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Abstract
In this paper, we address the Hall-MHD equations with partial dissipation. Applying
some important inequalities (such as the logarithmic Sobolev inequality using BMO
space, bilinear estimates in BMO space, Young’s inequality, cancellation property,
interpolation inequality) and delicate energy estimates, we establish an improved
blow-up criterion for the strong solution. Moreover, we also obtain the existence of
the strong solution for small initial data, the smallness conditions of which are given
by the suitable Sobolev norms.
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1 Introduction
The incompressible Hall-magnetohydrodynamic equations with full dissipation in three
dimensions read as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + (u · ∇)u + ∇(p + π ) = κ1ux1x1 + κ2ux2x2 + κ3ux3x3 + (B · ∇)B,

div u = 0,

Bt + (u · ∇)B = (B · ∇)u + �B – ∇ × ((∇ × B) × B),

div B = 0,

u(0, x) = u0, B(0, x) = B0.

(1)

Here u(t, x), B(t, x) denote velocity field and magnetic field, respectively; κ1, κ2, κ3 are the
kinematic viscosity, (t, x) ∈ R

+ ×R
3.

Compared to usual MHD system and the Boussinesq equations, Hall-MHD equations
involve ∇ × ((∇ × B) × B), it is Hall term and plays a crucial position in magnetic recon-
nection due to Ohm’s law. Magnetic reconnection corresponds to changes in the topol-
ogy of magnetic field lines, which are ubiquitously observed in space. The Hall term be-
comes important when large magnetic shear appears because it has second-order deriva-
tives, and it restores the influence of the electric current in the Lorentz force occurring
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in Ohm’s law, which was neglected in usual MHD. Therefore, Hall-MHD is very impor-
tant for such problems as magnetic reconnection in neutron stars, geo-dynamo, space
plasmas, and star formation. The paper [1] introduces the physical background to Hall-
magnetohydrodynamics, and papers [7, 8, 13, 15–18, 24] present the recent progress of
the Hall-MHD system.

The nonlinear Jordan–Moore–Gibson–Thompson equation with memory read as

τuttt + utt – c2�u – β�ut –
∫ t

0
h(t – s)�u(s) ds =

∂

∂t

(
1
c2

B
2A

(ut)2 + |∇u|2
)

,

where u = u(x, t) denotes the scalar acoustic velocity. The Jordan–Moore–Gibson–
Thompson equation is one of the nonlinear sound equations that describe the propa-
gation of sound waves in gases and liquids. Recent works on the Jordan–Moore–Gibson–
Thompson equation can be found in [4, 12]. The Hall-MHD Eqs. (1) describe the magnetic
properties for a conductive fluid moving in a magnetic field, in which magnetic reconnec-
tion happens in the case of large magnetic shear. In the Hall-MHD Eqs. (1), u = u(x, t),
B = B(x, t) are non-dimensional quantities corresponding to the fluid velocity field, the
magnetic field.

Many results on usual MHD system have been obtained in [10, 11, 14, 17, 21–23, 26–
28, 30–33]. However, the Hall-MHD system had few results until recently. The paper [7]
got the local existence and global small solutions for the Hall-magnetohydrodynamics.
Some results on the Boussinesq and MHD equations with partial viscosity were obtained
in [5, 6, 15, 24]. Two new blow-up criteria for the system (1) with κ1 = κ2 = κ3 = 1 were
obtained by Chae and Lee in [8]. Fei and Xiang [19] got a blow-up criterion and small
existence to (1) with κ1 = κ2 = 1, κ3 = 0.

The paper [20] established regularity criterion for the Hall-MHD equations without vis-
cosity and full dissipation, the papers [2, 3] obtained regularity criterion for the Hall-MHD
equations with full viscosity and full dissipation in different spaces. In this paper, we inves-
tigate the Hall-magnetohydrodynamic system with full viscosity and partial dissipation.
Inspired by [8, 13, 19, 33], we find a new blow-up criterion for strong solution, which im-
poses the condition is (u,∇B) ∈ L2(0, T ; BMO). Additionally, we also get the existence of
the strong solution for small initial data.

The first aim of this paper is to get blow-up criterion for the strong solution to (1) with
κ1,κ2 > 0, κ3 = 0.

Theorem 1.1 Assume that κ1 > 0, κ2 > 0, κ3 = 0, (u0, B0) ∈ H3(R3), and div u0 = div B0 = 0,
let T0 < ∞ be the first blow-up time to the problem (1), then

lim sup
t↗T0

(∥
∥u(t)

∥
∥2

H3 +
∥
∥B(t)

∥
∥2

H3
)

= ∞,

is equivalent to

∫ T0

0

(∥
∥u(t)

∥
∥2

BMO +
∥
∥∇B(t)

∥
∥2

BMO

)
dt = ∞.

Remark 1.1 Compared to previous results, the blow-up condition
∫ T0

0 (‖u‖2
BMO +

‖∇B‖2
BMO) dt < ∞ instead of

∫ T∗
0 (‖∇u‖q

Lp + ‖�B‖γ

Lβ ) dt < ∞ with p,β ∈ (3,∞] in [19].
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Noticing the fact W 1,p(R3) ↪→ L∞(R3) ↪→ BMO(R3), p > 3, thus the above blow-up crite-
rion is meaningful.

Remark 1.2 The similar blow-up criterion can also be established for the system (1) with
cases when κ1 = 0,κ2, κ3 > 0 and κ1 > 0, κ2 = 0, κ3 > 0.

Based on the Theorem 1.1, we can obtain the small initial data solutions to (1) with
κ1,κ2 > 0, κ3 = 0.

Theorem 1.2 Suppose the conditions in Theorem 1.1 hold, there exists a universal positive
constant ε∗, then (1) has a solution (u, B) ∈ L∞(0,∞; H3(R3)), provided that ‖u0‖H2 +
‖B0‖H2 < ε∗.

Remark 1.3 Compared to [19], the smallness condition ‖(u0, B0)‖H2 instead of ‖(u0, B0)‖H3

in [19] is sufficiently small.

2 Notations and preliminaries
Through the paper, ∂k and uk represent the k th components of ∇ and u, and the following
simplified notation will be adopted throughout the paper:

∫

R3
f dx :=

∫ ∫ ∫

R3
f (t, x) dx1 dx2 dx3; ‖ · ‖k := ‖ · ‖Lk ;

f0 := f (0, x); ∇p := (∂1, ∂2, 0); up := (u1, u2, 0).

Next, some lemmas are given.

Lemma 2.1 (See [9]) Let f , g, h,∇pf ,∇pg, ∂3h ∈ L2(R3), then

∫

R3
fgh dx ≤ C‖f ‖ 1

2
2 ‖∇pf ‖ 1

2
2 ‖g‖ 1

2
2 ‖∇pg‖ 1

2
2 ‖h‖ 1

2
2 ‖∂3h‖ 1

2
2 .

Lemma 2.2 (See [29]) Suppose ∇g ∈ W 1,q(R3) ∩ L2(R3), then

‖∇g‖L∞ ≤ C
[‖∇g‖BMO ln

1
2
(
e + ‖∇g‖W 1,q + ‖g‖L∞

)
+ 1

]
,

here q > 3.

Lemma 2.3 (See [25, Lemma 1]) The bilinear estimates in BMO space, let h1, h2 ∈ BMO∩
H |ζ |+|η|. Then

∥
∥∂ζ h1 · ∂ηh2

∥
∥

2 ≤ C
(‖h1‖BMO

∥
∥(–�)

|ζ |+|η|
2 h2

∥
∥

2 + ‖h2‖BMO
∥
∥(–�)

|ζ |+|η|
2 h1

∥
∥

2

)
,

where ζ = (ζ1, ζ2, ζ3),η = (η1,η2,η3), and |ζ |, |η| ≥ 1.

3 Proof of Theorem 1.1
We adopt the following notations: ∇ := ∂ ||/∂1

1 ∂
2
2 ∂

3
3 , where  = (1,2,3) ∈ (N∪ {0})3

with || = 1 + 2 + 3 ≤ 3, κ := min{κ1,κ2} and κ0 := min{κ , 1}.
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Operating ∇ on (1)1 and (1)3, and multiplying them by ∇u and ∇B, respectively, and
then integrating by parts, one gets

1
2

d
dt

(∥
∥u(t)

∥
∥2

H3 +
∥
∥B(t)

∥
∥2

H3
)

+ κ1‖∂1u‖2
H3 + κ2‖∂2u‖2

H3 + ‖∇B‖2
H3

= –
∑

0≤||≤3

∫

R3
∇

[∇ × (
(∇ × B) × B

)] · ∇B dx

–
∑

0≤||≤3

∫

R3
∇(u · ∇B) · ∇B dx –

∑

0≤||≤3

∫

R3
∇(u · ∇u) · ∇u dx

+
∑

0≤||≤3

∫

R3
∇(B · ∇u) · ∇B dx +

∑

0≤||≤3

∫

R3
∇(B · ∇B) · ∇u dx

:= H1 + H2 + H3 + H4 + H5. (2)

Using Lemma 2.2, we have

‖∇B‖L∞ ≤ C
[‖∇B‖BMO ln

1
2
(
e + ‖∇B‖

W 1, 7
2

+ ‖B‖L∞
)

+ 1
]
.

Noticing the fact that H2(R3) ↪→ W 1, 7
2 (R3), and H3(R3) ↪→ L∞(R3), we get

‖∇B‖L∞ ≤ C
[‖∇B‖BMO ln

1
2
(
e + ‖B‖H3

)
+ 1

]
.

By the above inequality, cancellation property and Young’s inequality, one obtains

|H1| ≤ C‖B‖H3‖∇B‖∞‖∇B‖H3

≤ 1
8
‖∇B‖2

H3 + C‖∇B‖2
∞‖B‖2

H3

≤ 1
8
‖∇B‖2

H3 + C
(
ln

(
e + ‖B‖H3

)‖∇B‖2
BMO + 1

)‖B‖2
H3 . (3)

We apply cancellation property and Lemma 2.3 to deduce that

|H2| =
∣
∣
∣
∣

∑

0≤||≤3

∫

R3

[∇(u · ∇B) – (u · ∇)∇B
] · ∇B dx

∣
∣
∣
∣

≤ C
(‖B‖H3‖∇B‖H3‖u‖BMO + ‖B‖H3‖u‖H3‖∇B‖BMO

)

≤ 1
8
‖∇B‖2

H3 + C‖u‖2
BMO‖B‖2

H3 + C‖∇B‖BMO‖u‖H3‖B‖H3 . (4)

For H3, when || = 0, the H3 have cancelled. When || = 1, by div u = 0, H3 can be rewritten
as follows

H31 = –
∫

R3
(∇u · ∇)u · ∇u dx

= –
∫

R3
(∇pu · ∇)u∇pu dx –

∫

R3
(∂3up · ∇p)u∂3u dx +

∫

R3
(∇p · up)∂3u∂3u dx.
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Thus using the Höledr inequality and Lemma 2.3, one obtains

|H31| ≤ C‖∇u∇pu‖2‖∇u‖2

≤ C‖∇p∇u‖2‖u‖BMO‖∇u‖2

≤ C‖u‖BMO‖∇pu‖H1‖u‖H1

≤ 3κ

36
‖∇pu‖2

H1 + C‖u‖2
BMO‖u‖2

H1 . (5)

When || = 2, one can write H3 as

H32 = –
∫

R3

(∇2u · ∇)
u∇2u dx – 2

∫

R3
(∇u · ∇)∇u∇2u dx

= H321 + H322

H321, H322 can be further decomposed into three parts, respectively.

H321 = –
∫

R3
(∇∇pu · ∇)u∇∇pu dx –

∫

R3

(
∂2

3 up · ∇p
)
u∂2

3 u dx

+
∫

R3
(∂3∇p · up)∂3u∂2

3 u dx

= H3211 + H3212 + H3213.

H322 = –2
∫

R3
(∇pu · ∇)∇u∇∇pu dx – 2

∫

R3
(∂3up · ∇p)∇u∂2

3 u dx

+ 2
∫

R3
(∇p · up)∂3∇u∂2

3 u dx

= H3221 + H3222 + H3223.

By the Höledr inequality and Lemma 2.3, we have

|H3211| ≤ C‖∇p∇u∇u‖2
∥
∥∇2u

∥
∥

2

≤ C‖u‖BMO
∥
∥∇p∇2u

∥
∥

2

∥
∥∇2u

∥
∥

2

≤ C‖u‖BMO‖∇pu‖H2‖u‖H2

≤ κ

36
‖∇pu‖2

H2 + C‖u‖2
BMO‖u‖2

H2 , (6)

and

|H3212| ≤ C
∥
∥∇pu∂2

3 u
∥
∥

2

∥
∥∂2

3 u
∥
∥

2

≤ C‖u‖BMO
∥
∥∇p∇2u

∥
∥

2

∥
∥∇2u

∥
∥

2

≤ C‖u‖BMO‖∇pu‖H2‖u‖H2

≤ κ

36
‖∇pu‖2

H2 + C‖u‖2
BMO‖u‖2

H2 . (7)

Similarly to H3211 and H3212, we have

|H3213, H3221, H3222, H3223| ≤ κ

36
‖∇pu‖2

H2 + C‖u‖2
BMO‖u‖2

H2 . (8)
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Collecting (7), (8), and (9), we have

|H32| ≤ 6κ

36
‖∇hu‖2

H2 + C‖u‖2
BMO‖u‖2

H2 . (9)

When || = 3, we rewrite H3 as follows

H33 = –
∫

R3

(∇3u · ∇)
u · ∇3u dx – 3

∫

R3

(∇2u · ∇)∇u · ∇3u dx

– 3
∫

R3
(∇u · ∇)∇2u · ∇3u dx

= H331 + H332 + H3233.

Since

H331 = –
∫

R3

(∇2∇pu · ∇)
u∇2∇pu dx –

∫

R3

(
∂3

3 up · ∇p
)
u∂3

3 u dx

+
∫

R3

(
∂2

3 ∇p · up
)
∂3u∂3

3 u dx

= H3311 + H3312 + H3313,

and

H332 = –3
∫

R3

(∇2u · ∇)∇pu∇2∇pu dx – 3
∫

R3

(
∂2

3 up · ∇p
)
∂3u∂3

3 u dx

+ 3
∫

R3
(∂3∇p · up)∂2

3 u∂3
3 u dx

= H3321 + H3322 + H3323.

Applying the Höledr inequality, Lemma 2.3, and Young’s inequality, one has

|H3311| ≤ C
∥
∥∇p∇2u∇u

∥
∥

2

∥
∥∇p∇2u

∥
∥

2

≤ C‖u‖BMO
∥
∥∇3∇pu

∥
∥

2

∥
∥∇p∇2u

∥
∥

2

≤ C‖u‖BMO‖∇pu‖H3‖u‖H3

≤ κ

36
‖∇pu‖2

H3 + C‖u‖2
BMO‖u‖2

H3 , (10)

and

|H3312| ≤ C
∥
∥∂3

3 up∇pu
∥
∥

2

∥
∥∂3

3 u
∥
∥

2

≤ C‖u‖BMO
∥
∥∇p∇3u

∥
∥

2

∥
∥∇3u

∥
∥

2

≤ C‖u‖BMO‖∇pu‖H3‖u‖H3

≤ κ

36
‖∇pu‖2

H3 + C‖u‖2
BMO‖u‖2

H3 . (11)
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Similarly to (11) and (12), one obtains

|H3321| ≤ C
∥
∥∇p∇2u

∥
∥

2

∥
∥∇2u∇p∇u

∥
∥

2

≤ C
∥
∥∇3∇pu

∥
∥

2

∥
∥∇2∇pu

∥
∥

2‖u‖BMO

≤ κ

36
‖∇pu‖2

H3 + C‖u‖2
BMO‖u‖2

H3 , (12)

and

|H3322| ≤ C
∥
∥∂2

3 up∇p∂3u
∥
∥

2

∥
∥∂3

3 u
∥
∥

2

≤ C‖u‖BMO
∥
∥∇p∇3u

∥
∥

2

∥
∥∇3u

∥
∥

2

≤ κ

36
‖∇pu‖2

H3 + C‖u‖2
BMO‖u‖2

H3 . (13)

One can estimate H3313, H3323 as H3312, H3322 to get

|H3313, H3323| ≤ κ

36
‖∇pu‖2

H3 + C‖u‖2
BMO‖u‖2

H3 . (14)

Clearly, H333 can be similarly estimated as H331, so we have

|H333| ≤ 3κ

36
‖∇pu‖2

H3 + C‖u‖2
BMO‖u‖2

H3 . (15)

Putting (10)–(15) together, we obtain

|H33| ≤ 9κ

36
‖∇pu‖2

H3 + C‖u‖2
BMO‖u‖2

H3 . (16)

Combining (5), (9), and (16), we get

|H3| ≤ 18κ

36
‖∇pu‖2

H3 + C‖u‖2
BMO‖u‖2

H3 . (17)

Applying cancellation property and integration by parts, one can deduce that

H4 + H5 =
∑

0≤||≤3

∫

R3

[∇(Bu) – B∇u
] · ∇∇B +

[∇(B · DB) – (B · D)∇B
] · ∇u dx

= H41 + H42.

By the Höledr inequality, Lemma 2.3, and Young’s inequality, we get

|H41| ≤ C‖∇B‖H3
(‖u‖H3‖B‖BMO + ‖B‖H3‖u‖BMO

)

≤ 1
8
‖∇B‖2

H3 + C
(‖B‖2

H3 + ‖u‖2
H3

)(‖u‖2
BMO + ‖B‖2

BMO
)
, (18)

and

|H42| ≤ C‖B‖BMO‖∇B‖H3‖u‖H3

≤ 1
8
‖∇B‖2

H3 + C‖B‖2
BMO‖u‖2

H3 . (19)
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Collecting (18) and (19), we have

|H4 + H5| ≤ 2
8
‖∇B‖2

H3 + C
(‖B‖2

BMO + ‖u‖2
BMO

)(‖u‖2
H3 + ‖B‖2

H3
)
. (20)

Combining (2)–(4), (17), and (20), we get

d
dt

(‖u‖H3 + ‖B‖H3
)

+ κ‖∇pu‖H3 + ‖∇B‖H3

≤ C
(
1 + ‖B‖2

BMO + ‖u‖2
BMO + ‖∇B‖2

BMO ln
(
e + ‖B‖H3

))(‖u‖2
H3 + ‖B‖2

H3
)
. (21)

Setting R(t) := e + ‖u‖H3 + ‖B‖H3 , from (21), one obtains

d
dt

R(t) ≤ C
(‖∇B‖2

BMO + ‖u‖2
BMO + C

)
R(t) ln R(t).

Applying the Gronwall inequality, one gets

sup
0≤t≤T

R(t) ≤ (‖u0‖2
H3 + ‖B0‖2

H3 + e
)

exp

(

C exp

(∫ T

0
‖u‖2

BMO + ‖∇B‖2
BMO dt

))

,

which implies the blow-up criterion in Theorem 1.1 holds.

4 Proof of Theorem 1.2
Operating ∇ to (1)1, (1)3, taking the scalar product of them with ∇u, ∇B, one gets

1
2

d
dt

(‖∇u‖2
2 + ‖∇B‖2

2
)

+ κ1‖∂1∇u‖2
2 + κ2‖∂2∇u‖2

2 + ‖�B‖2
2

= –
∫

R3
∇[∇ × (

(∇ × B) × B
)] · ∇B dx –

∫

R3
∇(u · ∇B) · ∇B dx

–
∫

R3
∇(u · ∇u) · ∇u dx +

∫

R3
∇(B · ∇B) · ∇u dx +

∫

R3
∇(B · ∇u) · ∇B dx

:= K1 + K2 + K3 + K4 + K5. (22)

Firstly, applying the Hölder inequality, commutator estimate and interpolation, one gets

|K1| ≤ C
∥
∥∇(

(∇ × B) × B
)

– ∇(∇ × B) × B
∥
∥ 6

5

∥
∥∇2B

∥
∥

6

≤ C‖∇B‖2‖∇B‖3
∥
∥∇2B

∥
∥

6

≤ C‖∇B‖2
∥
∥∇3B

∥
∥2

2, (23)

here we use the fact that ‖∇B‖3 ≤ C‖B‖ 1
2
2 ‖∇3B‖ 1

2
2 , ‖∇2B‖6 ≤ C‖∇3B‖2 due to the

Gagliardo-Nirenberg-Sobolev inequality. By the Hölder inequality, one obtains

|K2| ≤ C‖∇u‖2‖∇B‖2
4

≤ C‖∇u‖2
∥
∥∇2B

∥
∥2

2. (24)
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Reviewing H31 in Sect. 3, we know K3 = H31. Hence, applying Lemma 2.1, one obtains

|K3| ≤ C‖∇u‖ 1
2
2 ‖∇u‖ 1

2
2 ‖∇pu‖ 1

2
2 ‖∇∇pu‖ 1

2
2 ‖∇∇pu‖ 1

2
2 ‖∇∇pu‖ 1

2
2

≤ C‖∇p∇u‖2
2‖∇u‖2. (25)

K4 + K5 can be written into two parts:

K4 + K5 =
∫

R3
(∇B · ∇u) · ∇B dx +

∫

R3
(∇B · ∇B) · ∇u dx.

By the Höledr inequality, we obtain

|K4 + K5| ≤ C‖∇u‖2‖∇B‖2
4

≤ C‖∇u‖2
∥
∥∇2B

∥
∥2

2. (26)

Combining (22)–(26), we get

1
2

d
dt

(∥
∥∇u(t)

∥
∥2

2 +
∥
∥∇B(t)

∥
∥2

2

)
+ κ‖∇p∇u‖2

2 + ‖�B‖2
2

≤ C
(‖∇B‖2 + ‖∇u‖2

)(‖�B‖2
2 + ‖∇∇pu‖2

2
)

+ C‖∇B‖2
∥
∥∇3B

∥
∥2

2. (27)

Similarly to derivation of (22), one gets

1
2

d
dt

(∥
∥�u(t)

∥
∥2

2 +
∥
∥�B(t)

∥
∥2

2

)
+ κ1‖∂1�u‖2

2 + κ2‖∂2�u‖2
2 +

∥
∥∇3B

∥
∥2

2

= –
∫

R3
D2[∇ × (

(∇ × B) × B
)] · D2B dx –

∫

R3
D2(u · ∇B) · D2B dx

–
∫

R3
D2(u · ∇u) · D2u dx +

∫

R3
D2(B · ∇u) · D2B dx +

∫

R3
D2(B · ∇B) · D2u dx

:= E1 + E2 + E3 + E4 + E5. (28)

We apply cancellation property, the Hölder inequality, commutator estimate to estimate
E1 as follows

|E1| ≤ C
∥
∥D2[(∇ × B) × B

]
– D2(∇ × B) × B

∥
∥

2

∥
∥∇3B

∥
∥

2

≤ C‖∇B‖3‖�B‖6
∥
∥∇3B

∥
∥

2

≤ C‖�B‖2
∥
∥∇3B

∥
∥2

2. (29)

E2 can be split into two terms:

E2 = –
∫

R3

(
D2u · ∇)

B · D2B dx – 2
∫

R3
(Du · ∇)∇B · D2B dx

= E21 + E22.
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Noticing the fact that ‖∇B‖3 ≤ C‖B‖ 1
2
2 ‖∇3B‖ 1

2
2 , ‖∇2B‖6 ≤ C‖∇3B‖2 due to the Gagliardo-

Nirenberg-Sobolev inequality, we have

|E21| ≤ C
∥
∥∇2u

∥
∥

2‖∇B‖3
∥
∥∇2B

∥
∥

6 ≤ C
∥
∥∇2u

∥
∥

2

∥
∥∇3B

∥
∥2

2, (30)

and

|E22| ≤ C‖∇u‖3
∥
∥∇2B

∥
∥2

3 ≤ C
∥
∥∇2u

∥
∥

3
4
2

∥
∥∇3B

∥
∥

5
3
2 ≤ C

∥
∥∇2u

∥
∥

2

∥
∥∇3B

∥
∥2

2. (31)

Collecting (30) and (31), we have

|E2| ≤ C
∥
∥∇2u

∥
∥

2

∥
∥∇3B

∥
∥2

2. (32)

Obviously, E3 = H32, hence we get

E3 = H32

= H321 + H322

= H3211 + H3212 + H3213 + H3221 + H3222 + H3223.

One can use the Hölder inequality to deduce that

|H3211| =
∣
∣
∣
∣

∫

R3
(∇p∇u · ∇)u · ∇p∇udx

∣
∣
∣
∣

≤ C‖∇p∇u‖ 1
2
2 ‖∇u‖ 1

2
2 ‖∇p∇u‖ 1

2
2
∥
∥∇2

p∇u
∥
∥

1
2
2 ‖∇p∇u‖ 1

2
2 ‖∂3∇p∇u‖ 1

2
L2

≤ C
∥
∥∇p∇2u

∥
∥

2‖∇p∇u‖ 3
2
2 ‖∇u‖ 1

2
2

≤ C
∥
∥∇p∇2u

∥
∥

2‖∇p∇u‖2‖∇p∇u‖ 1
2
2 ‖∇u‖ 1

2
2

≤ C
∥
∥∇p∇2u

∥
∥2

2

∥
∥∇2u

∥
∥

2. (33)

|H3212| =
∣
∣
∣
∣

∫

R3

(
∂2

3 up · ∇p
)
u · ∂2

3 u dx
∣
∣
∣
∣

≤ C
∥
∥∂2

3 u
∥
∥

1
2
2 ‖∇pu‖ 1

2
2
∥
∥∂2

3 u
∥
∥

1
2
2

∥
∥∇p∂

2
3 u

∥
∥

1
2
2 ‖∇p∂3u‖ 1

2
2
∥
∥∇p∂

2
3 u

∥
∥

1
2
2

≤ C
∥
∥∇p∇2u

∥
∥

2

∥
∥∇2u

∥
∥

2‖∇p∇u‖ 1
2
2 ‖∇pu‖ 1

2
2

≤ C
∥
∥∇p∇2u

∥
∥2

2

∥
∥∇2u

∥
∥

2. (34)

|H3213| =
∣
∣
∣
∣

∫

R3
(∂3∇p · up)∂3u · ∂2

3 u dx
∣
∣
∣
∣

≤ C‖∂3∇p · up‖
1
2
2 ‖∂3u‖ 1

2
2
∥
∥∂2

3 u
∥
∥

1
2
2

∥
∥∇p∂

2
3 u

∥
∥

1
2
2 ‖∇p∂3u‖ 1

2
2
∥
∥∇p∂

2
3 u

∥
∥

1
2
2

≤ C
∥
∥∇p∇2u

∥
∥

2

∥
∥∇2u

∥
∥

1
2
2 ‖∇p∇u‖2‖∇u‖ 1

2
2

≤ C
∥
∥∇p∇2u

∥
∥

3
2
2

∥
∥∇2u

∥
∥

3
4
2

≤ C
∥
∥∇p∇2u

∥
∥2

2

∥
∥∇2u

∥
∥

2. (35)
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Similarly to the above calculation, one gets

|H3221| =
∣
∣
∣
∣

∫

R3
(∇pu · ∇)∇u · ∇p∇u dx

∣
∣
∣
∣

≤ C‖∇pu‖ 1
2
2
∥
∥∇2u

∥
∥

1
2
2 ‖∇p∇u‖ 1

2
2
∥
∥∇2

p u
∥
∥

1
2
2

∥
∥∇p∇2u

∥
∥

1
2
2 ‖∇p∂3∇u‖ 1

2
2

≤ C
∥
∥∇p∇2u

∥
∥

2

∥
∥∇2u

∥
∥

2‖∇pu‖ 1
2
2 ‖∇h∇u‖ 1

2
2 ‖∇u‖ 1

2
2

≤ C
∥
∥∇p∇2u

∥
∥2

2

∥
∥∇2u

∥
∥

2. (36)

In similar manner as H3213 and H3212, one gets

|H3222, H3223| ≤ C
∥
∥∇p∇2u

∥
∥2

2

∥
∥∇2u

∥
∥

2. (37)

Combining (33)–(37), we have

|E3| ≤ C
∥
∥∇p∇2u

∥
∥2

2

∥
∥∇2u

∥
∥

2. (38)

One can split E4 + E5 into four terms:

E4 + E5 =
∫

R3

(∇2B · ∇)
B · ∇2u dx + 2

∫

R3
(∇B · ∇)∇B · ∇2u dx

+
∫

R3

(∇2B · ∇u
) · ∇2B dx + 2

∫

R3
(∇B · ∇)∇u · ∇2B dx

= E41 + E42 + E43 + E44.

Similarly to E21 and E22, one has

|E41, E42, E43, E44| ≤ C
∥
∥∇2u

∥
∥

2

∥
∥∇3B

∥
∥2

2.

Hence, one gets

|E4 + E5| ≤ C
∥
∥∇2u

∥
∥

2

∥
∥∇3B

∥
∥2

2. (39)

Combining (28), (29), (32), (38), and (39), we have

1
2

d
dt

(∥
∥�u(t)

∥
∥2

2 +
∥
∥�B(t)

∥
∥2

2

)
+ κ‖∇p� u‖2

2 +
∥
∥∇3B

∥
∥2

2

≤ C
(‖�u‖2 + ‖�B‖2

)(‖∇p�u‖2
2 +

∥
∥∇3B

∥
∥2

2

)
. (40)

Adding (27) to (40), we get

1
2

d
dt

(‖∇B‖2
2 + ‖∇u‖2

2 + ‖�B‖2
2 + ‖�u‖2

2
)

+ κ‖∇p∇u‖2
2 + ‖�B‖2

2 + κ‖∇p�u‖2
2 +

∥
∥∇3B

∥
∥2

2

≤ C
(‖∇u‖2 + ‖∇B‖2 +

∥
∥∇2u

∥
∥

2 +
∥
∥∇2B

∥
∥

2

)

× (‖∇p∇u‖2
2 + ‖�B‖2

2 + ‖∇p�u‖2
2 +

∥
∥∇3B

∥
∥2

2

)
.



Du Boundary Value Problems          (2022) 2022:6 Page 12 of 13

Therefore, one gets

1
2

d
dt

(‖∇B‖2
2 + ‖∇u‖2

2 + ‖�B‖2
2 + ‖�u‖2

2
)

+
[
κ0 – C

(‖∇u‖2 + ‖∇B‖2 +
∥
∥∇2u

∥
∥

2 +
∥
∥∇2B

∥
∥

2

)]

× (‖∇p∇u‖2
2 + ‖�B‖2

2 + ‖∇p�u‖2
2 +

∥
∥∇3B

∥
∥2

2

) ≤ 0.

where κ0 = min{κ , 1}. Choose ε∗ sufficiently small such that

C
(‖∇u0‖2 + ‖∇B0‖2 + ‖�u0‖2 + ‖�B0‖2

) ≤ κ0

2
.

Then one obtains:

(B, u) ∈ L∞(
0, T ; H2), (∇pu,∇B) ∈ L2(0, T ; H2), ∀T ∈ (0, T0),

noticing

H2(
R

3) ↪→ BMO
(
R

3),

yields for any T ∈ (0, T0)

(∇B, u) ∈ (
0, T ; BMO

(
R

3)).

By Theorem 1.1, applying continuation argument, we obtain the result of Theorem 1.2.

Acknowledgements
The author is indebted to the referee and the associate editor for their detailed comments and valuable suggestions,
which greatly improved the manuscript. The author is also grateful to Prof. Lili Du for useful direction on this paper. This
research was supported by High-level Talent Sailing Project of Yibin University (2021QH07).

Funding
This research was supported by High-level Talent Sailing Project of Yibin University (2021QH07).

Availability of data and materials
Not applicable.

Declarations

Competing interests
The author declares that they have no competing interests.

Authors’ contributions
BD prepared the manuscript initially and performed all the steps of the proofs in this research. The main idea of this paper
was proposed by BD. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 November 2021 Accepted: 4 January 2022

References
1. Acheritogaray, M., Degond, P., Frouvelle, A., Liu, J.-G.: Kinetic formulation and global existence for the

Hall-magnetohydrodynamic system. Kinet. Relat. Models 4, 908–918 (2011)
2. Agarwal, R.P., Alghamdi, A.M., Gala, S., Ragusa, M.A.: On the continuation principle of local smooth solution for the

Hall-MHD equations. Appl. Anal. (2020). https://doi.org/10.1080/00036811.2020.1753711

https://doi.org/10.1080/00036811.2020.1753711


Du Boundary Value Problems          (2022) 2022:6 Page 13 of 13

3. Alghamdi, A.M., Gala, S., Ragusa, M.A.: A regularity criterion of smooth solution for the 3D viscous Hall-MHD
equations. AIMS Math. 3(4), 565–574 (2018)

4. Boulaaras, S., Choucha, A., Ouchenane, D.: General decay and well-posedness of the Cauchy problem for the
Jordan–Moore–Gibson–Thompson equation with memory. Filomat 35(5), 1745–1773 (2021)

5. Cao, C., Wu, J.: Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv.
Math. 226, 1803–1822 (2011)

6. Chae, D.: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 203, 497–513
(2006)

7. Chae, D., Degond, P., Liu, J.-G.: Well-posedness for Hall-magnetohydrodynamics. Ann. Inst. Henri Poincaré, Anal. Non
Linéaire 31, 555–565 (2014)

8. Chae, D., Lee, J.: On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics. J.
Differ. Equ. 256, 3835–3858 (2014)

9. Chemin, J.Y., Desjardins, B., Gallagher, I., Grenier, E.: Fluids with anistrophic viscosity. Modél. Math. Anal. Numér. 34,
315–335 (2000)

10. Cheng, J., Du, L.: On two-dimensional magnetic Bénard problem with mixed partial viscosity. J. Math. Fluid Mech. 17,
769–797 (2015)

11. Cheng, J., Liu, Y.: Global regularity of the 2D magnetic-micropolar fluid flows with mixed partial viscosity. Comput.
Math. Appl. 70, 66–72 (2015)

12. Choucha, A., Boulaaras, S., Ouchenane, D., Abdalla, M., Mekawy, I.: Existence and uniqueness for
Moore–Gibson–Thompson equation with, source terms, viscoelastic memory and integral condition. AIMS Math.
6(7), 7585–7624 (2021)

13. Du, B.: Global regularity for the 2 1
2 D incompressible Hall-MHD system with partial dissipation. J. Math. Anal. Appl. 484,

123701 (2020)
14. Du, L., Lin, H.: Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions.

Nonlinearity 26, 219–239 (2013)
15. Du, L., Zhou, D.: Global well-posedness of two-dimensional magnetohydrodynamic flows with partial dissipation and

magnetic diffusion. SIAM J. Math. Anal. 47, 1562–1589 (2015)
16. Dumas, E., Sueur, F.: On the weak solutions to the Maxwell-Landau-Lifshitz equations and to

Hall-magnetohydrodynamic equations. Commun. Math. Phys. 330, 1179–1225 (2014)
17. Duvaut, G., Lions, J.: Inéquations en thermoéalsticite et magnétohydrodynamique. Arch. Ration. Mech. Anal. 46,

241–279 (1972)
18. Fan, J., Huang, S., Nakamura, G.: Well-posedness for the axisymmetric incompressible viscous

Hall-magnetohydrodynamic equations. Appl. Math. Lett. 26, 963–967 (2013)
19. Fei, M., Xiang, Z.: On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics with

horizontal dissipation. J. Math. Phys. 56, 051504 (2015)
20. Gala, S., Galakhov, E., Ragusa, M.A., Salieva, O.: Beale-Kato-Majda regularity criterion of smooth solutions for the

Hall-MHD equations with zero viscosity. Bull Braz MathSoc, NewSeries. https://doi.org/10.1007/s00574-021-00256-7
21. Gala, S., Ragusa, M.A., Sawano, Y., Tanaka, H.: Uniqueness criterion of weak solutions for the dissipative

quasi-geostrophic equations in Orlicz-Morrey spaces. Appl. Anal. 93(2), 356–368 (2014)
22. He, C., Xin, Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213,

235–252 (2005)
23. He, C., Xin, Z.: Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J.

Funct. Anal. 227, 113–152 (2005)
24. Homann, H., Grauer, R.: Bifurcation analysis of magnetic reconnection in Hall-MHD systems. Physica D 208, 59–72

(2005)
25. Kozono, H., Taniuchi, Y.: Bilinear estimates in BMO and the Navier-Stokes equations. Mat. Ž. 235, 173–194 (2000)
26. Lin, F., Xu, L., Zhang, P.: Global small solutions to 2-D incompressible MHD system. J. Differ. Equ. 259, 5440–5485 (2015)
27. Ma, L.: On two-dimensional incompressible magneto-micropolar system with mixed partial viscosity. Nonlinear Anal.,

Real World Appl. 40, 95–129 (2018)
28. Ma, L.: Global existence of three-dimensional incompressible magneto-micropolar system with mixed partial

dissipation,magnetic diffusion and angular viscosity. Comput. Math. Appl. 75, 170–186 (2018)
29. Mdjda, A.J., Bertozzi, A.L.: Voriticity and Incompressible Flow. Cambridge Uiversity Press, Cambridge (2001)
30. Piskin, E., Irkil, N.: Well-posedness results for a sixth-order logarithmic Boussinesq equations. Filomat 33(13),

3985–4000 (2019)
31. Sermange, M., Teman, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math.

36, 635–664 (1983)
32. Xu, L., Zhang, P.: Global small solutions to three-dimensional incompressible MHD system. SIAM J. Math. Anal. 47(1),

26–65 (2015)
33. Ye, X., Zhu, M.: Global regularity for 3D MHD system with partial viscosity and magnetic diffusion terms. J. Math. Anal.

Appl. 458, 980–991 (2018)

https://doi.org/10.1007/s00574-021-00256-7

	On three-dimensional Hall-magnetohydrodynamic equations with partial dissipation
	Abstract
	MSC
	Keywords

	Introduction
	Notations and preliminaries
	Proof of Theorem 1.1
	Proof of Theorem 1.2
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Publisher's Note
	References


