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Abstract
In this manuscript an existence result for an anisotropic variable problem which is
related to several applications is proved. By considering suitable hypotheses, the
multiplicity of solutions is obtained. Examples of applicability of the results are also
presented. The arguments are based on appropriated L∞ estimates,
sub-supersolutions, and the mountain pass theorem.
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1 Introduction and main results

⎧
⎨

⎩

–
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|pi(x)–2 ∂u

∂xi
) = a(x)uα(x)–1 + λf (x, u) in �,

u = 0 on ∂�,
(P)

where �, unless otherwise stated, is a bounded domain in R
N (N ≥ 3) with smooth

boundary pi ∈ C(�), 2 ≤ pi(x) ≤ p+(x) < p�(x), i = 1, . . . , N , p+(x) := max{p1(x), . . . , pN (x)}
for any x ∈ � with p(x) := N/

∑N
i=1(1/pi(x)) and p∗(x) = Np(x)/(N – p(x)) if p(x) < N and

p(x) = +∞ if N ≥ p(x), α ∈ C(�) is a nonnegative function with 1 ≤ α(x) for all x ∈ �,
f : � × [0, +∞) →R is a continuous function and

(H) a ∈ L∞(�) with a(x) > 0 a.e. in �;
(f1) There is δ > 0 such that f (x, t) ≥ (1 – tα(x)–1)a(x) for all (x, t) ∈ � × [0, δ];
(f2) There exists r ∈ C(�) such that 1 < r(x) for any x ∈ � and |f (x, t)| ≤ a(x)(1 + |t|r(x)–1)

for all (x, t) ∈ � × [0, +∞).
We say that u ∈ W 1,−→p (x)

0 (�) is a weak solution for (P) if

∫

�

N∑

i=1

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)–2
∂u
∂xi

∂φ

∂xi
=

∫

�

a(x)uα(x)–1φ + f (x, u)φ

for all φ ∈ W 1,−→p (x)
0 (�).

Denoting by ‖ · ‖∞ the norm in L∞(�), we obtain, by means of sub-supersolutions and
minimization arguments, the result described below.
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Theorem 1.1 Consider that hypotheses (H), (f1), and (f2) hold. Then problem (P) has a
solution for ‖a‖∞ small enough.

Define p∞(x) = max{p�(x), p+(x)}, p–(x) = min{p1(x), . . . , pn(x)}, x ∈ � and denote q– :=
inf� q and q+ := sup� q for a function q ∈ C(�). Considering the Ambrosetti–Rabinowitz
type condition:

(f3) It holds that α– > 1, α+, r+ < p–∞ with α+ < p–
– or p+

+ < α–, and there are t0 > 0 and
θ > p+

+ such that

0 < θF(x, t) ≤ f (x, t)t, a.e. in �, for all t ≥ t0,

we have the multiplicity result below.

Theorem 1.2 Consider that hypotheses (H), (f1)–(f3) hold. Then problem (P) has two so-
lutions for ‖a‖∞ small enough.

Consider s0 > 0. The function

w(x, t) =

⎧
⎨

⎩

a(x)(1 – tα(x)–1), 0 ≤ t ≤ s0,

a(x)((1 – sα(x)–1
0 ) + (t – s0)r(x)–1), t > s0,

satisfies (f1) and (f2) for δ ∈ (0, s0] and r ∈ C(�) with r– > 1 for all x ∈ �. Note that (f1)–(f3)
hold if 1 < α+ < p–∞ and p+

+ < r– with α+ < p–
– or p+

+ < α–.
Anisotropic partial differential equations have attracted the attention of several re-

searchers in the last years due to their applicability in several areas of science. For ex-
ample, in the classical paper [1] the authors considered a model which was applied for
both image enhancement and denoising in terms of anisotropic PDEs as well as allow-
ing the preservation of significant image features. In physics, anisotropic problems arise
in models that describe the dynamics of fluids with different conductivities in different
directions. We also point out that anisotropic equations can be applied in models that de-
scribe the spread of epidemic disease in heterogeneous environments. For more details
regarding the mentioned applications, see for instance [2–4].

On the other hand, problems involving variable exponents can be also applied to con-
sider several important models. A classical application is in the study of electrorheological
fluids. The study of electrorheological fluids started when fluids that stop spontaneously,
which are known in the literature as Bingham fluids, were discovered. We also mention
the important work [5] due to W. Winslow, where the first major discovery regarding elec-
trorheological fluids was presented. A notable fact is that under the presence of an eletrical
field, parallel and string-like formations arise in this kind of fluid. Such behavior is known
as Winslow effect. As mentioned in the interesting paper [6], several experiments with such
fluids have been considered in NASA due to their applicability in space technology and
robotics.

We also mention that, from the mathematical viewpoint, anisotropic problems and
equations with variable exponents are very interesting. For example, in the reference [7],
regularity results for a system which arise in the study of electrorheological fluids are
proved. In [8], the authors generalize several results of elliptic equations for the variable
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exponents setting. In the classical manuscript [9] the author considers problems with an
anisotropic operator with variable exponents. We also quote the interesting references
[10–19] and the paper [20] which provides an overview of recent results concerning el-
liptic variational problems with nonstandard growth conditions and related to different
kinds of nonuniformly elliptic operators. For a complete treatment of problems involving
variable exponents, see [21, 22].

Problem (P) is motivated by [23], where the authors obtained versions of Theorems 1.1
and 1.2 with α ≡ 2 for an anisotropic operator.

The rest of the manuscript is organized as follows: in Sect. 2 we present some prelim-
inaries regarding spaces with variable exponents; in Sect. 3 we obtain an auxiliary L∞

estimate which will play an important role in our arguments; in Sects. 5 and 6 the proofs
of Theorems 1.1 and 1.2 are provided, respectively.

2 Preliminaries
Let � ⊂ R

N (N ≥ 1) be a bounded domain. Given p ∈ C+(�) := {p ∈ C(�); inf� p > 1}, we
define the Lebesgue space

Lp(x)(�) =
{

u : � →R measurable;
∫

�

∣
∣u(x)

∣
∣p(x) < ∞

}

with the norm

‖u‖p(x) := inf

{

λ > 0;
∫

�

∣
∣
∣
∣
u(x)
λ

∣
∣
∣
∣

p(x)

≤ 1
}

.

It holds that (Lp(x)(�),‖ · ‖p(x)) is a Banach space.
The results below, which can be found for example in [24], will be often used.

Proposition 2.1 Consider p ∈ C+(�) and define ρ(u) :=
∫

�
|u|p(x) dx. For u, un ∈ Lp(x)(�),

n ∈N, the statements below hold.
(i) If u �= 0 in Lp(x)(�), then ‖u‖p(x) = λ ⇔ ρ( u

λ
) = 1;

(ii) If ‖u‖p(x) < 1(= 1; > 1), then ρ(u) < 1(= 1; > 1);
(iii) If ‖u‖p(x) > 1, then ‖u‖p–

p(x) ≤ ρ(u) ≤ ‖u‖p+

p(x);
(iv) If ‖u‖p(x) < 1, then ‖u‖p+

p(x) ≤ ρ(u) ≤ ‖u‖p–

p(x).

Theorem 2.2 Consider p, q ∈ C+(�). The assertions below hold.
(i) If 1

q(x) + 1
p(x) = 1 in �, then | ∫

�
uv dx| ≤ ( 1

p– + 1
q– )‖u‖p(x)‖v‖q(x);

(ii) If q(x) ≤ p(x) in � and |�| < ∞, then Lp(x)(�) ↪→ Lq(x)(�).

In what follows we recall some results on anisotropic variable exponents which can be
found for example in [9]. Consider pi ∈ C+(�), i = 1, . . . , N . Denote

−−→
p(x) :=

(
p1(x), . . . , pN (x)

) ∈ (
C+(�)

)N

and define

p+(x) := max
{

p1(x), . . . , pN (x)
}

and p–(x) := min
{

p1(x), . . . , pN (x)
}

, x ∈ �. (2.1)



Tavares Boundary Value Problems         (2022) 2022:10 Page 4 of 13

The anisotropic variable exponent Sobolev space given by

W 1,
−−→
p(x)(�) :=

{

u ∈ Lp+(x)(�);
∂u
∂xi

∈ Lpi(x)(�), i = 1, . . . , N
}

is a Banach space with respect to the norm

‖u‖1,−→p (x) := ‖u‖p+(x) +
N∑

i=1

∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

pi(x)
. (2.2)

If p–
i > 1, i = 1, . . . , N , then W 1,

−−→
p(x)(�) is reflexive, see [9, Theorem 2.2].

By W 1,
−−→
p(x)

0 (�) we denote the Banach space defined by the closure of C∞
0 (�) in W 1,−→p (�)

with respect to the norm (2.2).
Consider p(x) := N/

∑N
i=1(1/pi(x)) and p∗(x) = Np(x)(N – p(x)) if p(x) < N and p(x) = +∞

if N ≥ p(x). If p(x) < p∗(x) for all x ∈ �, then the following Poincaré type inequality holds:

‖u‖p+(x) ≤ C
N∑

i=1

∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

pi(x)
for all u ∈ W 1,

−−→
p(x)

0 (�), (2.3)

where C is a positive constant independent of u ∈ W 1,
−−→
p(x)

0 (�). Thus, the norm

‖u‖ :=
N∑

i=1

∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

pi(x)
, u ∈ W 1,

−−→
p(x)

0 (�)

is equivalent to the norm given in (2.2).
If q ∈ C+(�) and q(x) < p∞(x) for all x ∈ �, where p∞(x) := max{p�(x), p+(x)}, then there

exists a compact embedding W 1,
−−→
p(x)

0 (�) ↪→ Lq(x)(�).

3 Auxiliary results
In what follows we present an existence result for a linear problem and a weak comparison
principle which generalize Lemmas 2.1 and 2.2 of [23] respectively.

Lemma 3.1 Consider a ∈ L∞(�). The problem

⎧
⎨

⎩

–
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|pi(x)–2 ∂u

∂xi
) = a in �,

u = 0 on ∂�,

has a unique solution in W 1,
−−→
p(x)

0 (�).

Proof The continuous nonlinear map T : W 1,
−−→
p(x)

0 (�) → (W 1,
−−→
p(x)

0 (�))′ is defined by

〈Tu,φ〉 =
N∑

i=1

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)–2
∂u
∂xi

∂φ

∂xi
.
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Since pi > 1, i = 1, . . . , N , we have from the inequality (see for example [25, page 97])

〈|x|l–2x – |y|l–2y, x – y
〉 ≥ 1

2l–2 |x – y|l (3.1)

for all x, y ∈ R
N and l ≥ 2, where 〈·, ·〉 denotes the usual inner product in R

N , that

〈Tu – Tv, u – v〉 > 0 for all u, v ∈ W 1,
−−→
p(x)

0 (�) with u �= v.

Consider (un) ⊂ W 1,
−−→
p(x)

0 (�) a sequence with ‖un‖ → +∞. As in the proof of [21, Theo-
rem 36], for each i ∈ {1, . . . , N} and n ∈N, we define

αi,n :=

⎧
⎨

⎩

p+
+ if ‖ ∂un

∂xi
‖pi(x) ≤ 1,

p–
– if ‖ ∂un

∂xi
‖pi(x) > 1.

Since (a1 + · · ·+ aN )β ≤ C(aβ
1 + · · ·+ aβ

N ) for β ≥ 1 and ai ≥ 0, i = 1, . . . , N , for some constant
C, we have

∫

�

N∑

i=1

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi(x)

≥
N∑

i=1

∥
∥
∥
∥
∂un

∂xi

∥
∥
∥
∥

αi,n

pi(x)

≥ C1

( ∑

{i;αi,n=p+
+}

∥
∥
∥
∥
∂un

∂xi

∥
∥
∥
∥

pi(x)

)p+
+

≥ C1

( ∑

{i;αi,n=p+
+}

∥
∥
∥
∥
∂un

∂xi

∥
∥
∥
∥

pi(x)

)p+
+

+ C2

( ∑

{i;αi,n=p––}

∥
∥
∥
∥
∂un

∂xi

∥
∥
∥
∥

pi(x)

)p–
–

+ C2

( ∑

{i;αi,n=p+
+}

∥
∥
∥
∥
∂un

∂xi

∥
∥
∥
∥

pi(x)

)p–
–

– C2

( ∑

{i;αi,n=p+
+}

∥
∥
∥
∥
∂un

∂xi

∥
∥
∥
∥

pi(x)

)p–
–

≥ C3‖u‖p–
– – N , (3.2)

where C1, C2, C3 > 0 are constants that do not depend on n ∈N. Therefore

lim
n→+∞

〈Tun, un〉
‖un‖ = +∞.

Thus, it follows from the Minty–Browder theorem [26, Theorem 5.16] that there is a

unique function u ∈ W 1,
−−→
p(x)

0 (�) such that Tu = a. �

Lemma 3.2 Let u, v ∈ W 1,
−−→
p(x)

0 (�) satisfy

⎧
⎨

⎩

–
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|pi(x)–2 ∂u

∂xi
) ≤ –

∑N
i=1

∂
∂xi

(| ∂v
∂xi

|pi(x)–2 ∂v
∂xi

) in �,

u ≤ v on ∂�,

where u ≤ v on ∂� means that (u – v)+ := max{0, u – v} ∈ W 1,−→p (x)
0 (�). Then u(x) ≤ v(x) a.e.

in �.
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Proof Using the test function φ = (u – v)+ := max{u – v, 0} ∈ W 1,−→p (x)
0 (�), it follows that

∫

�
⋂

[u>v]

N∑

i=1

(∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi–2
∂u
∂xi

–
∣
∣
∣
∣
∂v
∂xi

∣
∣
∣
∣

pi–2
∂v
∂xi

)(
∂u
∂xi

–
∂v
∂xi

)

≤ 0

for x, y ∈R
N . Thus, it follows from (3.1) that

∫

�

∣
∣
∣
∣

∂

∂xi
(u – v)+

∣
∣
∣
∣

pi(x)

= 0

for i = 1, . . . , N , which allows to conclude that ∂
∂xi

(u – v)+(x) = 0 a.e. in � for i = 1, . . . , N .
Applying (2.3) we obtain that (u – v)+(x) = 0 a.e. in �, which finishes the proof of the
result. �

4 An auxiliary L∞ estimate
Consider � ⊂ R

N (N ≥ 2) to be an admissible and bounded domain, that is, there exists
a continuous embedding W 1,1

0 (�) ↪→ L
N

N–1 (�). The best constant of such an embedding
will be denoted by C0, which depends on only � and N . Then it follows that

‖u‖W 1,1
0 (�) ≤ C0‖u‖

L
N

N–1
(�) (4.1)

for all u ∈ W 1,1
0 (�), where ‖u‖W 1,1

0 (�) := ‖|∇u|‖L1 . Adapting the ideas of [27, Lemma 4.1],
we obtain an L∞ estimate that will be applied in the construction of appropriate sub-
supersolutions, which is provided below.

Lemma 4.1 Consider λ > 0 and uλ ∈ W 1,
−−→
p(x)

0 (�) to be the unique solution of the problem

⎧
⎨

⎩

–
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|pi(x)–2 ∂u

∂xi
) = λ in �,

u = 0 on �.
(Pλ)

Consider h := p–
–

2|�| 1
N

C0. If λ ≥ h, then u ∈ L∞(�) with ‖u‖L∞(�) ≤ C�λ
1

p–––1 and ‖u‖L∞(�) ≤

C�λ
1

p++–1 when λ < h, where C� and C� are positive constants which depend only on �, N
and pi, i = 1, . . . , N .

Proof Note that uλ is a nonnegative function with u �≡ 0. Consider k ≥ 0 and define the set

Ak := {x ∈ �; u(x) > k}. Let 0 < ε < 1. Applying in (Pλ) the test function (u–k)+ ∈ W 1,
−−→
p(x)

0 (�),
we obtain from (4.1) and Young’s inequality that

∫

Ak

N∑

i=1

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)

dx

= λ

∫

Ak

(u – k) dx

≤ λ|Ak| 1
N
∥
∥(u – k)+∥

∥
L

N
N–1 (�)
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≤ λ|Ak| 1
N C0

∫

Ak

|∇u|dx

≤ λ|Ak| 1
N C0

∫

Ak

N∑

i=1

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣dx

≤ λ|Ak| 1
N C0

N∑

i=1

∫

Ak

(|ε ∂u
∂xi

|)pi(x)

pi(x)
dx + λ|Ak| 1

N C0

N∑

i=1

∫

Ak

(ε–1)(pi(x))′

(pi(x))′
dx. (4.2)

We have that

λ|Ak| 1
N C0

N∑

i=1

∫

Ak

(ε| ∂u
∂xi

|)pi(x)

pi(x)
≤ λ|Ak| 1

N C0

p–
–

N∑

i=1

∫

Ak

εp–
–

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)

dx

≤ λ|�| 1
N C0

p–
–

N∑

i=1

∫

Ak

εp–
–

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)

dx,

where p– was defined in (2.1). Consider h := p–
–

2|�| 1
N C0

and suppose that λ ≥ h. Define

ε :=
(

p–
–

2λ|�| 1
N C0

) 1
p––

.

We have ε ≤ 1 and

λ|�| 1
N C0

p–
–

N∑

i=1

∫

Ak

εp–
–

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)

dx ≤ λ|�| 1
N C0ε

p–
–

p–
–

N∑

i=1

∫

Ak

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)

dx

=
1
2

N∑

i=1

∫

Ak

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)

dx. (4.3)

Thus it follows from (4.2) and (4.3) that

N∑

i=1

∫

Ak

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)

dx ≤ 2λ|Ak| 1
N C0

(p+
+)′

N∑

i=1

∫

Ak

ε–(p–
–)′ dx

≤ γ |Ak|1+ 1
N ,

where

γ :=
2Nε–(p–

–)′C0

(p+
+)′

,

which provides that

∫

Ak

(u – k) dx =
1
λ

N∑

i=1

∫

Ak

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx ≤ γ |Ak|1+ 1
N .

From the L∞ estimates in [28, Lemma 5.1-Chap. 2], we obtain that

‖u‖L∞(�) ≤ γ (N + 1)|�| 1
N
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= C�λ
1

p–––1 ,

where C� is a constant that does not depend on uλ. If λ < h, then the result follows by
applying the previous arguments with

ε :=
(

p–
–

2λ|�| 1
N C0

) 1
p++ . �

5 Proof of Theorem 1.1
Below we describe the notion of sub-supersolution that will be considered for (P) and a
related result.

It will be considered that (u, u) ∈ W 1,
−−→
p(x)

0 (�) × W 1,
−−→
p(x)

0 (�) is a sub-supersolution pair for
(P) if u and u belong to L∞(�), 0 < u(x) ≤ u(x) a.e. in � and

∫

�

N∑

i=1

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)–2
∂u
∂xi

∂ϕ

∂xi
≤

∫

�

a(x)uα(x)–1ϕ +
∫

�

f (x, u)ϕ,

∫

�

N∑

i=1

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)–2
∂u
∂xi

∂ϕ

∂xi
≥

∫

�

a(x)uα(x)–1ϕ +
∫

�

f (x, u)ϕ (5.1)

for all ϕ ∈ W 1,
−−→
p(x)

0 (�) with ϕ(x) ≥ 0 a.e. in �.

Lemma 5.1 Consider that hypotheses (H) and (f1)–(f2) hold. There is ι > 0 such that

if ‖a‖L∞(�) < ι, then (P) has a sub-supersolution pair (u, u) ∈ (W 1,
−−→
p(x)

0 (�) ∩ L∞(�)) ×
(W 1,

−−→
p(x)

0 (�) ∩ L∞(�)) with ‖u‖∞ ≤ δ, where δ is provided in (f1).

Proof From Lemmas 3.1 and 4.1, there are unique nonnegative solutions u,

u ∈ W 1,
−−→
p(x)

0 (�) ∩ L∞(�), respectively, for

⎧
⎨

⎩

–
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|pi(x)–2 ∂u

∂xi
) = a(x) in �,

u = 0 on ∂�,

and
⎧
⎨

⎩

–
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|pi(x)–2 ∂u

∂xi
) = 1 + a(x) in �,

u = 0 on ∂�,

(5.2)

such that ‖u‖∞ ≤ max{C�‖a‖
1

p–––1
∞ , C�‖a‖

1
p++–1
∞ }, where C�, C� > 0 are the constants given in

Lemma 4.1. Thus, there is η > 0, which depends only on C� and C�, such that ‖u‖∞ ≤ δ/2
for ‖a‖∞ < η. From Lemma 3.2 we have 0 < u(x) ≤ u(x) a.e. in �.

Let φ ∈ W 1,
−−→
p(x)

0 (�) be such that φ(x) ≥ 0 a.e. in �. Applying (f1) and (5.2) we obtain that

∫

�

N∑

i=1

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)–2
∂u
∂xi

∂φ

∂xi
–

∫

�

a(x)uα(x)–1φ –
∫

�

f (x, u)φ
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≤
∫

�

a(x)φ –
∫

�

a(x)uα(x)–1φ –
∫

�

(
1 – uα(x)–1)a(x)φ

= 0.

From (f2) we have

∫

�

N∑

i=1

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)–2
∂u
∂xi

∂φ

∂xi
–

∫

�

a(x)uα(x)–1φ –
∫

�

f (x, u)φ ≥
∫

�

(
1 – K‖a‖∞

)
φ,

where K := max{‖u‖α+
∞ ,‖u‖α–

∞ } + max{‖u‖r+–1∞ ,‖u‖r––1∞ }. Considering, if necessary, ι > 0
smaller such that K‖a‖∞ ≤ 1 for ‖a‖∞ < ι, it follows that the right-hand side in the last
inequality is nonnegative, which provides the result. �

Proof of Theorem 1.1 Consider the functions u, u ∈ W 1,
−−→
p(x)

0 (�) defined in Lemma 5.2. De-
fine

w(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

a(x)uα(x)–1 + f (x, u(x)), t > u(x),

a(x)tα(x)–1 + f (x, t), u(x) ≤ t ≤ u(x),

a(x)uα(x)–1 + f (x, u(x)), t < u(x),

for (x, t) ∈ � ×R and the problem
⎧
⎨

⎩

–
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|pi(x)–2 ∂u

∂xi
) = w(x, u) in �,

u = 0 on ∂�,

whose solutions are the critical points of the C1 functional defined by

J(u) :=
∫

�

N∑

i=1

1
pi(x)

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)

–
∫

�

W (x, u) dx, u ∈ W 1,
−−→
p(x)

0 (�), (5.3)

where W (x, t) :=
∫ t

0 w(x, s) ds. Note that J is coercive and sequentially weakly lower semi-

continuous. We have that K := {u ∈ W 1,
−−→
p(x)

0 (�); u(x) ≤ u(x) ≤ u(x) a.e. in �} is closed and

convex and hence weakly closed in W 1,
−−→
p(x)

0 (�). Thus, it follows that J|K attains its mini-
mum at some u0 ∈ K . Reasoning as in [29, Theorem 2.4], we get J ′(u0) = 0, which provides
the result. �

6 Proof of Theorem 1.2
Consider u ∈ W 1,

−−→
p(x)

0 (�) given in Lemma 5.1 and the function

h(x, t) =

⎧
⎨

⎩

a(x)tα(x)–1 + f (x, t), t ≥ u(x),

a(x)u(x)α(x)–1 + f (x, u(x)) t < u(x),

and the auxiliary problem
⎧
⎨

⎩

–
∑N

i=1
∂

∂xi
(| ∂u

∂xi
|pi(x)–2 ∂u

∂xi
) = h(x, u) in �,

u = 0 on ∂�,



Tavares Boundary Value Problems         (2022) 2022:10 Page 10 of 13

whose solutions are given by the critical points of the C1 functional

S(u) :=
∫

�

N∑

i=1

1
pi(x)

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)

–
∫

�

H(x, u), u ∈ W 1,
−−→
p(x)

0 (�),

where H(x, t) :=
∫ t

0 h(x, s) ds.

Lemma 6.1 The functional S satisfies the Palais–Smale condition.

Proof Consider (un) ⊂ W 1,
−−→
p(x)

0 (�) to be a sequence with S′(un) → 0 and S(un) → c for
some c ∈R.

We will start by considering the case p+
+ < α–. Note that (f3) holds for θ̃ > 0 such that p+

+ <
θ̃ < min{α–, θ}. Reasoning as in (3.2) and applying (f2)–(f3), the boundedness of u, and the

continuous embedding W 1,
−−→
p(x)

0 (�) ↪→ L1(�), we obtain positive constants C1, C2, C3 > 0
such that

C1 + ‖un‖ ≥ S(un) –
1
θ̃

S′(un)un

≥ C2‖un‖p–
– +

∫

{un≥u}

(
1
θ̃

–
1

α(x)

)

a(x)un
α(x) – C3‖un‖

≥ C2‖un‖p–
– – C3‖un‖,

which provides the boundedness of (un) in W 1,
−−→
p(x)

0 (�).
In the case α+ < p–

– we can apply (f2), (f3), Proposition 2.1, the boundedness of u, and the

continuous embedding W 1,
−−→
p(x)

0 (�) ↪→ L1(�) to obtain that

C1 + ‖un‖ ≥ S(un) –
1
θ

S′(un)un

≥ C2‖un‖p–
– – C4

∫

�

|un|α(x) – C3‖un‖

≥ C2‖un‖p–
– – C4 max

{‖un‖α–
α(x),‖un‖α+

α(x)
}

– C3‖un‖,

where C1, C2, C3, C4 > 0 are constants. Applying the embedding W 1,p(x)
0 (�) ↪→ Lα(x)(�), we

have

C1 + ‖un‖ + C3‖un‖ + C5 max
{‖un‖α+

,‖un‖α–} ≥ C2‖un‖p–
– .

Since α+ < p–
–, we obtain that (un) is bounded in W 1,

−−→
p(x)

0 (�).
Thus, up to a subsequence, we get

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un ⇀ u in W 1,
−−→
p(x)

0 (�),

un(x) → u(x) a.e. in �,

un → u in Lν(x)(�),

(6.1)
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for all ν ∈ C(�) with 1 < ν– ≤ ν+ < p–∞ and some u ∈ W 1,
−−→
p(x)

0 (�). Combining (6.1) and
Lebesgue’s dominated convergence theorem it follows that

∫

�

(∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi–2
∂un

∂xi
–

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi–2
∂u
∂xi

)(
∂un

∂xi
–

∂u
∂xi

)

→ 0,

which provides the result. �

Lemma 6.2 Consider that (H), (f1)–(f3) hold. If ‖a‖L∞(�) is small enough, then the claims
below hold.

(i) There are constants R,λ > 0 with R > ‖u‖ such that

S(u) < 0 < λ ≤ inf
u∈∂BR(0)

S(u).

(ii) There is e ∈ W 1,
−−→
p(x)

0 (�) \ B2R(0) with S(e) < λ.

Proof From (5.1) and since p–
– > 1, we have S(u) < 0. Consider u ∈ W 1,

−−→
p(x)

0 (�) with ‖u‖ ≥ 1.

Arguing as in (3.2), applying Proposition 2.1 and the continuous embedding W 1,
−−→
p(x)

0 (�) ↪→
Lα(x)(�), we obtain that

L(u) ≥ K1‖u‖p–
– – K2‖u‖ – K3‖a‖∞

(‖u‖α+
+ ‖u‖r+)

– K4

for positive constants K1, K2, K3, K4 > 0. If necessary, decrease ‖a‖∞ in such a way that
‖u‖ < 1, which is possible by considering the test functions φ = u in (5.1) and applying
Lemma 4.1. Consider λ > 0 and fix R > 1 such that K1Rp–

– – K2R – K4 ≥ 2λ. Considering
‖a‖∞ small enough satisfying K3‖a‖∞(Rα+ + Rr+ ) ≤ λ, it follows that L(u) ≥ λ for all u ∈
W 1,

−−→
p(x)

0 (�) with ‖u‖ = R, which finishes the proof of (i).
With respect to (ii), note that (f3) implies the existence of constants C1, C2, C3, C4 > 0

and t > 0 such that S(tu) ≤ C1tp+
+ – C2tα– – C3tθ + C4 < 0 with ‖tu‖ > 2R. �

Proof of Theorem 1.2 Consider u, u ∈ W 1,
−−→
p(x)

0 (�) given in Lemma 5.1 and u1 ∈ W 1,
−−→
p(x)

0 (�)
the solution of (P) obtained in Theorem 1.1, which provides the minimum of J|K , where

K :=
{

u ∈ W 1,
−−→
p(x)

0 (�); u(x) ≤ u(x) ≤ u(x) a.e. in �
}

and J is the functional defined in (5.3). From Lemmas 6.1 and 6.2 we obtain that the hy-
potheses of the mountain pass theorem [30, Theorem 2.1] are satisfied by S. Therefore

c := inf
γ∈�

max
t∈[0,1]

S
(
γ (t)

)
, where � :=

{
γ ∈ C

(
[0, 1], W 1,

−−→
p(x)

0 (�)
)
;γ (0) = u,γ (1) = e

}
,

is a critical value of S, that is, S′(u2) = 0 and L(u2) = c for some u2 ∈ W 1,
−−→
p(x)

0 (�). Note that

J(u) = S(u) for u ∈ {w ∈ W 1,
−−→
p(x)

0 (�); 0 ≤ w(x) ≤ u(x) a.e. in �}. Thus, S(u1) = infu∈K J(u). If

u2(x) ≥ u(x) a.e. in �, it follows that problem (P) has two weak solutions u1, u2 ∈ W 1,
−−→
p(x)

0 (�)
with S(u1) ≤ S(u) < 0 < λ ≤ c := S(u2), where λ > 0 was provided in Lemma 6.2.
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We claim that u2(x) ≥ u(x) a.e. in �. In fact, by considering the function (u – u2)+ ∈
W 1,

−−→
p(x)

0 (�), we get

∫

�

N∑

i=1

∣
∣
∣
∣
∂u2

∂xi

∣
∣
∣
∣

pi(x)–2
∂u2

∂xi

(u – u2)+

∂xi
=

∫

�

h(x, u2)(u – u2)+

=
∫

�

(
a(x)u(x)α(x)–1 + f

(
x, u(x)

))
(u – u2)+

≥
∫

�

N∑

i=1

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)–2
∂u
∂xi

∂(u – u2)+

∂xi
.

Thus, it follows from (3.1) that

∫

�

∣
∣
∣
∣

∂

∂xi
(u – u2)+

∣
∣
∣
∣

pi(x)

= 0

for i = 1, . . . , N , which implies that ∂
∂xi

(u – u2)+(x) = 0 a.e. in � for i = 1, . . . , N . From Propo-
sition 2.1 and (2.3) we have (u – u2)+(x) = 0 a.e. in �, which proves the claim. �
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