ml.(virion.day)–1 0.5 0.001 0.001 0.001 [43]
c1 ml.(cells.day)–1 0.021 0.021 0.021 0.021 Assumed
b1 day–1 0.2 0.2 0.2 0.2 [39–42]
c2 ml.(virion.day)–1 10–11 10–11 10–4 10–4 [43]
b2 day–1 0.1 0.1 0.01 0.1 [43]

Table 3 The initial values in HIV mathematical model

Variables Initial values Units

x(t) x(0) = 200 cell.ml–1

y(t) y(0) = 80 cell.ml–1

v(t) v(0) = 12,000 cell.ml–1

z(t) z(0) = 50 cell.ml–1

w(t) w(0) = 100 cell.ml–1
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Figure 1 (a) Saturation level of uninfected CD+
4 T-cells with optimal control for Column 3 of Table 2 (b) Level

of infected CD+
4 T-cells with optimal control for Column 3 of Table 2 (c) level of viral load with optimal control

for Column 3 of Table 2 (d) level of T-cells with optimal control for Column 3 of Table 2 (e) level of B-cells with
optimal control for Column 3 of Table 2 (f) Behavior of optimal control, u∗

1 as protease inhibitor for Column 3
of Table 2 (g) Behavior of optimal control, u∗

2 as reverse transcriptase inhibitor for Column 3 of Table 2

Figure 2 (a) Saturation level of uninfected CD+
4 T-cells with optimal control for Column 4 of Table 2 (b) Level

of infected CD+
4 T-cells with optimal control for Column 4 of Table 2 (c) level of viral load with optimal control

for Column 4 of Table 2 (d) level of T-cells with optimal control for Column 4 of Table 2 (e) level of B-cells with
optimal control for Column 4 of Table 2 (f) Behavior of optimal control, u∗

1 as protease inhibitor for Column 4
of Table 2 (g) Behavior of optimal control, u∗

2 as reverse transcriptase inhibitor for Column 4 of Table 2
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Figure 3 (a) Saturation level of uninfected CD+
4 T-cells with optimal control for Column 5 of Table 2 (b) Level

of infected CD+
4 T-cells with optimal control for Column 5 of Table 2 (c) level of viral load with optimal control

for Column 5 of Table 2 (d) level of T-cells with optimal control for Column 5 of Table 2 (e) level of B-cells with
optimal control for Column 5 of Table 2 (f) Behavior of optimal control, u∗

1 as protease inhibitor for Column 5
of Table 2 (g) Behavior of optimal control, u∗

2 as reverse transcriptase inhibitor for Column 5 of Table 2

Figure 4 (a) Saturation level of uninfected CD+
4 T-cells with optimal control for Column 6 of Table 2 (b) Level

of infected CD+
4 T-cells with optimal control for Column 6 of Table 2 (c) level of viral load with optimal control

for Column 6 (d) level of T-cells with optimal control for Column 6 of Table 2 (e) level of B-cells with optimal
control for Column 6 of Table 2 (f) Behavior of optimal control, u∗

1 as protease inhibitor for Column 6
(g) Behavior of optimal control, u∗

2 as reverse transcriptase inhibitor for Column 6 of Table 2
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by the initial proliferation of the population of uninfected CD+
4 T-cells. By controlling the

disease, the number of uninfected CD+
4 T-cells reaches the saturation level, and the pop-

ulation of infectious cells tends to zero. Figure 4(c) shows that the proliferation of the
virus in the presence of treatment is gradually reduced to zero. Figure 4(d)–(e) depicts
the level of proliferation of T-cells and B-cells in the presence of treatment, respectively.
Finally, Fig. 4(f )–(g) represents the optimal controls u∗

1 and u∗
2 that simulate the reverse

transcriptase and protease inhibitors for the values of Column 4 of Table 2.

5 Conclusion
In the present paper, we considered a five-dimensional model with the logistic function for
replicating CD+

4 T cells, the saturation infection rate, and the treatment rate with two con-
trol functions to control the HIV-1 infection. There is no current definitive treatment for
the HIV-1 infection. However, at the same time, several methods of treatment have been
developed to control it. Because of the high costs of the treatment and side effects of drugs,
we should minimize the dosages of drugs in the treatment. To this end, we introduce two
controllers to identify the efficiency of reverse transcriptase and protease inhibitors. We
used numerical values of the parameters to evaluate the model. Numerical methods used
are based on optimal control to prevent the spread of infection and the production of new
virus particles with minimal side effects through medication. The Pontryagin maximum
principle was employed to provide the explicit formulations of the optimal controls. The
optimal control process was numerically tested by replacing the values of Columns 1–4 of
Table 2 in the model (2.1). The numerical simulation shows that the virus load stops after
treatment, and the spread of infected cells is reduced. The above results were obtained by
using AMPL software. Numerical results of the model show that the concentration of in-
fected cells increases before treatment and decreases after treatment. The results suggest
that the optimal amount of drugs effectively better control AIDS and minimize the side
effects of drugs.
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