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Abstract
In this paper, some new Lp gradient estimates are justified for the three-dimensional
compressible magnetohydrodynamic equations in the whole space R3. The key to
derive the estimate ‖∇u‖L3 is the “div-curl” decomposition technique. For regular
initial data with small energy, we prove the existence of global solutions belonging to
a new class of functions in which the uniqueness can be shown to hold.
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1 Introduction
We are concerned with the Cauchy problem of three-dimensional compressible magne-
tohydrodynamic (MHD) equations which read as (cf. [2, 16])

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) + ∇P(ρ) = μ�u + (μ + λ)∇ div u + (∇ × B) × B,

Bt – ∇ × (u × B) = –∇ × (ν∇ × B),

div B = 0,

(1.1)

where t > 0, x = (x1, x2, x3) ∈ R
3, the unknown functions ρ , u = (u1, u2, u3), B = (B1, B2, B3)

are the fluid density, velocity, and magnetic field, respectively. The pressure P = P(ρ) sat-
isfies the condition

P(ρ) = Aργ with A > 0,γ > 1, (1.2)

where γ is the adiabatic exponent and A is a physical constant. The positive constant ν is
the resistivity coefficient, and the viscosity coefficients μ and λ satisfy

μ > 0,λ +
2
3
μ ≥ 0. (1.3)
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Let us consider the Cauchy problem of (1.1)–(1.3) with the far-field behavior

(ρ, u, B)(x, t) → (1, 0, 0) as |x| → ∞, t > 0, (1.4)

and the initial conditions

(ρ, u, B)(x, 0) = (ρ0, u0, B0)(x) with x ∈R
3. (1.5)

Without losing generality, let us assume that the far-field state of density at infinity is equiv-
alent to 1.

This set of equations (1.1) describes the interaction between fluid flow and magnetic
field, which has been studied by many literature works [3, 4, 6, 7, 9, 22, 23]. For the local
strong solutions to the compressible MHD flows, Vol’pert and Khudiaev in [20] got the
local strong solutions under the conditions of large initial data and positive initial density.
Later, Fan and Yu in [10] extended Vol’pert and Khudiaev’s results as the initial density
may contain vacuum. In [18], Lu and Huang investigated the 2D full compressible MHD
equations with zero heat-conduction and obtained a local strong solution as the initial
density and initial magnetic field decay not too slow at infinity. For the global solutions,
Fan and Li in [8] investigated the 3D compressible non-isentropic MHD flows with zero
resistivity and got the global strong solutions which do not need the positivity of initial
density. In [12], Hu and Wang got the existence of a global variational weak solution to
the three-dimensional full magnetohydrodynamic flows. Later, in [13], they also got the
global existence and large-time behavior of solutions to the 3D equations of compressible
MHD flows. In [22], Zhang, Jiang, and Xie obtained the global existence of weak solutions
with cylindrical symmetry to the initial boundary value problems of MHD equations in
plasma physics.

The global existence and uniqueness of strong solutions to Cauchy problem (1.1) are
much subtle and remain open. Therefore, the main purpose of this paper is to investigate
the global existence and uniqueness of solutions to (1.1)–(1.3). Lv, Shi, and Xu in [19] stud-
ied the Cauchy problem of 2D or 3D compressible MHD flows with vacuum as far-field
density and obtained the global existence and uniqueness of strong solutions under the
conditions of small total energy. Li, Xu, and Zhang [17] proved the global well-posedness
of classical solution to problem (1.1)–(1.5) provided that the initial energy is suitably small.
However, the results obtained in [17, 19] also required the following compatibility condi-
tions:

–μ�u0 – (μ + λ)∇ div u0 + ∇P(ρ0) – (∇ × B0) × B0 = ρ1/2
0 g for some g ∈ L2. (1.6)

Roughly speaking, when the density contains vacuum, condition (1.6) implies

lim
t→0+

(
√

ρu̇)(x, t) ∈ L2, (1.7)

where ḟ = ft + u ·∇f denotes the material derivative. However, if the initial density is strictly
positive, then (1.7) can be written as

lim
t→0+

u̇(x, t) ∈ L2. (1.8)



Zhang Boundary Value Problems         (2022) 2022:12 Page 3 of 24

Obviously, in order to ensure that (1.6)/ (1.7) or (1.8) hold, the initial velocity has to at
least possess H2-regularity:

u0 ∈ H2. (1.9)

Thus, it follows from (1.6)/ (1.8) and the standard L2-method that for any 0 < T < ∞ we
have

sup
t∈[0,T]

‖u̇‖L2 +
∫ T

0
‖∇u̇‖2

L2 ≤ C(T). (1.10)

Clearly, one can use (1.10) to derive the higher-order estimates of the solutions in the
previous articles. Similar to the compressible Navier–Stokes equations (see, for example,
[11, 15]), we introduce the effective viscous flux F , the vorticity ω:

F � (2μ + λ) div u –
(
P(ρ) – P(1)

)
–

1
2
|B|2, ω � ∇ × u. (1.11)

Then it is easily derived from (1.1) that

�F = div(ρu̇) – div div(B ⊗ B) and μ�ω = ∇ × (
ρu̇ – div(B ⊗ B)

)
. (1.12)

To sum up, can the condition of (1.9) be weakened so far when exploring the global
solutions of the MHD equations? When the magnetic field in (1.1) was replaced by the
temperature, Xu and Zhang in [21] obtained a global “intermediate weak” solution in the
nonvacuum case with lower regularity. Thus, our main aim in this paper is to prove the
following theorem of solutions with lower regularity than that in (1.9).

Theorem 1.1 For any given number p ∈ [9/2, 6), suppose that the initial data (ρ0, u0, B0)
satisfy

infρ0(x) > 0, ρ0 – 1 ∈ H1 ∩ W 1,p, u0 ∈ H1 ∩ W 1,3, B0 ∈ H1. (1.13)

Then there exists a positive constant ε > 0, depending on μ, λ, ν , A, γ , infρ0, supρ0, ‖∇u0‖L2

and ‖∇B0‖L2 , such that if

E0 �
∥
∥(ρ0 – 1, u0, B0)

∥
∥2

L2 ≤ ε, (1.14)

then Cauchy problem (1.1)–(1.5) has a global solution (ρ, u, B) in R
3 × (0,∞) satisfying,

for any 0 < T < ∞,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ – 1 ∈ C([0, T]; H1 ∩ W 1,p), infρ(x, t) > 0,

(u, B) ∈ C([0, T]; L2 ∩ Lr) 2 ≤ r < 6,

u ∈ L∞(0, T ; H1 ∩ W 1,3)∩L2(0, T ; H2) ∩ Lq(0, T ; W 1,∞),

B ∈ L∞([0, T]; H1) ∩ L2(0, T ; H2),

t1/2u̇ ∈ L∞(0, T ; L2), t1/2∇u̇ ∈ L2(0, T ; L2),

(t1/2Bt , t1/2∇2B) ∈ L∞([0, T]; L2), (t1/2∇Bt , t1/2∇3B) ∈ L2([0, T]; L2),

(1.15)
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with 1 < q < (4p)/(5p – 6). Moreover, the uniqueness of the solutions belonging to the class
of functions (1.15) holds.

Remark 1.1 In comparison with (1.9), the regularity of initial velocity u0 ∈ H1 ∩ W 1,3 is
much weaker. The conclusion obtained in Theorem 1.1 becomes a new and interesting
one.

Remark 1.2 The existence result obtained in Theorem 1.1 excluded the state in which
the initial density is vacuum. Indeed, it is worth mentioning that the estimates stated in
Sect. 2, especially in Lemmas 2.2, 2.3, and 2.5, are independent of the lower bound of
density; in other words, the initial density can contain a vacuum (i.e. ρ0 ≥ 0). However,
the next important estimate ‖∇u‖L3 , which is essentially and technically needed for the
analysis of uniqueness, requires the initial density to exclude the vacuum state. In fact,
when we attempt to obtain the estimate ‖∇u‖L3 directly, there are usually two ways, one
is to use the Lp-estimate of equation (1.1)2, namely,

‖∇u‖L3 ≤ C‖ρu̇‖W –1,3 + C
∥
∥B · ∇B – ∇|B|2∥∥W –1,3 + C

∥
∥∇(

P(ρ) – P(1)
)∥
∥

W –1,3

≤ C‖ρu̇‖W –1,3 + C‖∇B‖2
L2 + C(ρ̄)‖ρ – 1‖2/3

L2 .

Unfortunately, the first term on the right-hand side cannot be bounded by Lemmas 2.1–
2.5. So, another way is to use the “div-curl” decomposition technique, that is,

‖∇u‖L3 ≤ C
(‖div u‖L3 + ‖ curl u‖L3

)
.

To do this, we first operate “div” and “curl” to both sides of (1.1)2, and then multiply
|div u|div u and | curl u| curl u, respectively, and integrate them over R3, which yields

1
3

d
dt

∫

ρ
(|div u|3 + | curl u|3)dx

+ (2μ + λ)
∫

(|div u||∇ div u|2 + |div u|∣∣∇|div u|∣∣2)dx

+ μ

∫
(| curl u||∇ curl u|2 + | curl u|∣∣∇| curl u|∣∣2)dx

= –
∫

(ut · ∇ρ)
(|div u|div u

)
dx –

∫

(∇ρ × ut)
(| curl u| curl u

)
dx + R,

where the symbol R denotes the terms which can be absorbed/bounded by the left-hand
side and the estimates obtained in Lemmas 2.1–2.5. Due to the lower regularity of initial
velocity, u0 ∈ H1 ∩ W 1,3, but u0 /∈ H2, thus the estimate ut ∈ L∞(0, T ; L2) ∩ L2(0, T ; H1)
cannot be obtained. In order to deal with the right two terms of the inequality, we use the
following equality to substitute the expression of ut into the integrals:

ut = ρ–1
(

μ�u + (μ + λ)∇ div u + B · ∇B –
1
2
∇|B|2 – ∇P

)

– u · ∇u.

Here, we need infρ(x, t) > 0, in other words, we need infρ0 > 0. The consequence of do-
ing so is that some new terms appear, but these terms can be controlled by the estimates
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obtained in Lemmas 2.2–2.5. To sum up, we need the initial density to exclude the vac-
uum state, and then the estimate ‖∇u‖L3 can be well controlled, which is essentially and
technically needed for the analysis of uniqueness.

The rest of the paper is organized as follows: in the next section, Sect. 2, based on
the lower-order estimates achieved in [17], we obtain the necessary a priori estimates on
strong solutions. Then finally the main result, Theorem 1.1, is proved in Sect. 3.

2 Preliminaries
In this section, we establish some necessary a priori bounds for smooth solutions to
Cauchy problem (1.1)–(1.5). Before stating our main results, we first let (ρ, u, B) be a
smooth solution of (1.1)–(1.5) on R

3 × [0, T] for some 0 < T < ∞. We can check that
the equations of (1.1) can be written as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,

ρ(ut + u · ∇u) + ∇P(ρ) = μ�u + (μ + λ)∇ div u + B · ∇B – 1
2∇|B|2,

Bt + u · ∇B – B · ∇u + B div u = ν�B,

div B = 0.

(2.1)

We start with the following estimates, which have been achieved in [17, Proposition 3.1],
thus we do not explain in detail.

Lemma 2.1 For given constants M > 0, ρ̄ > 2, assume that (ρ0, u0, B0) satisfies

0 ≤ infρ0 ≤ supρ0 ≤ ρ̄,
∥
∥(∇u0, ∇B0)

∥
∥

L2 ≤ M. (2.2)

There exist positive constants K and ε, depending on μ, λ, ν , A, γ , ρ̄ , and M, such that if

E0 �
∫ (

1
2
ρ0|u0|2 + G(ρ0) +

1
2
|B0|2

)

dx ≤ ε, (2.3)

where G(·) is the potential energy density given by

G(ρ) � ρ

∫ ρ

1

P(s) – P(1)
s2 ds,

then the following estimates hold:

0 ≤ ρ(x, t) ≤ 2ρ̄, ∀(x, t) ∈ R
3 × [0, T], (2.4)

sup
0≤t≤T

‖B‖3
L3 +

∫ T

0
‖B‖3

L9 dx ≤ E1/9
0 , (2.5)

sup
0≤t≤T

(‖ρ – 1‖2
L2 + ‖√ρu‖2

L2 + ‖B‖2
L2

)
+

∫ T

0

(‖∇u‖2
L2 + ‖∇B‖2

L2
)

dt ≤ KE0, (2.6)

sup
0≤t≤T

(‖∇u‖2
L2 + ‖∇B‖2

L2
)

+
∫ T

0

(‖√ρu̇‖2
L2 + ‖Bt‖2

L2 +
∥
∥∇2B

∥
∥2

L2
)

dt ≤ K . (2.7)
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Remark 2.1 Estimates (2.4)–(2.7) are independent of time T and the lower bound of den-
sity. Furthermore, if the initial density possesses a positive lower bound, then it follows
from the expression of G(·) that

E0 �
∥
∥(ρ0 – 1, u0, B0)

∥
∥2

L2 . (2.8)

In the following, we will use the convention that C or Ci (i = 1, 2, . . .) denotes a generic
positive constant depending on μ, λ, ν , γ , A, ρ̄ , the initial data, and T .

First, we will prove the following refined t-weighted estimates of the material derivative
and the gradient of magnetic.

Lemma 2.2 Under the conditions of (2.2) and (2.3), there exists a positive constant C de-
pending on T such that

sup
0≤t≤T

t
(‖√ρu̇‖2

L2 +
∥
∥∇2B

∥
∥2

L2 + ‖Bt‖2
L2

)

+
∫ T

0
t
(‖∇u̇‖2

L2 + ‖∇Bt‖2
L2 + ‖∇B‖2

H2
)

dt ≤ C(T).
(2.9)

Proof In order to prove (2.9), we first need to apply tu̇j[∂t + div(u·)] to the both sides of the
jth equation of (2.1)2, then integrate by parts over R3, and add the results together. We get
by some calculations that

1
2

(

t
∫

ρ|u̇|2 dx
)

t
=

1
2

∫

ρ|u̇|2 dx + μ

∫

tu̇j[�uj
t + div

(
u�uj)]dx

+ (λ + μ)
∫

tu̇j[∂j∂t(div u) + div
(
u∂j(div u)

)]
dx

–
∫

tu̇j[∂jPt + div(u∂jP)
]

dx

–
1
2

∫

tu̇j[∂t∂j
(|B|2) + div

(
u∂j

(|B|2))]dx

+
∫

tu̇j[∂t
(
Bi∂iBj) + div

(
uBi∂iBj)]dx

=
1
2

∫

ρ|u̇|2 dx +
5∑

i=1

Ii.

(2.10)

Now, we estimate the right-hand side of terms of (2.10). Due to the Cauchy–Schwarz in-
equality, we get by integration by parts that

I1 = –μ

∫

t
(
∂ku̇j∂kuj

t + ∂ku̇juk∂l∂luj)dx

= –μ

∫

t
(|∇u̇|2 – ∂ku̇j∂kul∂luj + ∂ku̇j∂lul∂kuj – ∂ku̇j∂luk∂luj)dx

≤ –
7μ

8
(
t‖∇u̇‖2

L2
)

+ Ct‖∇u‖4
L4

(2.11)
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and

I2 ≤ –(μ + λ)
(
t‖div u̇‖2

L2
)

+
μ

8
(
t‖∇u̇‖2

L2
)

+ Ct‖∇u‖4
L4 . (2.12)

In order to estimate I3, we notice that

(
P(ρ) – P(1)

)

t + u · ∇(
P(ρ) – P(1)

)
+ γ P(ρ) div u = 0, (2.13)

which, together with (2.4), yields

I3 =
∫

t
(
Pt div u̇ + ∂iu̇jui∂jP

)
dx

=
∫

t
(
div u̇

(
–γ P(ρ) div u – u · ∇P(ρ)

)
– P(ρ)∂j

(
∂iu̇jui))dx

=
∫

tP(ρ)
[
–γ (div u̇)(div u) + ∂ju̇j∂iui – ∂iu̇j∂jui]dx

≤ μ

8
(
t‖∇u̇‖2

L2
)

+ Ct‖∇u‖2
L2 .

(2.14)

Next, for I4, we obtain after using the integration by parts that

I4 =
∫

t
(
∂ju̇jBiBi

t + ∂iu̇juiBk∂jBk)dx

≤ Ct‖∇u̇‖L2
(‖Bt‖L6‖B‖L3 + ‖u‖L6‖B‖L∞‖∇B‖L3

)

≤ μ

8
(
t‖∇u̇‖2

L2
)

+ Ct‖∇Bt‖2
L2‖B‖2

L3 + Ct‖∇u‖2
L2‖∇B‖2

L2

∥
∥∇2B

∥
∥2

L2

≤ μ

8
(
t‖∇u̇‖2

L2
)

+ Ct‖∇Bt‖2
L2‖B‖2

L3 + Ct
(‖∇u‖4

L2 + ‖∇B‖4
L2

)∥
∥∇2B

∥
∥2

L2 ,

(2.15)

where we have used the Gagliardo–Nirenberg inequality

‖v‖Lp ≤ C‖v‖
6–p
2p

L2 ‖∇v‖
3p–6

2p
L2 , ∀v ∈ H1 and 2 ≤ p ≤ 6. (2.16)

By using (2.16) and integrating by parts, we obtain

I5 =
∫

t
(
u̇j∂iBjBi

t + u̇j∂iB
j
tBi – ∂ku̇jukBi∂iBj)dx

≤ Ct‖∇u̇‖L2‖∇Bt‖L2‖B‖L3 + Ct‖∇u̇‖L2‖∇u‖L2‖B‖L∞‖∇B‖L3

≤ μ

8
(
t‖∇u̇‖2

L2
)

+ Ct‖∇Bt‖2
L2‖B‖2

L3 + Ct
(‖∇u‖4

L2 + ‖∇B‖4
L2

)∥
∥∇2B

∥
∥2

L2 .

(2.17)

Substituting (2.11)–(2.17) into (2.10), we have

d
dt

(
t‖√ρu̇‖2

L2
)

+ t‖∇u̇‖2
L2 ≤ Ct‖∇Bt‖2

L2‖B‖2
L3 + C

(‖√ρu̇‖2
L2 + t‖∇u‖2

L2
)

× Ct‖∇u‖4
L4 + Ct

(‖∇u‖4
L2 + ‖∇B‖4

L2
)∥
∥∇2B

∥
∥2

L2 .
(2.18)

What is left is to estimate the term ‖∇Bt‖L2 . To this end, noticing that

Btt – ν�Bt = (B · ∇u – u · ∇B – B div u)t
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and using the fact that ut = u̇ – u · ∇u, we obtain after direct computations that

1
2

d
dt

(
t‖Bt‖2

L2
)

+ νt‖∇Bt‖2
L2

=
1
2
‖Bt‖2

L2 +
∫

t(Bt · ∇u – u · ∇Bt – Bt div u) · Bt dx

+
∫

t(B · ∇u̇ – u̇ · ∇B – B div u̇) · Bt dx

+
∫

t
(
–B · ∇(u · ∇u) + (u · ∇u) · ∇B + B div(u · ∇u)

) · Bt dx

=
1
2
‖Bt‖2

L2 +
3∑

i=1

Ji.

(2.19)

Now, we estimate Ji as follows. By using (2.16) and the Cauchy–Schwarz inequality, we get

J1 ≤ Ct‖Bt‖L3‖Bt‖L6‖∇u‖L2 + Ct‖u‖L6‖∇Bt‖L2‖Bt‖L3

≤ Ct‖∇Bt‖
3
2
L2‖Bt‖

1
2
L2‖∇u‖L2

≤ ν

8
(
t‖∇Bt‖2

L2
)

+ Ct‖Bt‖2
L2‖∇u‖4

L2

(2.20)

and

J2 =
∫

t(B · ∇u̇ – u̇ · ∇B – B · div u̇) · Bt dx

≤ Ct‖∇u̇‖L2‖B‖L3‖∇Bt‖L2

≤ ν

8
(
t‖∇Bt‖2

L2
)

+ Ct‖B‖2
L3‖∇u̇‖2

L2

(2.21)

and

J3 =
∫

t
(
Biuj∂juk∂iBk

t + uk∂kui∂iBjBj
t

– ∂jBiuk∂kujBi
t – Biuk∂kuj∂jBi

t
)

dx

≤ ‖∇Bt‖L2‖∇B‖L2‖∇u‖L2‖∇u‖L6

≤ ν

8
(
t‖∇Bt‖2

L2
)

+ Ct‖∇B‖2
L2‖∇u‖2

L2‖∇u‖2
L6 .

(2.22)

Putting (2.20)–(2.22) into (2.19), we obtain

d
dt

(
t‖Bt‖2

L2
)

+ t‖∇Bt‖2
L2

≤ Ct‖B‖2
L3‖∇u̇‖2

L2 + C‖Bt‖2
L2 + Ct‖Bt‖2

L2‖∇u‖4
L2

+ Ct‖∇B‖2
L2‖∇u‖2

L2‖∇u‖2
L6 .

(2.23)
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Thus, integrating the resulting equations (2.18) and (2.23) over (0, T) and using (2.3), (2.6),
and (2.7), we deduce after adding them together that

sup
0≤t≤T

(
t‖√ρu̇‖2

L2 + t‖Bt‖2
L2

)
+

∫ T

0
t
(‖∇u̇‖2

L2 + ‖∇Bt‖2
L2

)
dt

≤ C + C1

∫ T

0
t‖∇u‖4

L4 dt + C
∫ T

0
t‖∇u‖2

L6 dt.

(2.24)

We are now in a position of estimating the last two terms on the right-hand side of (2.24).
Indeed, it follows from (1.2), (2.4) and the Lp-estimates that

‖∇F‖Lp + ‖∇ω‖Lp ≤ C
(‖√ρu̇‖Lp + ‖B · ∇B‖Lp

)
, ∀p ∈ [2, 6], (2.25)

so that, suing (1.11), (2.4)–(2.6), (2.16), (2.25), and the standard Lp-estimates, we find

‖∇u‖L6 ≤ C
(‖div u‖L6 + ‖ω‖L6

)

≤ C
(‖F‖L6 +

∥
∥P(ρ) – P(1)

∥
∥

L6 +
∥
∥|B|2∥∥L6 + ‖ω‖L6

)

≤ C
(‖∇F‖L2 + ‖∇ω‖L2 + ‖∇B‖L6 + 1

)

≤ C
(
1 + ‖√ρu̇‖L2 +

∥
∥∇2B

∥
∥

L2
)
,

(2.26)

which, together with (2.7), gives

∫ T

0
t‖∇u‖2

L6 dt ≤ C
∫ T

0
t
(
1 + ‖√ρu̇‖2

L2 +
∥
∥∇2B

∥
∥2

L2
)

dt ≤ C(T). (2.27)

On the other hand, it follows from (2.1)3 that

∥
∥∇2B

∥
∥

L2 ≤ C
(‖Bt‖L2 + ‖∇B‖L2‖∇u‖2

L2
)
.

It follows from (2.7), (2.24), and (2.27) that

sup
0≤t≤T

(
t
∥
∥∇2B

∥
∥2

L2
) ≤ C sup

0≤t≤T
t
(‖Bt‖2

L2 + ‖∇B‖2
L2‖∇u‖4

L2
)

≤ C + C
∫ T

0
t‖∇u‖4

L4 dt.
(2.28)

In view of (2.7), (2.6), and (2.26), we have

∫ T

0
t‖∇u‖4

L4 dt ≤ C
∫ T

0
t‖∇u‖L2‖∇u‖3

L6 dt

≤ C + C
∫ T

0
t
(‖√ρu̇‖3

L2 +
∥
∥∇2B

∥
∥3

L2
)

dt

≤ C + C sup
0≤t≤T

√
t
(‖√ρu̇‖L2 +

∥
∥∇2B

∥
∥

L2
)

≤ C + δ sup
0≤t≤T

(
t‖√ρu̇‖2

L2 + t
∥
∥∇2B

∥
∥2

L2
)
,

(2.29)

where δ > 0 is an undetermined number.
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Based upon (2.1)3, it is easy to get that

‖∇B‖H2 ≤ C + C
∥
∥∇(Bt + u · ∇B – B · ∇u + B div u)

∥
∥

L2

≤ C + C
(‖∇Bt‖L2 + ‖∇u‖L6‖∇B‖L3 + ‖u‖L6

∥
∥∇2B

∥
∥

L3 + ‖B‖L2
∥
∥∇2u

∥
∥

L2
)

≤ C + C
(‖∇Bt‖L2 +

∥
∥∇2u

∥
∥

L2‖∇B‖1/2
L2

∥
∥∇2B

∥
∥1/2

L2
)

+ C
(‖∇u‖L2

∥
∥∇2B

∥
∥1/2

L2 ‖∇B‖1/2
H2 + ‖B‖L2

∥
∥∇2u

∥
∥

L2
)
,

thus

‖∇B‖H2 ≤ C + C
(‖∇Bt‖L2 +

∥
∥∇2u

∥
∥

L2

∥
∥∇2B

∥
∥1/2

L2 +
∥
∥∇2B

∥
∥

L2 +
∥
∥∇2u

∥
∥

L2
)
,

from which, together with (2.7), (2.26)–(2.28), we have

∫ T

0
t‖∇B‖2

H2 dt ≤ C + C
∫ T

0
t‖∇Bt‖2

L2 dt + C sup
0≤t≤T

(
t
∥
∥∇2u

∥
∥2

L2
)
∫ T

0

∥
∥∇2B

∥
∥

L2 dt

+ C
∫ T

0
t
(∥
∥∇2B

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)

≤ C(T).

Therefore, putting (2.27)–(2.29) into (2.24) and choosing a suitably small number δ > 0,
we immediately obtain (2.9). �

Lemma 2.3 Under the conditions of (2.2) and (2.3), there exists a positive constant C de-
pending on T such that

∫ T

0

(‖B · ∇B‖q
Lp + ‖√ρu̇‖q

Lp + ‖div u
∥
∥q

L∞+
∥
∥ curl u‖q

L∞
)

dt ≤ C(T), (2.30)

where curl u = ∇ × u, and (p, q) satisfies

3 < p < 6 and 1 < q <
4p

5p – 6
<

4
3

. (2.31)

Proof It follows from (2.4) and (2.16) that

‖B · ∇B‖q
Lp + ‖√ρu̇‖q

Lp

≤ C
(‖B‖q

L∞‖∇B‖q
Lp + ‖√ρu̇‖

q(6–p)
2p

L2 ‖∇u̇‖
q(3p–6)

2p
L2

)

≤ C
(‖∇B‖

3q
p

L2

∥
∥∇2B

∥
∥

q(2p–3)
p

L2 + ‖√ρu̇‖
q(6–p)

2p
L2 ‖∇u̇‖

q(3p–6)
2p

L2

)
,

so that, by virtue of Lemma 2.2 and (2.7), we obtain

∫ T

0

(‖B · ∇B‖q
Lp + ‖√ρu̇‖q

Lp
)

dt

≤ C
∫ T

0

(∥
∥∇2B

∥
∥

q(2p–3)
p

L2 + ‖√ρu̇‖
q(6–p)

2p
L2 ‖∇u̇‖

q(3p–6)
2p

L2

)
dt
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≤ C sup
0≤t≤T

(
t
∥
∥∇2B

∥
∥2

L2
) q(2p–3)

2p

∫ T

0
t– q(2p–3)

2p dt

+ C sup
0≤t≤T

(
t‖√ρu̇‖2

L2
)q(6 – p)

4p

∫ T

0
t– q

2
(
t‖∇u̇‖2

L2
) q(3p–6)

4p dt
(2.32)

≤ C
∫ T

0
t– q(2p–3)

2p dt + C
(∫ T

0
t– 2pq

4p–3pq+6q dt
) 4p–3pq+6q

4p
(∫ T

0
t‖∇u̇‖2

L2 dt
) q(3p–6)

4p

≤ C(T),

since 3 < p < 6 and 1 < q < 4p
5p–6 < 2 yield that

0 <
q(2p – 3)

2p
< 1, 0 <

2pq
4p – 3pq + 6q

< 1, 0 <
q(3p – 6)

4p
< 1.

Due to (2.4)–(2.7), (2.25), and the Sobolev embedding inequality, we have that

‖div u‖L∞ + ‖ω‖L∞

≤ C
(‖F‖L∞ +

∥
∥P(ρ) – P(1)

∥
∥

L∞ +
∥
∥|B|2∥∥L∞ + ‖ω‖L∞

)

≤ C
(
1 + ‖F‖L∞ + ‖ω‖L∞ + ‖∇B‖L2

∥
∥∇2B

∥
∥

L2 + ‖∇F‖Lp + ‖∇ω‖Lp
)

≤ C
(
1 + ‖∇u‖L2 + ‖B‖1/2

L2 ‖∇B‖1/2
L2 +

∥
∥∇2B

∥
∥

L2 + ‖√ρu̇‖Lp + ‖B · ∇B‖Lp
)

≤ C
(
1 +

∥
∥∇2B

∥
∥

L2 + ‖√ρu̇‖Lp + ‖B · ∇B‖Lp
)
.

(2.33)

On the other hand, since 1 < q < 4
3 , we obtain

∫ T

0

∥
∥∇2B

∥
∥q

L2 dt ≤ (
t
∥
∥∇2B

∥
∥2

L2
) q

2

∫ T

0
t– q

2 dt ≤ C(T),

which, combined with (2.32) and (2.33), leads to (2.30). �

Next, we need to estimate ‖∇u‖Lp with 1 < p < ∞ and p = ∞, respectively. Clearly, since
it holds that

–�u = ∇ div u – ∇ × curl u,

thus, for 1 < p < ∞, we have

‖∇u‖Lp ≤ C
(‖div u‖Lp + ‖ curl u‖Lp

)
.

However, for p = ∞, the above inequality cannot work. Thus, the following Beale, Kato,
and Majda type inequality (cf. [1, 14]) will be used later to estimate ‖∇u‖L∞ .

Lemma 2.4 For any k ∈ Z
+ and p ∈ (1, +∞), let Dk,p � {v ∈ L1

loc|∂kv ∈ Lp} and D1 � D1,2

be the homogeneous Sobolev spaces. Then, for any v ∈ D1 ∩ D2,p with p ∈ (3, +∞), there
exists a positive constant C(p) > 0 such that, for all ∇v ∈ L2 ∩ D1,p,

‖∇v‖L∞ ≤ C
(
1 + ‖∇v‖L2

)
+ C

(‖div v‖L∞ + ‖∇ × v‖L∞
)

ln
(
e +

∥
∥∇2v

∥
∥

Lp
)
. (2.34)
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With the help of Lemmas 2.3 and 2.4, we can now derive the L2-Lp-estimates (3 < p < 6)
of the gradient of density.

Lemma 2.5 Under the conditions of (1.13) and (2.3), it holds that

sup
0≤t≤T

(‖∇ρ‖L2∩Lp + ‖ρt‖L2
)

+
∫ T

0

(∥
∥∇2u

∥
∥q

Lp + ‖∇u‖q
L∞

)
dt ≤ C(T), (2.35)

where 3 < p < 6 and q > 1 are the same ones as in (2.31).

Proof To prove (2.35), operating ∇ to both sides of (2.1)1, then multiplying it by |∇ρ|p–2∇ρ

with p ∈ [2, 6] and integrating by parts over R3, we know from (2.4) that

d
dt

‖∇ρ‖Lp ≤ C
(‖∇u‖L∞‖∇ρ‖Lp +

∥
∥∇2u

∥
∥

Lp
)
. (2.36)

Recalling that L � –μ� – (μ + λ)∇ div is a strong elliptic operator (cf. [5]), we deduce
from (2.1)2 and (2.4) that, for any p ∈ (3, 6),

∥
∥∇2u

∥
∥

Lp ≤ C
(‖√ρu̇‖Lp + ‖∇P‖Lp + ‖B · ∇B‖Lp +

∥
∥∇|B|2∥∥Lp

)

≤ C
(‖√ρu̇‖Lp + ‖∇ρ‖Lp + ‖B · ∇B‖Lp

)
,

(2.37)

which, combined with (2.36), yields

d
dt

‖∇ρ‖Lp ≤ C
(‖∇u‖L∞ + 1

)‖∇ρ‖Lp + C
(‖√ρu̇‖Lp + ‖B · ∇B‖Lp

)
. (2.38)

Using Lemma 2.4 and (2.37), we obtain that, for any p ∈ (3, 6),

‖∇u‖L∞ ≤ C + C
(‖div u‖L∞ + ‖∇ × u‖L∞

)
ln

(
e + ‖∇ρ‖Lp

)

+ C
(‖div u‖L∞ + ‖∇ × u‖L∞

)
ln

(
e + ‖√ρu̇‖Lp + ‖B · ∇B‖Lp

)
.

(2.39)

Substituting (2.39) into (2.38), we obtain

d
dt

(
e + ‖∇ρ‖Lp

) ≤ CA(t) ln
(
e + ‖∇ρ‖Lp

)
, (2.40)

where

A(t) � C + C
(‖div u‖L∞ + ‖∇ × u‖L∞ + ‖√ρu̇‖Lp + ‖B · ∇B‖Lp

)

+ C
(‖div u‖L∞ + ‖∇ × u‖L∞

)
ln

(
e + ‖√ρu̇‖Lp + ‖B · ∇B‖Lp

)
.

It follows from Lemma 2.3 and the relation ln(e + y) ≤ (e + y)δ for any y ≥ 0 and δ > 0 that

∫ T

0
A(t) dt ≤ C(T),

which, together with (2.40), yields

sup
0≤t≤T

∥
∥∇ρ(t)

∥
∥

Lp ≤ C(T), ∀p ∈ (3, 6). (2.41)
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In terms of (2.7), (2.30), (2.37), (2.41) and the Sobolev embedding inequality, we obtain
that for any p, q being as the ones in (2.31),

∫ T

0

(∥
∥∇2u

∥
∥q

Lp + ‖∇u‖q
L∞

)
dt

≤ C
∫ T

0

(
1 +

∥
∥∇2u

∥
∥q

Lp
)

dt

≤ C
∫ T

0

(
1 + ‖√ρu̇‖q

Lp + ‖∇ρ‖q
Lp +

∥
∥B · ∇2B

∥
∥q

Lp
)

dt

≤ C(T).

(2.42)

Taking p = 2 in (2.36), we have

d
dt

‖∇ρ‖L2 ≤ C
(‖∇u‖L∞‖∇ρ‖L2 +

∥
∥∇2u

∥
∥

L2
)

≤ C
(‖∇u‖q

L∞ + 1
)‖∇ρ‖L2 + C

(
1 +

∥
∥∇2u

∥
∥q

L2
)
, ∀p > 3,

thus, it follows from Gronwall’s inequality that

sup
0≤t≤T

∥
∥∇ρ(t)

∥
∥

L2 ≤ C(T). (2.43)

On the other hand, we know from (2.1)1 that

∥
∥ρt(t)

∥
∥

L2 ≤ C
(‖∇u‖L2 + ‖u‖L6 + ‖∇ρ‖L3

)

≤ C
(
1 + ‖∇ρ‖L3

)

≤ C
(
1 + ‖∇ρ‖L2 + ‖∇ρ‖Lp

)

≤ C(T), ∀p ∈ (3, 6),

which, together with (2.41)–(2.43), gives (2.35). �

Remark 2.2 It is worth mentioning that the estimates stated in Lemmas 2.2, 2.3, and 2.5
are independent of the lower bound of density.

The next lemma is to exclude the presence of vacuum, which plays an important role in
the treatment of ‖∇u‖L3 .

Lemma 2.6 Suppose that if ρ0 satisfies infx∈R3 ρ0(x) ≥ ρ > 0, then there exists a positive
constant c(ρ, T), depending on ρ and T , such that

ρ(x, t) ≥ c(ρ, T), ∀x ∈R
3, t ∈ [0, T], (2.44)

and moreover,

sup
0≤t≤T

(
t
∥
∥∇2u

∥
∥2

L2 + t‖ut‖2
L2

)
+

∫ T

0

(∥
∥∇2u

∥
∥2

L2 + ‖ut‖2
L2 + t‖∇ut‖2

L2
)

dt ≤ C(T). (2.45)
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Proof We infer from (2.30) that

ρ(x, t) ≥ inf
x∈R3

ρ0(x) exp

{

–
∫ t

0
‖div u‖L∞ ds

}

≥ c(ρ, T),

which leads to the desired estimate (2.44).
Next, due to (2.1)1 and the L2-theory of elliptic system, we infer from (2.4) and (2.5) that

∥
∥∇2u

∥
∥

L2 ≤ C
(‖u̇‖L2 + ‖∇ρ‖L2 + ‖B‖L3

∥
∥∇2B

∥
∥

L2
)

≤ C
(‖u̇‖L2 + ‖∇ρ‖L2 +

∥
∥∇2B

∥
∥

L2
)
.

Hence it follows from (2.4), (2.7), (2.9), (2.35), and (2.45) that

sup
0≤t≤T

(
t
∥
∥∇2u

∥
∥2

L2
)

+
∫ T

0

∥
∥∇2u

∥
∥2

L2 dt

≤ C sup
0≤t≤T

(
t‖u̇‖2

L2 + t‖∇ρ‖2
L2 + t

∥
∥∇2B

∥
∥2

L2
)

+ C
∫ T

0

(‖u̇‖2
L2 + ‖∇ρ‖2

L2 +
∥
∥∇2B

∥
∥2

L2
)

dt

≤ C(T).

(2.46)

Recalling the definition of the material derivative, we have

‖ut‖2
L2 ≤ ‖u̇‖2

L2 + ‖u · ∇u‖2
L2 ≤ C

(‖u̇‖2
L2 + ‖∇u‖2

L2‖∇u‖2
H1

)
,

so that it follows from (2.4), (2.7), (2.9), (2.44), and (2.46) that

sup
0≤t≤T

(
t‖ut‖2

L2
)

+
∫ T

0
‖ut‖2

L2 dt ≤ C(T), (2.47)

and analogously,

∫ T

0
t‖∇ut‖2

L2 dt ≤
∫ T

0
t‖∇u̇‖2

L2 dt +
∫ T

0
t
∥
∥∇(u · ∇u)

∥
∥2

L2 dt

≤ C + C
∫ T

0
t
∥
∥∇2u

∥
∥4

L2 dt + C
∫ T

0
t‖u‖2

L∞
∥
∥∇2u

∥
∥2

L2 dt

≤ C + C
∫ T

0
t
∥
∥∇2u

∥
∥4

L2 dt

≤ C.

(2.48)

The combination of (2.46)–(2.48) leads to the desired estimate (2.45). �

The following technical lemma is concerned with the estimate of ‖∇u‖L3 , which plays
an essential role in the entire analysis.

Lemma 2.7 Assume that the conditions of Theorem 1.1 hold. Then

sup
0≤t≤T

‖∇u‖L3 ≤ C(T). (2.49)
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Proof In terms of the standard Lp-estimate, to bound ‖∇u‖Lp with 1 < p < ∞, it suffices
to show that both ‖div u‖Lp and ‖ curl u‖Lp are bounded. To do this, we first operate div

and curl to both sides of (2.1)2 to get that

ρ(div u)t + ρu · ∇(div u) – (2μ + λ)�(div u)

= –(∇ρ) · ut – ∂j
(
ρui)∂iuj – �P + ∂jBi∂iBj –

1
2
�|B|2

(2.50)

and

ρ(curl u)t + ρu · ∇(curl u) – μ�(curl u)

= –(∇ρ) × ut – ∇(
ρui) × (∂iu) +

(∇Bi) × (∂iB) + B · ∇(curl B).
(2.51)

We shall divide the proofs into three steps.
Step I. Estimation of ‖div u‖L3 .
Multiplying (2.50) by |div u|div u and integrating by parts over R3, we obtain

1
3

d
dt

∫

ρ|div u|3 dx + (2μ + λ)
∫

(|div u||∇ div u|2 + |div u|∣∣∇|div u|∣∣2)dx

= –
∫

(ut · ∇ρ)
(|div u|div u

)
dx –

∫

∂j
(
ρui)∂iuj(|div u|div u

)
dx

+
∫

∇P · ∇(|div u|div u
)

dx +
∫

∂jBi∂iBj(|div u|div u
)

dx

+
∫

∇|B|2 · ∇(|div u|div u
)

dx �
5∑

i=1

Ji.

(2.52)

By virtue of (2.1)2, we know that

J1 = –
∫

ρ–1(μ�u + (μ + λ)∇ div u – ∇P – ρu · ∇u
) · ∇ρ

(|div u|div u
)

dx

–
∫

ρ–1
(

B · ∇B –
1
2
∇|B|2

)

· ∇ρ
(|div u|div u

)
dx.

Based on the integration by parts, the first term on the right-hand side can be written as

– μ

∫

ρ–1�u · ∇ρ
(|div u|div u

)
dx

= –μ

∫

�u · ∇ lnρ
(|div u|div u

)
dx

= μ

∫
(
∂iuj∂j(lnρ)

)
∂i

(|div u|div u
)

dx + μ

∫
(
∂iuj∂ij(lnρ)

)(|div u|div u
)

dx

= μ

∫
(
∂iuj∂j(lnρ)

)
∂i

(|div u|div u
)

dx – μ

∫

(∂i div u)
(
∂i(lnρ)

)(|div u|div u
)

dx

– μ

∫
(
∂iuj∂i(lnρ)

)
∂j

(|div u|div u
)

dx,
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hence

J1 = –
∫

B · ∇B · ∇(lnρ)
(|div u|div u

)
dx

+
1
2

∫

ρ–1∇|B|2 · ∇ρ
(|div u|div u

)
dx

+ μ

∫
(
∂iuj∂j(lnρ)

)
∂i

(|div u|div u
)

dx

– μ

∫

(∂i div u)
(
∂i(lnρ)

)(|div u|div u
)

dx

– μ

∫
(
∂iuj∂i(lnρ)

)
∂j

(|div u|div u
)

dx

– (μ + λ)
∫

∇ div u · ∇(lnρ)
(|div u|div u

)
dx

+
∫

ρ–1∇P · ∇ρ
(|div u|div u

)
dx +

∫

(u · ∇u) · ∇ρ
(|div u|div u

)
dx

≤ C
∫

|∇ρ||B||∇B||div u|2 dx + C
∫

|∇ρ||∇u||div u||∇ div u|dx

+ C
∫

|∇ρ|2|div u|2 dx + C
∫

|∇ρ||∇u||u||div u|2 dx �
4∑

i=1

J1,i.

(2.53)

The right-hand side terms (2.53) can be estimated as follows. By virtue of (2.7) and (2.34),
we obtain

J1,1 ≤ C‖∇ρ‖L3‖B‖L6‖∇B‖L6‖div u‖2
L6

≤ C
∥
∥∇2B

∥
∥

L2‖div u‖1/2
L3 ‖div u‖3/2

L9

≤ C
∥
∥∇2B

∥
∥

L2‖div u‖1/2
L3

∥
∥|div u|1/2∇ div u

∥
∥

L2

≤ 2μ + λ

8
∥
∥|div u|1/2∇ div u

∥
∥2

L2 + C
∥
∥∇2B

∥
∥2

L2‖div u‖L3 ,

(2.54)

where the following simple fact was used:

⎧
⎨

⎩

‖div u‖L6 ≤ C‖div u‖1/4
L3 ‖div u‖3/4

L9 ,

‖div u‖L9 = ‖|div u|3/2‖2/3
L6 ≤ C‖|div u|1/2∇ div u‖2/3

L2 .
(2.55)

Next, for the second term J1,2, we have from (2.35), (2.55), and the Cauchy–Schwarz
inequality that

J1,2 ≤ C‖∇ρ‖Lp‖∇u‖
L

9p
4p–9

‖div u‖1/2
L9

∥
∥|div u|1/2∇ div u

∥
∥

L2

≤ 2μ + λ

16
∥
∥|div u|1/2∇ div u

∥
∥2

L2 + C‖∇u‖2

L
9p

4p–9
‖div u‖L9

≤ 2μ + λ

8
∥
∥|div u|1/2∇ div u

∥
∥2

L2 + C‖∇u‖3

L
9p

4p–9
,

(2.56)
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and similarly,

J1,3 + J1,4 ≤ C‖∇ρ‖2
L3‖div u‖2

L6 + C‖∇ρ‖L3‖∇u‖L6‖u‖L6‖div u‖2
L6

≤ C
∥
∥∇2u

∥
∥2

L2 + C
∥
∥∇2u

∥
∥

L2‖div u‖2
L6

≤ C
∥
∥∇2u

∥
∥2

L2 + C
∥
∥∇2u

∥
∥

L2‖div u‖1/2
L3

∥
∥|div u|1/2∇ div u

∥
∥

L2

≤ 2μ + λ

8
∥
∥|div u|1/2∇ div u

∥
∥2

L2 + C
∥
∥∇2u

∥
∥2

L2‖div u‖L3 + C
∥
∥∇2u

∥
∥2

L2 .

(2.57)

Inserting (2.54)–(2.57) into (2.53), we see that

J1 ≤ 3(2μ + λ)
8

∥
∥|div u|1/2∇ div u

∥
∥2

L2 + C
(∥
∥∇2u

∥
∥2

L2 + ‖∇u‖3

L
9p

4p–9

)

+ C
(∥
∥∇2B

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)(

1 + ‖div u‖2
L3

)
, 3 < p < 6.

(2.58)

For J2, we have from (2.4), (2.7), (2.35), and (2.54) that

J2 ≤ C
∫

|∇ρ||u||∇u||div u|2 dx + C
∫

|ρ||∇u|2|div u|2 dx

≤ C‖∇ρ‖L3‖u‖L6‖∇u‖L6‖div u‖2
L6 + C‖∇u‖2

L6‖div u‖2
L3

≤ 2μ + λ

8
∥
∥|div u|1/2∇ div u

∥
∥2

L2 + C
∥
∥∇2u

∥
∥2

L2
(
1 + ‖div u‖2

L3
)
,

(2.59)

and similarly,

J3 ≤ C
∫

|∇ρ||div u||∇ div u|dx

≤ ‖∇ρ‖L3‖div u‖1/2
L3

∥
∥|div u|1/2∇ div u

∥
∥

L2

≤ 2μ + λ

4
∥
∥|div u|1/2∇ div u

∥
∥2

L2 + C
(
1 + ‖div u‖2

L3
)
.

(2.60)

Noticing that div B = 0, we have from (2.5) and the integration by parts that

J4 + J5 = –C
∫

Bi∂iBj∂j
(|div u|div u

)
dx + C

∫

∂jBiBi∂j
(|div u|div u

)
dx

≤ C
∫

|B||∇B||div u||∇ div u|dx

≤ ‖B‖L3‖∇B‖L6‖div u‖1/2
L3

∥
∥|div u|1/2∇ div u

∥
∥

L2

≤ 2μ + λ

4
∥
∥|div u|1/2∇ div u

∥
∥2

L2 + C
∥
∥∇2B

∥
∥2

L2
(
1 + ‖div u‖2

L3
)
.

(2.61)

Substituting (2.58)–(2.61) into (2.52), we have

d
dt

∫

ρ|div u|3 dx +
∥
∥|div u|1/2∇ div u

∥
∥2

L2

≤ (
1 +

∥
∥∇2B

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)(

1 + ‖div u‖2
L3

)
+ C‖∇u‖3

L
9p

4p–9
.

(2.62)
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Step II. Estimation of ‖ curl u‖L3 .
Multiplying (2.51) by | curl u| curl u and integrating by parts over R3, we get

1
3

d
dt

∫

ρ| curl u|3 dx + μ

∫
(| curl u||∇ curl u|2 + | curl u|∣∣∇| curl u|∣∣2)dx

=
∫

(∇Bi) × (∂iB) · (| curl u| curl u
)

dx

+
∫

B · ∇(curl B) · (| curl u| curl u
)

dx

–
∫

(∇ρ × ut)
(| curl u| curl u

)
dx

–
∫

∇(
ρui) × (∂iu)

(| curl u| curl u
)

dx

�
4∑

i=1

Ni.

(2.63)

The right-hand side terms of (2.63) can be estimated as follows. Since it holds by the
Cauchy–Schwarz inequality that

N1 ≤ C
∫

|∇B|2| curl u|2 dx ≤ C‖∇B‖2
L6‖ curl u‖2

L3 ≤ C
∥
∥∇2B

∥
∥2

L2‖ curl u‖2
L3 . (2.64)

Thanks to div B = 0, we obtain from the integration by parts that

N2 ≤ C
∫

|B||∇B|| curl u||∇ curl u|dx

≤ C‖B‖L3‖∇B‖L6‖ curl u‖1/2
L3

∥
∥| curl u|1/2∇ curl u

∥
∥

L2

≤ μ

4
∥
∥| curl u|1/2∇ curl u

∥
∥2

L2 +
∥
∥∇2B

∥
∥2

L2
(
1 + ‖ curl u‖2

L3
)
.

(2.65)

In terms of the following simple fact that

μ�u + (μ + λ)∇ div u = (2μ + λ)∇ div u – μ∇ × (curl u),

we have from (2.1)2 that

N3 = –
∫

(∇ lnρ) ×
(

B · ∇B –
1
2
∇|B|2

)

· (| curl u| curl u
)

dx

+ μ

∫

(∇ lnρ) × (∇ × curl u) · (| curl u| curl u
)

dx

– (2μ + λ)
∫

(∇ lnρ) × (∇ div u) · (| curl u| curl u
)

dx

+
∫

(∇ lnρ) × (∇P) · (| curl u| curl u
)

dx

+
∫

(∇ lnρ) × (ρu · ∇u) · (| curl u| curl u
)

dx

�
5∑

i=1

N3,i.

(2.66)
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It is easy to get from (2.35) and the Cauchy–Schwarz inequality that

N3,1 ≤ C
∫

|∇ρ||B||∇B|| curl u|2 dx

≤ C‖∇ρ‖L3‖B‖L6‖∇B‖L6‖ curl u‖2
L6

≤ μ

16
∥
∥| curl u|1/2∇ curl u

∥
∥2

L2 +
∥
∥∇2B

∥
∥2

L2
(
1 + ‖ curl u‖2

L3
)
.

(2.67)

By virtue of (2.35) and (2.55),

N3,2 ≤ C
∫

|∇ρ||∇ curl u||∇u|| curl u|dx

≤ C‖∇ρ‖Lp‖∇u‖
L

9p
4p–9

‖ curl u‖1/2
L9

∥
∥| curl u|1/2∇ curl u

∥
∥

L2

≤ μ

16
∥
∥| curl u|1/2∇ curl u

∥
∥2

L2 + ‖∇u‖3

L
9p

4p–9
.

(2.68)

A key observation for dealing with N3,3 lies in the fact that for smooth scalar/vector func-
tions f , g , and h,

∫

(∇f × ∇g) · h dx = –
∫

g(∇f ) · (∇ × h) dx,

so that, by taking f = lnρ , g = div u, and h = | curl u| curl u, we find

N3,3 = (2μ + λ)
∫

(∇ × (| curl u| curl u
)) · (∇ lnρ)(div u) dx

≤ C
∫

|∇ρ||∇ curl u||∇u|| curl u|dx

≤ C‖∇ρ‖Lp‖∇u‖
L

9p
4p–9

‖ curl u‖1/2
L9

∥
∥| curl u|1/2∇ curl u

∥
∥

L2

≤ μ

16
∥
∥| curl u|1/2∇ curl u

∥
∥2

L2 + ‖∇u‖3

L
9p

4p–9
.

(2.69)

Next, for N3,4, we have from (2.4) and (2.57) that

N3,4 ≤ C
∫

|∇ρ|2| curl u|2 dx ≤ C
∥
∥∇2u

∥
∥2

L2 , (2.70)

and

N3,5 ≤ C
∫

|∇ρ||ρ||u||∇u|| curl u|2 dx

≤ C
∥
∥∇2u

∥
∥

L2‖ curl u‖2
L6 dx

≤ μ

16
∥
∥| curl u|1/2∇ curl u

∥
∥2

L2 +
∥
∥∇2B

∥
∥2

L2
(
1 + ‖ curl u‖2

L3
)
.

(2.71)

Inserting (2.67)–(2.71) into (2.66), we have

N3 ≤ μ

4
∥
∥| curl u|1/2∇ curl u

∥
∥2

L2 + C
(∥
∥∇2u

∥
∥2

L2 +
∥
∥∇2B

∥
∥2

L2
)(

1 + ‖ curl u‖2
L3

)

+ C‖∇u‖3

L
9p

4p–9
.

(2.72)
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Similarly, it is easily seen from (2.59) that

N4 ≤ C
∫

(|∇ρ||u||∇u| + |ρ||∇u|2)| curl u|2 dx

≤ C
∥
∥∇2u

∥
∥

L2‖ curl u‖2
L6 dx

≤ μ

4
∥
∥| curl u|1/2∇ curl u

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
(
1 + ‖ curl u‖2

L3
)
.

(2.73)

Thus, putting (2.64), (2.65), (2.72), and (2.73) into (2.63), we obtain

d
dt

∫

ρ| curl u|3 dx +
∥
∥| curl u|1/2∇ curl u

∥
∥2

L2

≤ C
(∥
∥∇2u

∥
∥2

L2 +
∥
∥∇2B

∥
∥2

L2
)(

1 + ‖ curl u‖2
L3

)
+ C‖∇u‖3

L
9p

4p–9
.

(2.74)

Step III. Closing the estimations.
In view of (2.62) and (2.74), we have

d
dt

(∥
∥ρ1/3 div u

∥
∥3

L3 +
∥
∥ρ1/3 curl u

∥
∥3

L3 dx
)

+
∥
∥|div u|1/2∇ div u

∥
∥2

L2 + dx +
∥
∥| curl u|1/2∇ curl u

∥
∥2

L2

≤ (
1 +

∥
∥∇2B

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)(

1 + ‖div u‖2
L3 + ‖ curl u‖2

L3
)

+ C‖∇u‖3

L
9p

4p–9
.

(2.75)

Since it holds that

1 <
18 – 2p

p
≤ 2 and 1 ≤ 5p – 18

p
< 2 for

9
2

≤ p < 6,

thus

‖∇u‖3

L
9p

4p–9
≤ C‖∇u‖

5p–18
p

L3 ‖∇u‖
18–2p

p
L6 ≤ C

(
1 + ‖∇u‖2

L3
)(

1 + ‖∇u‖2
H1

)
. (2.76)

Since it holds that

‖∇u‖Lp ≤ C
(‖div u‖Lp + ‖ curl u‖Lp

)
, ∀p > 1,

together with (2.7), (2.45), (2.75), (2.76), we have

sup
0≤t≤T

‖∇u‖3
L3 ≤ C sup

0≤t≤T

(‖div u‖3
L3 + ‖ curl u‖3

L3
)

≤ C + C
∫ T

0

(∥
∥∇2B

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)(

1 + ‖∇u‖2
L3

)
dt

+ C
∫ T

0

(
1 + ‖∇u‖2

L3
)(

1 + ‖∇u‖2
H1

)
dt

≤ C + C
∫ T

0

(∥
∥∇2B

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)‖∇u‖2

L3 dt,

(2.77)

so that, combined with (2.7), (2.45), (2.77), and Gronwall’s inequality, this leads to
(2.49). �
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3 Proof of Theorem 1.1
By virtue of all the a priori estimates stated in Sect. 2, we are now ready to prove the
main results in our paper. To be continued, we first need to prove the local existence of
smooth solutions of (1.1)–(1.5). Fortunately, thanks to Li, Xu, and Zhang’s research (cf. [17,
Proposition 5.1]), the details can be omitted here for simplicity. Next, we need to prove
the uniqueness of the solutions.

Proof of uniqueness Let (ρ1, u1, B1) and (ρ2, u2, B2), belonging to the class of functions
(1.15) and enjoying the same initial data, be two solutions of problem (2.1), (1.4), and (1.5)
on R

3 × [0, T]. Define

� � ρ1 – ρ2, v � u1 – u2, B � B1 – B2.

Then it is easily derived from the above representations for � = �(x, t) that

�t + u2 · ∇� + � div u2 + ρ1 div v + v · ∇ρ1 = 0,

thus, multiplying by � in L2 and integrating by parts yields

d
dt

‖�‖2
L2 ≤ C‖div u2‖L∞‖�‖2

L2 + C
(‖∇v‖L2 + ‖v‖L6‖∇ρ1‖L3

)‖�‖L2

≤ C‖div u2‖L∞‖�‖2
L2 + C‖∇v‖L2‖�‖L2 .

(3.1)

Thanks to (1.15), we know that ‖div u2‖L∞ ∈ L1(0, T), thus, with the help of (3.1) and
Gronwall’s inequality, we get

∥
∥�(t)

∥
∥

L2 ≤ C
∫ t

0
‖∇v‖L2 ds ≤ Ct1/2

(∫ t

0
‖∇v‖2

L2 ds
)1/2

, ∀t ∈ [0, T]. (3.2)

On the other hand, since u̇2 = u2t + u2 · ∇u2, we have from (2.1)2 that

ρ1vt + ρ1u1 · ∇v – μ�v – (μ + λ)∇ div v

= –�u̇2 – ρ1v · ∇u2 – ∇(
P(ρ1) – P(ρ2)

)
+ B1 · ∇B –

1
2
∇(|B1|2 – |B2|2

)
.

(3.3)

Multiplying (3.3) by v in L2 and integrating by parts, we obtain

1
2

d
dt

‖√ρ1v‖2
L2 + μ‖∇v‖2

L2 + (μ + λ)‖div v‖2
L2

≤ C‖�‖L2‖u̇2‖L3‖v‖L6 + C‖v‖L2‖∇u2‖L3‖v‖L6 + C‖�‖L2‖∇v‖L2

× C
(‖B1‖L∞ + ‖B2‖L∞

)‖B‖L2‖∇v‖L2

≤ μ

2
‖∇v‖2

L2 + C
(
1 + ‖u̇2‖2

L3
)‖�‖2

L2

+ C
(‖B1‖2

L∞ + ‖B2‖2
L∞ + ‖∇u2‖2

L3
)(‖B‖2

L2 + ‖v‖2
L2

)
.
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Thus, it follows from (1.15) and (2.49) that

d
dt

‖√ρ1v‖2
L2 + ‖∇v‖2

L2 ≤ C
(
1 + ‖u̇2‖2

L3
)‖�‖2

L2

+ C
(
1 +

∥
∥∇2B1

∥
∥2

L2 +
∥
∥∇2B2

∥
∥2

L2
)(‖B‖2

L2 + ‖√ρ1v‖2
L2

)
.

(3.4)

Finally, note that

Bt – ν�B = –u1 · ∇B – v · ∇B2 + B · ∇u1 + B2 · ∇v – B div u1 – B2 div v. (3.5)

Multiplying (3.5) by B and integrating by parts over R3, we have

1
2

d
dt

‖B‖2
L2 + ‖∇B‖2

L2

=
∫

(–u1 · ∇B – v · ∇B2 + B · ∇u1 + B2 · ∇v – B div u1 – B2 div v) ·B dx

�
6∑

i=1

Ji.

(3.6)

Now, we estimate Ji (i = 1, 2, . . . , 6) in (3.6) as follows. By virtue of (2.49), we have

J1 = –
1
2

∫

u1 · ∇(|B|2)dx =
1
2

∫

div u1|B|2 dx ≤ ν

8
‖∇B‖2

L2 + ‖B‖2
L2 (3.7)

and

J2 ≤ C‖v‖L2‖∇B2‖L3‖B‖L6

≤ ν

8
‖∇B‖2

L2 + C
(
1 +

∥
∥∇2B2

∥
∥2

L2
)‖√ρ1v‖2

L2 ,
(3.8)

and

J3 + J4 + J5 ≤ ν

4
‖∇B‖2

L2 + C
(
1 +

∥
∥∇2B2

∥
∥2

L2
)‖√ρ1v‖2

L2 + +‖B‖2
L2 . (3.9)

Next, for J6, we have from (1.15) that

J6 ≤ C‖B2‖L∞‖∇v‖L2‖B‖L2

≤ C1‖∇v‖2
L2 + C‖B2‖L6‖∇B2‖L6‖B‖2

L2

≤ C1‖∇v‖2
L2 + C

(
1 +

∥
∥∇2B2

∥
∥2

L2
)‖B‖2

L2 .

(3.10)

Putting (3.6)–(3.10) into (3.5), we have

d
dt

‖B‖2
L2 + ‖∇B‖2

L2

≤ C1‖∇v‖2
L2 + C

(
1 +

∥
∥∇2B2

∥
∥2

L2
)(‖√ρ1v‖2

L2 + ‖B‖2
L2

)
.

(3.11)
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Multiplying (3.3) by (C1 + 1) and combining with (3.2) and (3.11), we obtain

d
dt

(‖√ρ1v‖2
L2 + ‖B‖2

L2
)

+ ‖∇v‖2
L2 + ‖∇B‖2

L2

≤ C
(
1 +

∥
∥∇2B1

∥
∥2

L2 +
∥
∥∇2B2

∥
∥2

L2
)(‖√ρ1v‖2

L2 + ‖B‖2
L2

)

≤ Ct
(
1 + ‖u̇2‖2

L3
)
(∫ t

0
‖∇v‖2

L2 ds
)

.

(3.12)

Let

�(t) �
(‖√ρ1v‖2

L2 + ‖B‖2
L2

)
+

∫ t

0

(‖∇v‖2
L2 + ‖∇B‖2

L2
)

ds.

Then, due to the fact that ρ1 has a positive lower bound, we infer from (3.12) that

�′(t) ≤ A(t)�(t) with �(0) = 0, (3.13)

where

A(t) � Ct
(
1 + ‖u̇2‖2

L3
)

+ C
(
1 +

∥
∥∇2B1

∥
∥2

L2 +
∥
∥∇2B2

∥
∥2

L2
)

≤ Ct
(
1 + ‖u̇2‖2

L2 + ‖∇u̇2‖2
L2

)
+ C

(
1 +

∥
∥∇2B1

∥
∥2

L2 +
∥
∥∇2B2

∥
∥2

L2
)
.

Since it holds by (1.15) that A(t) ∈ L1(0, T), thus, we can infer from (3.13) and Gronwall’s
inequality that

(‖v‖2
L2 + ‖B‖2

L2
)

+
∫ T

0

(‖∇v‖2
L2 + ‖∇B‖2

L2
)

dt = 0, ∀t ∈ [0, T],

so that

v(x, t) = 0, B = 0, a.e. on R
3 × [0, T],

which, combined with (3.2), yields

�(x, t) = 0, a.e. on R
3 × [0, T].

Thus, we complete the proof of Theorem 1.1. �
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