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Abstract
We study the problem of plasma geometry control problem in a tokamak. The
domain location and shape are determined using an approach based on the
Kohn–Vogelius formulation and topological asymptotic method. We present a
one-shot numerical procedure based on the developed asymptotic formula and use
it on different test configurations.
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1 Introduction and problem formulation
A tokamak is an experimental magnetic confinement device that explores the physics of
plasmas and the possibilities of producing energy by nuclear fusion [1–3]. It is a candidate
technology for the development of an electricity production plant by nuclear fusion oper-
ating on the principle of heat exchange with a fluid [4, 5]. Inside the tokamak the energy
generated by the fusion of atomic nuclei is absorbed in the form of heat by the walls of the
empty chamber. Just like conventional power plants, a fusion power plant uses this heat
to produce steam and then, through turbines and alternators, electricity.

The plasma equilibrium in a tokamak is a free boundary problem. The boundary of
the plasma is the last closed magnetic flux surface. We denote by � the vacuum vessel,
by � = ∂� its boundary, by �p the plasma domain, by �p = ∂�p its boundary, and by
�V = �\�p the vacuum region surrounding �p.

The equation of plasma equilibrium can be written (see [2]) as

Sψ = 0 in �V , (1)

where ψ is the poloidal flux, and S is the Grad–Shafranov operator.
The challenge is controlling the plasma in the heart of the tokamak, in a limited volume

and far enough away from any solid element, in particular, the wall of the chamber. In this
work, we study the inverse problem: Given a set of boundary data on �p and �, find a
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solution ψ of

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Sψ = 0 in �V ,
1
r

∂ψ

∂n = � on �,

ψ = ψm on �,

ψ = 0 on �p.

(2)

We remark that since �p is unknown, �V is also unknown. This problem has been con-
sidered in different works, in which control or parametric optimization methods are used
[6–8]. In our previous work [9], we used the topological sensitivity method to find the
unknown plasma boundary �p. We present in this work a new formulation of the inverse
problem based on the Kohn–Vogelius method. It leads to define, for any given plasma
domain D ⊂ �, two forward problems.

• A first problem, associated with the Neumann boundary condition �:

(Pn)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find ψn
D ∈ H1(�\D) solving

Sψn
D = 0 in �\D,

1
r

∂ψn
D

∂n = � on �,

ψn
D = 0 on ∂D.

(3)

• A second one, associated with the measured velocity ψm:

(Pd)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find ψd
D ∈ H1(�\D) solving

Sψd
D = 0 in �\D,

ψd
D = ψm on �,

ψd
D = 0 on ∂D.

(4)

Note that if ∂D and the plasma boundary �p coincides, then the misfit between the solu-
tions vanishes, and then ψn

D = ψd
D. Using this remark, the studied inverse problem can be

solved by minimizing the following energy functional [10–12]:

K(�\D) =
∫

�\D

1
r
∣
∣∇ψn

D – ∇ψd
D
∣
∣2 dx. (5)

To solve this optimization problem and to reconstruct the unknown plasma domain �p,
in this paper, we propose a fast and accurate topological optimization algorithm based on
the topological sensitivity analysis concept.

An outline of the paper is as follows:
– The main ideas of the proposed geometry reconstruction approach are illustrated in

the next section.
– In Sect. 3, we derive a topological asymptotic expansion describing the variation of

the Kohn–Vogelius functional K with respect to the creation of a small geometric
perturbation inside the domain �.

– The implementation of the proposed numerical optimization algorithm is done in
Sect. 4. We present some identification results and discuss the influence of some
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parameters (the location, size, and shape) on the accuracy of the reconstructed plasma
domain.

– Finally, a conclusion is presented in Sect. 5.

2 Proposed reconstruction method
Classical shape optimization methods are based on the shape derivative concept [13–15].
The optimization process is limited to determine the optimal location of the initial domain
boundary. Its main drawback is that is does not allow any topology changes. The initial
and optimal domains have the same topology. To overcome this difficulty, the homoge-
nization theory [16–19] represents important developments in this direction. One of its
main features consists in considering the domain as a composite material with density
ranging from zero to one, rather than defining domains via their characteristic functions,
i.e., by a discrete 0–1 valued function. Rather than optimizing the shape by deforming
the boundary, the problem was relaxed by considering composite materials defined by a
material density distribution and a microstructure. However, the range of application of
this approach is mainly restricted to linear elasticity and particular objective functions.
For these reasons, global optimization techniques like genetic algorithms and simulated
annealing have been proposed (see, e.g., [20]), but these methods have a high computa-
tional cost and cannot be applied to industrial problems. To improve the optimization
process, the level set method has been used in the field of shape and topology optimiza-
tion [21, 22]. This approach has been initially introduced by Osher and Sethin [23] for
numerically tracking fronts and free boundaries. This method can handle some topology
changes. Indeed, the level set can easily remove holes but cannot create new holes in the
middle of a shape. In practice, this affect can checked by varying the initialization, which
yields different optimal shapes with different topologies.

During the last two decades, the topological sensitivity notion [24–28] has received
much attention and has been successfully used for solving various shape and topology
optimization problems in different fields. The topological sensitivity-based methods are
concerned with the variation of a cost function with respect to a topology modification of
a domain. The topology of the computational domain can change during the optimization
process by creation of holes. The most simple way of modifying the topology consists in
creating a small hole in the domain. In the case of structural shape optimization, creating
a hole means simply removing some material. In the case of fluid dynamics, where the do-
main represents the fluid, creating a hole means inserting a small obstacle. The situation
is similar in electromagnetism.

In this paper, we use the topological sensitivity concept, and we built a fast and accurate
topological optimization algorithm for solving the minimization problem (5) and identi-
fying the unknown plasma domain �p from boundary measurement of the potential field.
The idea is to study the topological sensitivity of the function K regarding a small topo-
logical domain perturbation ωz,ε of the domain �. It leads to an asymptotic expansion of
the form

K(�\ωz,ε) = K(�) + g(ε)δK(z) + o
(
g(ε)

)
,

where g(ε) is a positive scalar function going to zero with ε. This formula is called the
topological asymptotic expansion, and δK is called the topological gradient. Using this
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expansion, the minimum of K corresponds to the location in � where δK is the most
negative. In fact, if δK(z) < 0, then K(�\ωz,ε) < K(�) for small ε.

In general, this topology optimization approach leads to build a sequence of geometries
(�n)n≥0, with �0 = �. At the nth iteration the geometry �n+1 is obtained by creating a
new geometric perturbation ωn in the domain �n; �n+1 = �n\ωn. The perturbation ωn is
constructed as

ωn =
{

x ∈ �n, such that δKn(x) ≤ cn
}

,

where δKn is the associated topological gradient (computed in �n), and cn is a negative
constant chosen so that K(�n\ωn) – K(�n) decreases as most as possible.

• The stopping criteria is given by the natural optimal condition

δKn(x) ≥ 0 ∀x ∈ �n.

This condition coincides with that obtained by Buttazzo and Dal Maso [29] for the
Laplace equation using the homogenization theory.

• This topology optimization algorithm can be viewed as a descent method, where the
descent direction is determined by the sensitivity function δKn (the topological
gradient), and the step length is given by the volume variation |ωn| = |�n\�n+1|.

• The determination of the optimal step length |ωn| (i.e., determination of the optimal
value of the constant cn) is still an open question. In practice, this constant is adjusted
using the binary search method.

In this paper, we extend this approach for solving the problem of the plasma magnetic
equilibrium in a tokamak. Since the real-time identification of the plasma domain is a key
point to access high-performance regimes, we propose in this study a fast and accurate re-
construction algorithm (one-shot algorithm) based on the topological sensitivity analysis
method.

3 Topological sensitivity analysis
Using the axisymmetric configuration and an horizontal cut, we can rewrite the used for-
mulation as follows: find the unknown domain �p occupied by the plasma as the optimal
solution to the optimization problem

K(�\D) =
∫

�\D
γ (x)

∣
∣∇ψn

D(x) – ∇ψd
D(x)

∣
∣2 dx,

where ψn
D and ψd

D are solutions to the following systems:

(Pn)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find ψn
D ∈ H1(�\D) solving

– div(γ (x)∇ψn
D) = 0 in �\D,

γ (x)∇ψn
Dn = � on �,

ψn
D = 0 on ∂D,

(6)
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(Pd)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find ψd
D ∈ H1(�\D) solving

– div(γ (x)∇ψd
D) = 0 in �\D,

ψd
D = ψm on �,

ψd
D = 0 on ∂D.

(7)

To solve this problem, we derive a topological sensitivity analysis for the Khon–Vogelius-
type functional K. It consists in studying the variation of K regarding the presence of a
small plasma domain ωz,ε around the point z ∈ � with Dirichlet boundary condition on
∂ωz,ε .

Using the above notation, we define the function K(�\ωz,ε) by

K(�\ωz,ε) =
∫

�\ωz,ε

γ (x)
∣
∣∇ψn

ε – ∇ψd
ε

∣
∣2 dx,

where ψn
ε is the solution to the perturbed Neumann problem

(
Pn

ε

)

⎧
⎪⎪⎨

⎪⎪⎩

– div(γ (x)∇ψn
ε ) = 0 in �z,ε ,

γ (x)∇ψn
ε n = � on �,

ψn
ε = 0 on ∂ωz,ε .

(8)

The function ψd
ε is the solution to the perturbed Dirichlet problem

(
Pd

ε

)

⎧
⎪⎪⎨

⎪⎪⎩

– div(γ (x)∇ψd
ε ) = 0 in �z,ε ,

ψd
ε = ψm on �,

ψd
ε = 0 on ∂ωz,ε .

(9)

We can derive the following asymptotic expansion for the shape function K (see [30]):

Theorem 3.1 Let ωz,ε be a small topological perturbation in � of the form ωz,ε = z + εω ⊂
�. Then the function K admits the following asymptotic expansion:

K(�\ωz,ε) = K(�) +
–2π

log(ε)
γ (z)

(∣
∣ψd

0 (z)
∣
∣2 –

∣
∣ψn

0 (z)
∣
∣2) + o

(
–1

log(ε)

)

,

where ψn
0 and ψd

0 are solutions to the following systems:

(
Pn

0
)

⎧
⎪⎪⎨

⎪⎪⎩

Find ψn
0 ∈ H1(�) solving

– div(γ (x)∇ψn
0 ) = 0 in �,

γ (x)∇ψn
0 n = � on �,

(10)

(
Pd

0
)

⎧
⎪⎪⎨

⎪⎪⎩

Find ψd
0 ∈ H1(�) solving

– div(γ (x)∇ψd
0 ) = 0 in �,

ψd
0 = ψm on �.

(11)
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4 Numerical investigations
4.1 Reconstruction algorithm
In this section, we present a fast and simple one-shot numerical reconstruction algorithm.
Our numerical procedure is based on the asymptotic formula presented in Theorem 3.1,
which describes the variation of the Kohn–Vogelius-type functional K with respect to the
creation of a small hole ωz,ε inside the domain �. From Theorem 3.1 it follows that the
function K satisfies the following topological asymptotic expansion:

K(�\ωz,ε) = K(�) +
–2π

log(ε)
δK(z) + o

(
–1

log(ε)

)

,

where δK is the topological gradient defined as

δK(x) = γ (x)
(∣
∣ψd

0 (x)
∣
∣2 –

∣
∣ψn

0 (x)
∣
∣2), x ∈ �,

with solutions ψn
0 and ψd

0 to the Neumann and Dirichlet problems (10)–(11).
According to the main idea of the topological sensitivity analysis method, the unknown

plasma domain �p is likely to be located at the zone where the topological gradient δK
is negative. To present our proposed procedure, we introduce some notations. Let δmin be
the most negative value of the topological gradient δK in � (i.e δmin = minx∈� δK(x)). For
all ρ ∈ [0, 1], we define the zone

ωρ =
{

x ∈ �; δK(x) ≤ (1 – ρ)δmin
}

.

The aim is reconstructing the location and shape of the unknown plasma domain �p ⊂ �

from a given measurement of the potential field on the boundary � = ∂�. The main steps
of our numerical reconstruction procedure are summarized in the following “one-shot”
algorithm.

Plasma reconstruction algorithm:
– Step 1: Solve the problems (Pn

0 ) and (Pd
0 ),

– Step 2: Compute the topological gradient δK(z), z ∈ �,
– Step 3: Reconstruct the plasma domain

�p =
{

x ∈ �; δK(x) =
(
1 – ρ�

)
δmin < 0

}
,

where ρ� ∈ ]0, 1[ is chosen to ensure the maximal K such that

K(�\ωρ� ) ≤K(�\ωρ), ∀ρ ∈ (0, 1).

In this one-iteration algorithm:
• The location of the unknown plasma is given by the point z� ∈ � where the

topological gradient δK is most negative (i.e., z� = argminx∈� δK(x)). In other words,
the topological gradient tell us that the plasma domain is located around the point
z� ∈ �.

• The size of the domain occupied by the plasma is adjusted via the choice of the
parameter ρ ∈ (0, 1). Its boundary is approximated by a level-set curve of the
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topological gradient δK (i.e., the plasma domain is delimited by a well-chosen isovalue
of δK)

∂�p =
{

x ∈ �; δK(x) =
(
1 – ρ�

)
δmin

}
.

• The computation of the plasma domain size (in Step 3) can be considered as a descent
method where the step length is given by the volume variation |Vk| = |ωρk \ωρk+1 |. The
determination of ρ� can be viewed as a line search step. However, determining the
optimal value of the parameter ρ and optimizing the size of the domain ω solution to

min
ρ∈(0,1)

K(�\ωρ)

is still an open question. To speed up the convergence of our optimization algorithm,
we perform a binary search approach (dichotomy method) for approaching as most as
possible the best value of ρ starting from ρ = 1

2 .

Remark 4.1 In the particular case where the exact plasma domain �ex
p is known, the best

value ρ∗ of the parameter ρ can be determined as the minimum of the following error
functional:

er(ρ) =
[
meas

(
�ex

p ∪ ωρ

)
– meas

(
�ex

p ∩ ωρ

)]
/ meas

(
�ex

p
) ∀ρ ∈ (0, 1), (12)

where meas(B) is the Lebesgue measure of a set B ⊂R
2.

4.2 Numerical implementation
In our numerical implementation the measurements data ψm are synthetic, that is, gen-
erated by numerical simulations. More precisely, let �ex

p be the exact plasma domain to
be identified. The Dirichlet measurement data ψm on the boundary � are retrieved as
ψm = ψn

ex�
, where ψn

ex is the solution to the Neumann problem (see (6)) in the domain
�\�ex

p

⎧
⎪⎪⎨

⎪⎪⎩

– div(γ (x)∇ψn
ex) = 0 in �\�ex

p ,

γ (x)∇ψn
exn = � on �,

ψn
ex = 0 on ∂�ex

p .

Here the exact plasma domain is used only for generating the measured data ψm.
In the numerical simulation the vacuum vessel region � is defined by the disc with center

x0 = (2, 0) and radius r = 1, i.e., � = B(x0, 1). The resolution of the boundary value problems
(Pn

0 ) and (Pd
0 ) is based on a classicalP1 finite element method. The approximated solutions

are computed using a uniform mesh on the boundary ∂� (defined by the circle C(x0, 1))
with step size h = π/300 ≈ 0.01. The numerical procedure is implemented using the free
software FreeFem++ (see http://www.freefem.org/ff++/).

Next, we present some reconstruction results showing the efficiency of the proposed
one-shot algorithm.
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4.3 Numerical simulations
Here we apply our one-shot numerical algorithm for reconstructing the plasma domain
in different situations. We start our numerical investigation by the identification of an un-
known elliptical plasma domain from boundary measured data (see Sect. 4.3.1). After that,
we will discuss the influence of some numerical parameters on the accuracy of the recon-
structed results: the effect of the location in Sect. 4.3.2, the effect of the size in Sect. 4.3.3,
and the effect of the shape in Sect. 4.3.4.

4.3.1 Reconstruction results
In this section, we apply our one-shot algorithm for reconstructing an elliptical plasma do-
main from boundary measurement. The measured data ψm is generated using the ellipse
�ex

p = B(x0, r1, r2) with center x0 = (2, 0) and radii r1 = 0.4 and r2 = 0.5.
The obtained numerical results are described in Figs. 1 and 2:
– In Fig. 1, we plot the isovalues (level-set curves) of the topological gradient δK. We

can note that the zone where the topological gradient g is negative (the red region) nearly
coincides with the exact plasma domain �ex

p (see Fig. 2). From this figure we can observe
that the most negative value of δK is given by δmin = –0.0092, which is reached at the point
z� = (1.9, 0).

– To compute the optimal value ρ� of the parameter ρ and estimate the size of the re-
constructed plasma domain, we study the variation of the error function, which allows us
to deduce that the optimal value of ρ is given by ρ� = 0.12, i.e., 1 – ρ� = 0.88. According to
our algorithm, the reconstructed plasma domain is defined as

�p =
{

x ∈ �; δK(x) ≤ (
1 – ρ�

)
δmin

}
, with ρ� = 0.12 and δmin = –0.0092.

Figure 1 Isovalues (left) and 3D view (right) of the topological gradient δK
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Figure 2 Exact (delimited by a red line) and obtained (delimited by a black line) plasma domains

– In Fig. 2, we show the exact (delimited by the red line) and reconstructed (delimited by
the black line) plasma domains. We conclude here that our numerical algorithm provides
an efficient reconstruction result in only one iteration.

4.3.2 Effect of the location
In this section, we discuss the effect of the plasma location on the reconstruction re-
sult. The aim is reconstructing a circular plasma �ex

p = z + 0.2B(0, 1) located at the point
z ∈ �. We present in Fig. 3 the isovalues of the topological gradient δK for different plasma
locations zi, 1 ≤ i ≤ 4. As we can observe here, the topological gradient detects the exact
plasma location, i.e., the most negative region coincides with the exact plasma domain.

4.3.3 Effect of the size
In this section, we discuss the effect of the plasma size on the reconstruction result. We
illustrate in Fig. 4 the isovalues of the topological gradient δK for different plasma sizes ri,
1 ≤ i ≤ 3.

4.3.4 Effect of the shape
In this section, we discuss the effect of the plasma shape on the reconstruction result. The
first test is devoted to an elliptical-shaped plasma. The second test is concerned with a
rectangular-shaped plasma. As we can observe in Fig. 5, the topological gradient gives a
good approximation of the unknown plasma in both cases.

5 Conclusion
This paper is concerned with a topology optimization problem related to the plasma mag-
netic equilibrium in a tokamak. Since the real-time identification of the plasma domain
is a key point to access high-performance regimes, we propose a fast and accurate recon-
struction algorithm (one-shot algorithm). Our approach is based on the Kohn–Vogelius
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Figure 3 Isovalues of the topological gradient δK showing the plasma locations

formulation and the topological sensitivity analysis method. Compared to the classical
geometric reconstruction algorithm, our proposed algorithm has several advantages:

• Only one iteration is needed to identify the location of the unknown plasma domain,
which significantly reduces the running times.
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Figure 4 Isovalues of δK for different plasma sizes r1 = 0.3, r2 = 0.3, and r3 = 0.7

• The shape of the unknown plasma domain is approximated by a level-set curve of a
scalar function, which gives it more flexibility and a wide range of applications.

• Unlike the classical geometric reconstruction algorithms such as level-set method
[21, 22] or homogenization method [16], our numerical approach is not sensitive to
the initial geometry. The topological sensitivity analysis method consists in creating
some geometric perturbations in the initial domain.
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Figure 5 Reconstruction of elliptical- and rectangular-shaped plasma
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