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Abstract
In this paper, we consider two internal stabilization problems for the
multi-dimensional wave equation with a boundary time-delay. We prove that the first
problem is well-posed in an appropriate functional space. Subsequently, we
numerically study the exponential stability in a two-dimensional case under
Geometric Control Condition (GCC) derived by Lebeau. In addition, we provide a
numerical investigation of the second wave system, which corresponds to the
two-dimensional variant of the system studied by Datko et al.
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1 Introduction
This article is devoted to the internal stabilization of a wave equation in an open bounded
domain � of Rn (n ≥ 2), where a boundary time-delay occurs. In the sequel, we denote by
� the boundary of � and assume that it is smooth (e.g., of class C2), and � = �0 ∪�1, where
�0, �1 are open subsets of � with �0 ∩ �1 = ∅. Moreover, we suppose that the measure of
�0 is positive. The problem under consideration is the following boundary time-delayed
wave system:

utt(x, t) – �u(x, t) + a(x)ut(x, t) = 0, x ∈ �, t > 0, (1.1)

u(x, t) = 0, x ∈ �0, t > 0, (1.2)

u(x, t) = –kU
(
ut(x, t – τ )

)
, x ∈ �1, t > 0, (1.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �, (1.4)

ut(x, t) = f (x, t), x ∈ �1, t ∈ (–τ , 0), (1.5)

where U (ut(x, t – τ )) represents the boundary control involving the time-delayed velocity
term ut(x, t – τ ), (x, t) ∈ �1 ×R+, in which R+ = (0,∞) and τ > 0 is the time delay. Finally,
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k is a real number, a(·) ∈ L∞(�) such that a(x) ≥ 0, on �, and the initial data are taken in
appropriate spaces.

Delay effects arise in many applications and practical problems. In particular, time delays
are ubiquitous in control systems since sensors and actuators are commonly used. Based
on numerous articles, it has been noticed that even an arbitrarily small delay may desta-
bilize a system which was uniformly asymptotically stable in the absence of a time–delay
(see, e.g., [20, 21]). Therefore, it is crucial to investigate the effect of a delay either on the
stability of the system or on the performance of the controller. Several articles appeared in
this research avenue aiming to eliminate the delay or compensate it, or at least reduce its
negative impact. In contrast to this predominant view, a number of unstable systems can
be stabilized via a purposeful introduction of a time-delay in the systems [11, 24], while
others are not affected by the presence of a delay [23].

Now, let us go back to the system under consideration (1.1)–(1.5). First, we consider the
boundary control U (ut(x, t – τ ) = ∂Gut

∂ν
(x, t – τ ), (x, t) ∈ �1 ×R+, where ν stands for the unit

normal vector of � pointing towards the exterior of �, and ∂
∂ν

is the normal derivative and
in which G = (–�)–1 : H–1(�) −→ H1

0 (�). This gives rise to our first problem:

utt(x, t) – �u(x, t) + a(x)ut(x, t) = 0, x ∈ �, t > 0, (1.6)

u(x, t) = 0, x ∈ �0, t > 0, (1.7)

u(x, t) = –k
∂Gut

∂ν
(x, t – τ ), x ∈ �1, t > 0, (1.8)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �, (1.9)

ut(x, t) = f (x, t), x ∈ �1, t ∈ (–τ , 0). (1.10)

The exponential stability of (1.6)–(1.10) with k = 0 has been studied in [28], where it has
been shown that the system is exponentially stable if the support of a satisfies some geo-
metric control condition (GCC). In turn, if τ = 0 and k < 0, that is, in the absence of any
time-delay, then the above system (1.1)–(1.5) is exponentially stable when the support of
a or �1 satisfies a geometrical control condition (GCC) (see [9, 10, 27, 28]) even if k = 0
(see, e.g., [28] and [36]). Nevertheless, if a delay term occurs in the system, then instability
phenomena may arise as shown in [31] for Neumann feedback boundary control.

In order to contrast the destabilizing effect of the boundary time delay in a wave equa-
tion, a “good” (undelayed) damping term is introduced in (1.6) (see [31]). More precisely,
the problem considered in [31] is

utt(x, t) – �u(x, t) + aut(x, t – τ ) + a0ut(x, t) = 0, x ∈ �, t > 0, (1.11)

u(x, t) = 0, x ∈ �0, t > 0, (1.12)

∂u
∂ν

(x, t) = 0, x ∈ �1, t > 0, (1.13)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �, (1.14)

ut(x, t) = f (x, t), x ∈ �, t ∈ (–τ , 0), (1.15)
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with a0, a > 0 are real constants, and the initial data belong to suitable spaces. If a0 > a,
it was shown in [31] that system (1.11)–(1.15) is uniformly exponentially stable (see also
[1, 3, 4, 6, 7, 12, 22, 32, 33] for related results and similar situations).

In the present paper, we shall focus on the numerical study of the effect of the time-delay
on the stability of the system (1.6)–(1.10) under the action of the internal feedback control
a(x)ut(x, t), for x ∈ � and t > 0. With regard to the second problem, we takeU (ut(x, t –τ )) =
ut(x, t – τ ), (x, t) ∈ �1 ×R+ in (1.1)–(1.5) and also provide a numerical investigation of the
corresponding closed-loop system, namely,

utt(x, t) – �u(x, t) + a(x)ut(x, t) = 0, x ∈ �, t > 0, (1.16)

u(x, t) = 0, x ∈ �0, t > 0, (1.17)

∂u
∂ν

(x, t) = –kut(x, t – τ ), x ∈ �1, t > 0, (1.18)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �, (1.19)

ut(x, t) = f (x, t), x ∈ �1, t ∈ (–τ , 0). (1.20)

It is worth mentioning that the input/output operator of the system (1.16)–(1.20) is not
admissible, which means that the open-loop system (1.16)–(1.17), (1.19) with ∂u

∂ν
= g ∈

L2
loc(0, +∞; L2(�1)), for (x, t) ∈ �1 × (0,∞), and u0 = u1 = 0 satisfies ut |�1 /∈ L2

loc(0, +∞;
L2(�1)) (see [34]). With regard to the system without delay, the reader is referred to [14–
18, 25, 26, 30].

On the other hand, we note that studying the system (1.16)–(1.20) is mainly moti-
vated by the work [21], where one can find an interesting analysis conducted for the one-
dimensional case of the system (1.16)–(1.20). Indeed, a positive answer to the above prob-
lem (concern) is provided in [21]. Specifically, the authors in [21] considered the following
one-dimensional system

utt(x, t) – uxx(x, t) + 2but(x, t) + b2u(x, t) = 0, 0 < x < 1, t > 0, (1.21)

u(0, t) = 0, t > 0, (1.22)

ux(1, t) = –cut(1, t – τ ), t > 0, (1.23)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, 1), (1.24)

ut(1, t) = f (t), t ∈ (–τ , 0), (1.25)

where b and c are positive real numbers. Moreover, the initial data and the function f are in
appropriate functional spaces. Through careful spectral analysis, the authors have shown
in [21] that, for any a > 0, and if c satisfies

0 < c <
1 – e–2b

1 + e–2b , (1.26)

then the spectrum of the system (1.21)–(1.23) satisfies the following property:
Re(ω) ≤ –β for each eigenvalue ω of the system and some positive constant β depending

on the delay τ . Notwithstanding, as far as we know, there are no results in the literature
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for the multi-dimensional case described by (1.16)–(1.20). This has motivated us to nu-
merically solve this problem in the case when the space variable x belongs to R

2.
Finally, we would like to point out that one variant of the one-dimensional version of the

system (1.6)–(1.10), where a = f = 0 and for τ = 2, has the following form:

utt(x, t) – uxx(x, t) = 0, 0 < x < 1, t > 0, (1.27)

u(0, t) = 0, t > 0, (1.28)

u(1, t) = 0, t ∈ (0, 2), (1.29)

u(1, t) = –k
[(

–∂2
x
)–1ut

]
(1, t – 2), t > 2, (1.30)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, 1), (1.31)

where k is a real number. Arguing as in [5] (see the appendix), one can obtain the exponen-
tial stability of the above system for (u0, u1) ∈ L2(0, 1) × H–1(0, 1) provided that k ∈ (–1, 0).

The paper is organized as follows: The second section is devoted to the well-posedness
of the problem (1.6)–(1.10). In the third section, we numerically study in R

2 the expo-
nential stability of both delayed systems (1.6)–(1.10) and (1.16)–(1.20). A short discussion
is also provided in an appendix about the one-dimensional case of (1.6)–(1.10), namely,
(1.27)–(1.31).

2 Well-posedness of the problem (1.6)–(1.10)
Let A = –� be the unbounded operator in H = H–1(�) with domain

H1 = D(A) = H1
0 (�).

Next, we define a bounded linear operator B ∈L(H–1(�)) as follows:

Bu = B∗u =
√

au, ∀u ∈ H–1(�).

Then, let C ∈L(L2(�1); H– 1
2

) such that

Cu = A–1Du, ∀u ∈ L2(�1), C∗w =
∂Gw
∂ν

∣
∣∣
∣
�1

, ∀w ∈D
(
A

1
2
)

= H 1
2

= L2(�),

where H– 1
2

= (D(A 1
2 ))′ (the duality is in the sense of H), while A–1 is the extension of A to

H , namely, for all h ∈ H and ϕ ∈ D(A), A–1h is the unique element in H–1 = (D(A))′ (the
duality is in the sense of H) such that (see, for instance, [35])

〈A–1h,ϕ〉H–1,H1 = 〈h, Aϕ〉H .

Here and in the sequel, D ∈ L(L2(�1); L2(�)) (called the Dirichlet mapping), ∀v ∈ L2(�1),
Dv is the unique solution (transposition solution) of

�Dv = 0, Dv|�0 = 0, Dv|�1 = v.
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To study the well-posedness of the systems (1.6)–(1.10), we write it as an abstract Cauchy
problem in a product space and use the semigroup approach. For this purpose, take the
Hilbert space H := H 1

2
× H and the unbounded linear operators

A : D(A) = H1 × H 1
2

⊂H −→H, A
(

u1

u2

)

=

(
u2

–Au1 – BB∗u2

)

. (2.1)

It is well known that the operator (A,D(A)) defined by (2.1), generates a strongly contin-
uous semigroup of contractions on H denoted by (T (t))t≥0. We also denote (T–1(t))t≥0 the
extension of (T (t))t≥0 to (D(A))′ := H × H– 1

2
, where H– 1

2
= (D(A 1

2 ))′, and the duality is in
the sense of H .

We have the following result:

Theorem 2.1 The system (1.6)–(1.10) is well-posed. More precisely, for every (u0, u1) ∈H,
and f ∈ L2(–τ , 0; L2(�1)), the solution of (1.6)–(1.10) is given by

(
u(t)
ut(t)

)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
u0(t)
u0

t (t)

)
= T (t)

(
u0
u1

)
–

∫ t
0 T–1(t – s)

(
0

kCf (s–τ )

)
ds, t ∈ [0, τ ],

(
uj(t)
uj

t (t)

)
= T (t – jτ )

(
uj–1(jτ )

uj–1
t (jτ )

)

–
∫ t

jτ T–1(t – s)
( 0

kCC∗uj–1
t (s–τ )

)
ds, t ∈ [jτ , (j + 1)τ ], j ≥ 1

and satisfies (uj, uj
t) ∈ C([jτ , (j + 1)τ ],H), j ∈N.

The proof requires several steps (see [6, 8] for other types of problems). First, consider
the evolution problems

yj
tt(t) + Ayj(t) + BB∗yj

t(t) = kCvj(t), in
(
jτ , (j + 1)τ

)
, j ∈ N

∗, (2.2)

yj(jτ ) = yj
t(jτ ) = 0, j ∈N

∗. (2.3)

and

φtt(t) + Aφ(t) + BB∗φt(t) = 0, in (0, +∞), (2.4)

φ(0) = φ0, φt(0) = φ1. (2.5)

A natural question is the regularity of yj when vj ∈ L2(τ j, (j + 1)τ ; L2(�1)), j ∈N
∗. By apply-

ing standard energy estimates, we can easily check that yj ∈ C([jτ , (j + 1)τ ]; H)∩C1([jτ , (j +
1)τ ]; H– 1

2
). However, if C satisfies a certain admissibility condition, then yj is more regu-

lar. More precisely, the following result, which is a version of the general transposition
method (see, for instance, Lions and Magenes [29]) holds true: The system (2.4)–(2.5) ad-
mits a unique solution φ having the regularity

φ ∈ C
(
[0, τ ]; H 1

2

) ∩ C1([0, τ ]; H
)
, ∀(φ0,φ1) ∈H,

(φ,φt)t(t) = T (t)

(
φ0

φ1

)

, 0 ≤ t ≤ τ .
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Moreover, according to [2], C∗φ(·) ∈ H1(0, τ ; L2(�1)) and for all t ∈ (0, τ ), there exists a
constant C > 0 such that

∥
∥(

C∗φ
)′(·)∥∥L2(0,T ;L2(�1)) ≤ C

∥
∥(φ0,φ1)

∥
∥
H, ∀(φ0,φ1) ∈H. (2.6)

Next, we have the following lemma:

Lemma 2.2 Suppose that vj ∈ L2([jτ , (j + 1)τ ]; L2(�1)), j ∈N
∗. Then the problem (2.2)–(2.3)

admits a unique solution having the regularity

yj ∈ C
([

jτ , (j + 1)τ
]
; H 1

2

) ∩ C1([jτ , (j + 1)τ
]
; H

)
, j ∈N

∗, (2.7)

and

(
yj, yj

t
)t(t) =

∫ t

jτ
T–1(t – s)

(
0

kCvj(s)

)

ds, jτ ≤ t ≤ (j + 1)τ , j ≥ 1.

Proof Setting Z(t) =
(

yj(t+jτ )

yj
t (t+jτ )

)
, the system (2.2)–(2.3) can be written as

Zj
t = AZj(t) + kCvj(t + jτ ) on (0, τ ), Zj(0) = 0,

where

A =

(
0 I

–A –BB∗

)

: H → [
D(A)

]′, C =

(
0
C

)

: L2(�1) → [
D(A)

]′.

After simple calculations, one can check that the operator C∗ : D(A) → L2(�1) is given by

C∗
(

uj

vj

)

= C∗vj, ∀(
uj, vj) ∈D(A).

This implies that

C∗T (t)

(
φ0

φ1

)

= C∗φt(t), ∀(φ0,φ1) ∈D(A),

in which φ satisfies (2.4)–(2.5). Amalgamating the last claim with (2.6), we deduce that
there exists a constant C > 0 such that for all T ∈ (0, τ )

∫ T

0

∫

�1

∣∣
∣∣
∣
C∗T (t)

(
φ0

φ1

)∣∣
∣∣
∣

2

d�1 dt ≤ C
∥
∥(φ0,φ1)

∥
∥2
H, ∀(φ0,φ1) ∈D(A).

In view of [13, Theorem 3.1, p.187], the last estimate leads to the interior regularity (2.7)
(see also [35]). �
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The existence result for problem (1.6)–(1.10) can now be established by induction. In
fact, we first set on [0, τ ] (case j = 0)

(
u0(t)
u0

t (t)

)

= T (t)

(
u0

u1

)

–
∫ t

0
T–1(t – s)

(
0

kCf (s – τ )

)

ds, ∀t ∈ [0, τ ].

The latter clearly provides a solution of (1.6)–(1.9) on (0, τ ). Moreover, such a solution has
the regularity (u0, u0

t ) ∈ C([0, τ ];H). The next step is to consider j ≥ 1 and then let for all
t ∈ [jτ , (j + 1)τ ],

(
uj(t)
uj

t(t)

)

=

(
φ(t + jτ )
φt(t + jτ )

)

+

(
yj(t)
yj

t(t)

)

= T (t + jτ )

(
uj–1(jτ )
uj–1

t (jτ )

)

–
∫ t

jτ
T–1(t – s)

(
0

kCC∗uj–1
t (s – τ )

)

ds, (2.8)

where yj (respectively φ) is solution of (2.2)–(2.3) (respectively (2.4)–(2.5)) with vj(t) =
–C∗uj–1

t (t – τ ) (that belongs to L2(jτ , (j + 1)τ ; L2(�1)) because the input/output operator
C∗ is admissible (see [2]) and φ0 = uj–1(jτ ), φ1 = uj–1

t (jτ ). This solution has the announced
regularity due to the above arguments.

3 Numerical study
Numerical solutions for the multi-dimensional wave systems (1.6)–(1.10) as well as (1.16)–
(1.20) with and without the presence of a boundary time-delay are simulated using COM-
SOL Multiphysics software. The domain � is taken to be the square (0, 1) × (0, 1) (see
Fig. 1), while different values of k and various functions a(x), x = (x1, x2)T are considered.
It should also be noted that for the numerical experiments we assume that �0 ∩ �1 �= ∅,
which is different from the assumption in the theoretical discussion.

The finite element method with the quadratic Lagrange shape functions as basis func-
tions is used with a fixed fine element mesh size, where the minimum element mesh size
equals to 1.25×10–4, and the maximum element mesh size is 0.037, and the generalized-α
method as the time-stepping scheme is used with dt = 0.001 (see Fig. 1). The generalized-
α method was introduced by Chung and Hulbert [19] to solve the following second-order
ODEs:

AŸ (t) + BẎ (t) + CY (t) = H(t), (3.1)

Y (0) = d, (3.2)

Ẏ (0) = v, (3.3)

where A, B, and C are the mass, damping, and stiffness matrices, respectively, H(t) is the
vector applied loads, and Y (t) is the displacement vector, where the superimposed dots
indicate differentiation with respect to time; d and v are given vectors of initial displace-
ments and velocities, respectively.

By approximating Y (ti), Ẏ (ti), and Ÿ (ti) by di, vi, and ai, respectively, the generalized-α
algorithm is given by:

di+1 = di + �tvi + �t2
((

1
2

– β

)
ai + βai+1

)
, (3.4)
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Figure 1 Domain geometry with a fine mesh size used
for the 2-d wave equation

vi+1 = vi + �t
(
(1 – γ )ai + γ ai+1

)
, (3.5)

Aai+1–αm + Bvi+1–αf + Cdi+1–αf = H(ti+1–αf ), (3.6)

d0 = d, v0 = v, a0 = A–1(H(0) – Bv – Cd
)
, (3.7)

where

di+1–αf = (1 – αf )di+1 + αf di, (3.8)

vi+1–αf = (1 – αf )vi+1 + αf vi, (3.9)

ai+1–αm = (1 – αm)ai+1 + αmai, (3.10)

ti+1–αf = (1 – αf )ti+1 + αf ti, (3.11)

in which i ∈ [0, . . . , N – 1], N is the number of time steps, and �t = ti+1 – ti is the time step
size. The algorithm parameters αf , αm, β , and γ are used to control the degree of damping
high frequencies while minimizing unwanted low-frequency dissipation. The values of the
parameters αf , αm, β , and γ depend on the user-specified high-frequency dissipation ρ∞.
According to [19], when αf = ρ∞

ρ∞+1 ; αm = 2ρ∞–1
ρ∞+1 ; β = 1

4 (1 – αm + αf )2, and γ = 1
2 – αm + αf ,

the algorithm is unconditionally stable and second-order more accurate as compared to
other time-stepping schemes, especially for systems with the second-order derivatives.
It should be noted that ρ∞ was taken to be 0.75 in all numerical simulations conducted
herein. Therefore, the values of the parameters αf , αm, β , and γ are 0.428, 0.285, 0.326,
and 0.642, respectively.

3.1 The system (1.6)–(1.10)
For each regular solution of the system (1.6)–(1.10) in L2(�) × H–1(�), we consider the
following functional

E0(t) :=
1
2
∥∥u(t)

∥∥2
L2(�). (3.12)
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The latter represents the energy of the displacement term u(x, t) for (1.6)–(1.10) as the
energy is

1
2
{∥∥u(t)

∥∥2
L2(�) +

∥∥ut(t)
∥∥2

H–1(�)

}
.

3.1.1 The 2-d wave system without a boundary time-delay
In this subsection, we consider the 2-d wave problem (1.6)–(1.10) without delay. Letting
x = (x1, x2)T and taking the initial data u0(x) = 0 and u1(x) = sin(πx1), the system is:

utt(x, t) – �u(x, t) + a(x)ut(x, t) = 0, x ∈ �, t > 0, (3.13)

u(x, t) = 0, x ∈ �0, t > 0, (3.14)

u(x, t) = –k
∂Gut

∂ν
(x, t), x ∈ �1, t > 0, (3.15)

u(x, 0) = 0, ut(x, 0) = sin(πx1), x ∈ �. (3.16)

First, we choose a(x) = 1 and vary the values of k. It has been observed that the dynam-
ics of the system (3.13)–(3.16) is exponentially stable if k ≤ 0 and is unstable for k > 0.
Figure 2 is a 2-d solution of u(x, t) at it evolves in time for k = 1, and Fig. 3a presents the

Figure 2 2-d solutions of the wave system without delay (3.13)–(3.16), when a(x) = 1 and k = –1, at different
times: t = 0, . . . , 2
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Figure 3 The energy E0(t) of the wave system without delay (3.13)–(3.16) when: a) a(x) = 1, and k = –1; b)
a(x) = 1, and for negative values of k; c) a(x) = 1, and k = 0.1

corresponding energy, E0(t), as defined by (3.12) versus time. It is clear that the dynamics
of the system for this case exponentially converges to the zero solution. Figure 3b is a plot
of the energy E0(t) for different negative values of k, indicating that the energy exponen-
tially converges faster as the value of k decreases. On the other hand, Fig. 3c shows that
the dynamics of the system is unstable when k = 0.1.

3.1.2 The 2-d wave equation (1.6)–(1.10) with a boundary time-delay
In this subsection, we go back to the 2-d wave equation (1.6)–(1.10) with a bound-
ary time-delay τ . The inial data are taken as follows: u0(x) = 0, u1(x) = sin(πx1), and
f (x, t) = sin(πx1). The system is simulated for different parameters k, functions a(x), and
time-delays τ . First, we choose the same value of k = –1 and function a(x) = 1 as in the
case without delay presented in Sect. 3.1.1, but with time-delay τ = 1. Figure 4 presents
the dynamics of u(x, t) at different time, and Fig. 5 shows the corresponding energy, E0(t),
versus time. Figures 4-5 indicate that the presence of a time-delay destabilizes the dynam-
ics of the originally exponentially stable system (compare with Figs. 2 and 3a). Moreover,
choosing the function a(x) = 20 and keeping the value of k = –1 with a time-delay τ = 1
exponentially stabilize the dynamics of the 2-d wave equation to the zero solution (see
Figs. 6 and 7a). It is worth mentioning that based on the above discussion, the choice of
a(x) plays an important role in the stability of the solution for the system (1.6)–(1.10) with
a time-delay.
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Figure 4 2-d solutions of the wave equation (1.6)–(1.10) with a time-delay τ = 1 when a(x) = 1 and k = –1, at
different times: t = 0, . . . , 2

Figure 5 The energy E0(t) of the system (1.6)–(1.10) with a
delay τ = 1 when a(x) = 1, and k = –1

In turn, fixing a(x) = 1 and a time-delay τ = 1 and choosing different values of k change
the dynamics of the 2-d wave equation (1.6)–(1.10) depending on the value of k. Figure 7b
shows that the dynamics stabilizes as the value of k increases from –0.2 to –0.1. On the
other hand, if the values of k increase from 0.1 to 0.2, the dynamics becomes more unstable
(see Fig. 7c). These observations indicate that if a(x) = 1 and |k| < 0.2, then the 2-d wave
equation with a boundary time-delay τ = 1 is stable. However, this is not true if we change
the function a(x) = 3, where it is shown that the dynamics becomes exponentially stable
(see Fig. 7d). Figure 7e indicates similar observations to Fig. 7d when the time-delay is
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Figure 6 2-d solutions of the wave equation (1.6)-(1.10) with a delay τ = 1 when a(x) = 20 and k = 1, at
different times: t = 0, . . . , 2

increased to τ = 2. In addition, fixing a(x) = 0 and τ = 3 and choosing different values of
k change the dynamics of the 2-d wave equation (1.6)–(1.10) depending on the value of k.
Figures 7f and 7g show that the system becomes more unstable as |k| increases from 0.1
to 0.2.

Now, to investigate the effect of the choice of the time-delay τ on the stability of the sys-
tem (1.6)–(1.10), we fix k and a(x) and vary τ . Figure 8a shows that as we increase the value
of the time-delay τ while fixing k = –0.2 and a(x) = 1, the system destabilizes, and the rate
of divergence of the energy increases as the time-delay τ increases. Similar observations
are deduced for the case k = 0.2 and a(x) = 1 (see Fig. 8b). However, increasing the value
of a(x) = 3 exponentially stabilizes the dynamics for the previous two cases: k = –0.2, and
k = 0.2 (see Figs. 8c and 8d).

Next, we investigate the stability of the system (1.6)–(1.10) for different values of τ

when the support �1 of the function a satisfies a geometric control condition (GCC) (i.e.,
�1 = ( 1

3 , 2
3 )x(0, 1)). In addition, we fix k and choose a(x) = e(x1x2), where (x1, x2) ∈ �1. Fig-

ure 9a depicts the energy, E0(t), versus time when k = 0.1. Figure 9a indicates that as the
time delay increases, the dynamics destabilizes. On the other hand, the dynamics stabi-
lizes when k = –0.1 as the time delay increases (see Fig. 9b). The same observations are
deduced for the case k = 0.2 and k = –0.2 (see Figs. 9c and 9d, respectively).
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Figure 7 The energy E0(t) of the wave system (1.6)-(1.10) with: a) τ = 1 when k = –1, and for various a(x); b)
τ = 1, k is negative and when a(x) = 1; c) τ = 1, k is positive and when a(x) = 1; d) τ = 1, a(x) = 1 and a(x) = 3,
and for various k; e) τ = 2, a(x) = 1 and a(x) = 3, and for different values of k; f ) τ = 3, a(x) = 0, and for several
values of k; g) τ = 3, a(x) = 0, and for k > 0
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Figure 8 The energy E0(t) of the wave system (1.6)-(1.10) with: a) various delays when a(x) = 1 and for
k = –0.2; b) different delays when a(x) = 1 and for k = 0.2; c) several delays when a(x) = 3 and for k = –0.2; d)
various delays when a(x) = 3 and for k = 0.2

3.2 The system (1.16)–(1.20)
For each regular solution of the system (1.16)–(1.20), we consider the following functional
as the total energy of the system

E(t) :=
1
2

∫

�

{∣∣∇u(x, t)
∣∣2 +

∣∣ut(x, t)
∣∣2}dx. (3.17)

3.2.1 The 2-d wave system (1.16)-(1.20) without a boundary time-delay
In this subsection, we consider the following 2-d wave system (1.16)-(1.20) but without
the presence of the boundary delay:

utt(x, t) – �u(x, t) + a(x)ut(x, t) = 0, x ∈ �, t > 0, (3.18)

u(x, t) = 0, x ∈ �0, t > 0, (3.19)

∂u
∂ν

(x, t) = –kut(x, t), x ∈ �1, t > 0, (3.20)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �, (3.21)

where x = (x1, x2)T , and the initial data u0(x) = u1(x) = sin(πx1) + sin(2πx1).
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Figure 9 The energy E0(t) of the wave system (1.6)-(1.10) for different delays when a(x) = e(x1x2) with: a)
k = 0.1; b) k = –0.1; c) k = 0.2; d) k = –0.2

First, we choose a(x) = 1 and vary the values of k. It has been observed that the dynamics
of the system (3.18)–(3.21) is exponentially stable if k ≥ 0 and unstable for k < 0. Figure 10
is a 2-d solution of u(x, t) at it evolves in time for k = 1, and Fig. 11a presents the cor-
responding energy E(t) as defined by (3.17) versus time. It is clear that in this case, the
dynamics of the system exponentially converges to the zero solution. Figure 11b is a plot
of the energy E(t) for different positive values of k, indicating that the energy converges
exponentially faster as the value of k increases. On the other hand, Fig. 11c shows that the
dynamics of the system is unstable when k = –0.1.

Then, we let k = 1 and modify a(x). Figure 11d shows the convergence of the energy for
various functions of a(x) (i.e., a(x) = 1, a(x) = x1, and a(x) = ex1 ). The figure shows that
faster convergence is achieved when a(x) = ex1 , and this is due to the fact that ex1 > 1 > x1

for all x1 ∈ [0, 1].

3.2.2 The 2-d wave system (1.16)-(1.20) with a boundary time-delay
In this subsection, we go back to the 2-d wave equation (1.16)-(1.20) with a boundary delay
τ . The inial data are taken as follows: u0(x) = u1(x) = sin(πx1) + sin(2πx1), and f (x, t) =
sin(πx1). The system is simulated for different parameters k, functions a(x), and delays τ .
First, we choose the same value of k = 1 and function a(x) = 1 as in the case without delay
presented in Sect. 3.2.1, but with delay τ = 1. Figure 12 presents the dynamics of u(x, t)
at different time, and Fig. 13 shows the corresponding energy E(t) versus time. Figures 12
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Figure 10 2-d solutions of the wave equation without delay (3.18)-(3.21), when a(x) = 1 and k = 1, at different
times: t = 0, . . . , 2

and 13 indicate that the presence of a delay destabilizes the dynamics of the system that
was originally exponentially stable (compare with Figs. 10 and 11a). Moreover, choosing
the function a(x) = 10 and keeping the value of k = 1 with a delay τ = 1 exponentially
stabilize the dynamics of the 2-d wave equation to the zero solution (see Figs. 14 and 15a).
It is worth mentioning that based on the above discussion, the choice of a(x) plays an
important role in the stability of the solution for the system (1.16)–(1.20) with a delay.

In turn, fixing a(x) = 1 and a delay τ = 1 and choosing different values of k change the
dynamics of the 2-d wave equation (1.16)–(1.20) depending on the value of k. Figure 15b
shows that the dynamics becomes more unstable as the value of k increases from 0.1 to
0.4. On the other hand, if the values of k increase from –0.4 to –0.1, the dynamics becomes
more stable (see Fig. 15c). These observations indicate that if a(x) = 1 and |k| < 0.3, then
the 2-d wave equation with a boundary delay τ = 1 is stable. However, this is not true if
we change the function a(x) = 3, where it is shown that the dynamics becomes more ex-
ponentially stable (see Fig. 15d). Figure 15e indicates similar observations to Fig. 7e when
the delay is increased to τ = 2.

Now, to investigate the effect of the choice of the delay τ on the stability of the system
(1.16)–(1.20), we fix k and a(x) and vary τ . Figure 15f shows that as we increase the value
of the delay τ while fixing k = –0.4 and a(x) = 1, the system is still unstable. However, the
rate of divergence of the energy decreases as the delay τ increases. Similar observations
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Figure 11 The energy E(t) of the wave system without delay (3.18)-(3.21), when: a) a(x) = 1 and k = 1; b)
a(x) = 1, and for k > 0; c) a(x) = 1, and k = –0.1; d) k = 1, and for various a(x)

are deduced for the cases k = 0.4 and a(x) = 1 (see Fig. 15g) and k = 1 and a(x) = 1 (see
Fig. 15h).

Next, we investigate the stability of the system (1.16)–(1.20) for different values of τ

when the support �1 of the function a satisfies a geometric control condition (GCC) (i.e.,
�1 = ( 1

3 , 2
3 )x(0, 1)). Furthermore, we fix k and choose a(x) = e(x1x2), where (x1, x2) ∈ �1.

Figures 16a-16d depict the energy, E0(t), versus time when k = 0.4, –0.4, 1, –1, respectively.
Figure 16 indicates that the rate of divergence of the energy decreases as the time delay
increases from τ = 1 to τ = 4.

Appendix: The one-dimensional system (1.27)–(1.31)
As mentioned in the introduction, the system (1.27)–(1.31) is exponentially stable in
L2(0, 1) × H–1(0, 1) for any k ∈ (–1, 0). It suffices to proceed as in [5]. In fact, let P = –∂2

x be
the unbounded operator in Y = H–1(0, 1) with domain Y1 = D(P) = H1

0 (0, 1).
Then, let Q ∈L(R; H– 1

2
) such that

Qr = P–1Lr, ∀r ∈R, Q∗s =
∂[(–∂2

x )–1s]
∂x

(1), ∀s ∈D
(
P

1
2
)

= Y 1
2

= L2(�),

where Y– 1
2

= (D(P 1
2 ))′ (the duality is in the sense of Y ) and P–1 is the extension of P to Y ,

namely for all h ∈ Y and ϕ ∈D(P), P–1h is the unique element in Y–1 = (D(P))′ (the duality
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Figure 12 2-d solutions of the wave equation (1.16)-(1.20) with a delay τ = 1 when a(x) = 1 and k = 1, at
different times: t = 0, . . . , 2

Figure 13 The energy E(t) of the system (1.16)-(1.20) with
a delay τ = 1 when a(x) = 1, and k = 1

is in the sense of Y ) such that

〈P–1h,ϕ〉Y–1,Y1 = 〈h, Pϕ〉Y .

Furthermore, L ∈ L(R; L2(0, 1)) is the Dirichlet mapping such as ∀v ∈ R, Lv = g is the
unique solution of

∂2
x g = 0, g(0) = 0, g(1) = v.
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Figure 14 2-d solutions of the wave equation (1.16)-(1.20) with a delay τ = 1 when a(x) = 10 and k = 1, at
several times: t = 0, . . . , 2

Now, consider the Hilbert space Y := Y 1
2

× Y and the unbounded linear operator:

P : D(P) = Y1 × Y 1
2

⊂ Y −→ Y , P(y, z) = (z, –Py), ∀(y, z) ∈D(P). (4.1)

The operator (P ,D(P)) defined by (4.1), generates a strongly continuous semigroup of
contractions (S(t))t≥0 on Y . On the other hand, (S–1(t))t≥0 denotes the extension of
(S(t))t≥0 to (D(P))′ := Y × Y– 1

2
, where Y– 1

2
= (D(P 1

2 ))′ and the duality is in the sense of
Y .

We have the following result whose proof can be obtained similarly to [5]:

Theorem 4.1 The system (1.27)–(1.31) is well-posed in the following sense: for each
(u0, u1) ∈ Y , the solution of (1.27)–(1.31) is given by

(
u(t)
ut(t)

)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
u0(t)
u0

t (t)

)
= S(t)

(
u0
u1

)
, t ∈ [0, 2],

(
uj(t)
uj

t (t)

)
= S(t – 2j)

(
uj–1(2j)

uj–1
t (2j)

)
–

∫ t
2j S–1(t – s)

( 0
kQQ∗uj–1

t (s–2)

)
ds,

t ∈ [2j, 2(j + 1)], j ≥ 1,
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Figure 15 The energy E(t) of the wave system (1.16)-(1.20) with: a) τ = 1 when k = 1, and for different
functions a(x); b) τ = 1, k is positive and when a(x) = 1; c) τ = 1, k is negative and when a(x) = 1; d) τ = 1,
a(x) = 1 and a(x) = 3, and for numerous values of k; e) τ = 1, a(x) = 1 and a(x) = 3, and for several values of k; f )
different delays when a(x) = 1 and for k = –0.4; g) various delays when a(x) = 1 and for k = 0.4; h) different
delays when a(x) = 1 and for k = 1
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Figure 16 The energy E(t) of the wave system (1.16)-(1.20) with a(x) = e(x1x2) and for different delays when: a)
k = 0.4; b) k = –0.4; c) k = 1; d) k = –1

and satisfies (uj, uj
t) ∈ C([2j, 2(j + 1)],Y), j ∈N.

With regard to the exponential stability of (1.27)–(1.31), we have:

Theorem 4.2 If k ∈ (–1, 0), then for all initial data in Y , the solution of problem (1.27)-
(1.31) satisfies

∥∥(u, ut)
∥∥

L2(0,1)×H–1(0,1) ≤ Me–ωt∥∥(u0, u1)
∥∥

L2(0,1)×H–1(0,1), ∀t ≥ 0, (4.2)

where M > 0 depends on the initial data and k, while ω > 0 depends on the feedback gain
k.

Proof It suffices to seek a solution u by invoking the D’Alembert formula

u(x, t) = F(x + t) – F(t – x), x ∈ (0, 1), t ≥ 0, (4.3)

where F is a function to be found in H1
loc(–1, +∞) so that u satisfies (1.27)–(1.31), and then

use the same arguments as in [5] (see p. 5–7). �
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