
Bohner and Hristova Boundary Value Problems         (2022) 2022:14 
https://doi.org/10.1186/s13661-022-01595-0

R E S E A R C H Open Access

Stability for generalized Caputo proportional
fractional delay integro-differential equations
Martin Bohner1 and Snezhana Hristova2*

*Correspondence:
snehri@gmail.com
2Faculty of Mathematics and
Informatics, University of Plovdiv
“Paisii Hilendarski”, Plovdiv, Bulgaria
Full list of author information is
available at the end of the article

Abstract
A scalar nonlinear integro-differential equation with time-variable and bounded
delays and generalized Caputo proportional fractional derivative is considered. The
main goal of this paper is to study the stability properties of the zero solution. Results
are given concerning stability, exponential stability, asymptotic stability, and
boundedness of solutions. The investigations are based on an application of a
quadratic Lyapunov function, its generalized Caputo proportional derivative, and a
modification of the Razumikhin approach. Some auxiliary properties of the
generalized Caputo proportional derivative are proved. Five illustrative examples are
included.
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1 Introduction
In this paper, we study stability for a very general class of fractional delay integro-
differential equations. We use a recently introduced concept [11] of the so-called gen-
eralized Caputo proportional fractional derivative. This derivative is a generalization of
the Caputo fractional derivative. For the study of various types of fractional differential
equations, we refer the reader to the classical book [19]. In [4, 6, 7, 9, 13, 14, 20], Lyapunov
functions and functionals are used to study the stability of various fractional-order nonlin-
ear dynamic systems with classical Caputo and Riemann–Liouville fractional derivatives
and for ordinary differential equations with state delays in [21]. Following the introduction
[11] of the generalized Caputo proportional fractional derivative, some studies concerning
this derivative were contained in [1–3, 5, 10, 15–18].

In this paper, we apply Lyapunov functions to study some stability properties of integro-
differential delay equations with generalized Caputo proportional fractional derivatives.
We consider the case of bounded delays that are variable in time. We develop some nec-
essary tools for generalized Caputo proportional fractional derivatives, starting with an
important inequality concerning an estimate of that derivative of quadratic functions.
A modified Razumikhin condition is developed and used to show the main result, con-
ditions that guarantee the stability of the zero solution with zero initial function. From
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there, we give results concerning the boundedness of all solutions, as well as results about
exponential stability and asymptotic stability.

The organization of the paper is as follows. In Sect. 2, the problem is stated and essential
assumptions and definitions are given. In Sect. 3, we prove several auxiliary results about
generalized Caputo proportional fractional derivatives. Section 4 contains the main re-
sults as well as a comparison with the recent paper [8]. The paper concludes with Sect. 5,
in which five detailed examples are offered.

2 Problem statement
Consider the fractional delay integro-differential equation with generalized Caputo pro-
portional fractional derivative

(C
t0D

α,ρx
)
(t) = –F

(
t, x(t)

)
+

n∑

k=1

ψk(t, x(t), x
(
t – gk(t)

)

+
n∑

k=1

∫ t

t–gk (t)
Ck(t, s)fk

(
s, x(s)

)
ds, t > t0,

x(t0 + θ ) = φ(θ ), θ ∈ [–τ , 0],

(2.1)

where we assume throughout this paper
(C0) t0 ≥ 0, α ∈ (0, 1), ρ ∈ (0, 1],

C
t0D

α,ρx is the generalized Caputo proportional fractional derivative of x ∈ C1([t0,∞),R),
• gk : [t0,∞) → [0, τk], τk ≥ 0, k = 1, 2, . . . , n,
• φ ∈ C([–τ , 0],R), τ = maxk=1,2,...,n τk ,
• F : [t0,∞) ×R→ R, and
• fk : [t0 – τ ,∞) ×R →R, Ck : [t0,∞) × [t0 – τ ,∞) →R, ψk : [t0,∞) ×R

2 →R for
k = 1, 2, . . . , n.

Remark 2.1 Everywhere in this paper, rather than giving conditions that imply the exis-
tence and uniqueness of solutions of (2.1), we will assume that for any initial function
φ ∈ C([–τ , 0],R), the initial value problem (2.1) has a unique solution defined for t ≥ t0.

We recall that the generalized proportional fractional integral and the generalized Ca-
puto proportional fractional derivative of a function u : [a,∞) → R are defined, respec-
tively, by (as long as all integrals are well defined, see [11])

(aI
β ,ρu)(t) =

1
ρβ	(β)

∫ t

a
e

ρ–1
ρ (t–s)(t – s)β–1u(s) ds, t > a

and

(C
aD

α,ρu
)
(t) =

(
aI

1–α,ρ(Dρu
))

(t)

=
1

ρ1–α	(1 – α)

∫ t

a
e

ρ–1
ρ (t–s) (Dρu)(s)

(t – s)α
ds, t > a,

where

Dρu = (1 – ρ)u + ρu′.
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Remark 2.2 The generalized proportional fractional integral aI β ,ρu is defined also for
β ∈ (–1, 0) since 	(β) < 0 exists.

Remark 2.3 If ρ = 1, then the generalized Caputo proportional fractional derivative is re-
duced to the classical Caputo fractional derivative.

Remark 2.4 If u(t) = e
ρ–1
ρ (t–c) for t ≥ a, where c ∈R, then the relation

(C
aD

α,ρu
)
(t) = 0 for t ≥ a (2.2)

is known from [11, Remark 3.2].

3 Auxiliary results
The next result about the generalized Caputo proportional fractional derivative is new,
and it is used twice in the remainder of the paper. It also will be of valuable use any time
the generalized Caputo proportional fractional derivative is studied.

Lemma 3.1 If there exists t > a such that u ∈ C1([a, t],R) satisfies u(t) = 0, then

(C
aD

α,ρu
)
(t) =

(
aI

–α,ρu
)
(t) –

ρα

	(1 – α)
e

ρ–1
ρ (t–a) u(a)

(t – a)α
. (3.1)

Proof Let u ∈ C1([a, t],R) and u(t) = 0. We denote

f (s) := e
ρ–1
ρ (t–s) and g(s) :=

u(s)
(t – s)α

for s ∈ [a, t).

Now, we integrate by parts to obtain

(C
aD

α,ρu
)
(t) =

1
ρ1–α	(1 – α)

∫ t

a
f (s)

(1 – ρ)u(s) + ρu′(s)
(t – s)α

ds

=
ρα

	(1 – α)

∫ t

a

{
1 – ρ

ρ
f (s)g(s) + f (s)

u′(s)
(t – s)α

}
ds

=
ρα

	(1 – α)

∫ t

a

{
f ′(s)g(s) + f (s)

[
g ′(s) –

αu(s)
(t – s)α+1

]}
ds

=
ρα

	(1 – α)

∫ t

a
(fg)′(s) ds –

αρα

	(1 – α)

∫ t

a
f (s)

u(s)
(t – s)α+1 ds

=
ρα

	(1 – α)

{
lim

s→t– f (s)g(s) – f (a)g(a)
}

+
ρα

	(–α)

∫ t

a
f (s)

u(s)
(t – s)α+1 ds

=
(

aI
–α,ρu

)
(t) –

ρα

	(1 – α)
f (a)g(a),

where we used L’Hôpital’s rule to find

lim
s→t–

f (s)u(s)
(t – s)α

= lim
s→t–

f ′(s)u(s) + u′(s)f (s)
α(t – s)α–1 = 0,

completing the proof. �
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Now, we prove three results that will be used in the derivation of our main results in the
next section.

Lemma 3.2 If u ∈ C1([a,∞),R), then

(C
aD

α,ρu2)(t) ≤ 2u(t)
(C

aD
α,ρu

)
(t) for all t > a. (3.2)

Proof We fix t > a and define the function v : [a, t] → [0,∞) by

v(s) =
(
u(t) – u(s)

)2.

Note that v ∈ C1([a, t],R) and v(t) = 0, so v satisfies the assumptions of Lemma 3.1, and
therefore, from (3.1) and the inequalities v(s) ≥ 0 and 	(–α) < 0 for α ∈ (0, 1), it follows
(C
aD

α,ρv)(t) ≤ 0. Thus, since

(
Dρu2)(s) – 2u(t)

(
Dρu

)
(s)

= (1 – ρ)u2(s) + ρ
(
u2)′(s) – 2u(t)

{
(1 – ρ)u(s) + ρu′(s)

}

= (1 – ρ)u2(s) + 2ρu(s)u′(s) – 2(1 – ρ)u(t)u(s) – 2ρu′(s)u(t)

= (1 – ρ)
(
u(s) – u(t)

)2 + 2ρu′(s)
(
u(s) – u(t)

)
– (1 – ρ)u2(t)

= (1 – ρ)v(s) + ρv′(s) – (1 – ρ)u2(t)

=
(
Dρv

)
(s) – (1 – ρ)u2(t)

≤ (
Dρv

)
(s),

we obtain

(C
aD

α,ρu2)(t) – 2u(t)
(C

aD
α,ρu

)
(t) ≤ (C

aD
α,ρv

)
(t) ≤ 0,

where the last inequality follows from Lemma 3.1 because v(s) ≥ 0 and since 	(–α) < 0 for
α ∈ (0, 1). �

Lemma 3.3 Let φ ∈ C([–τ , 0],R) and assume that

x = x(·, t0,φ) ∈ C1([–τ ,∞),R
)

is a solution of (2.1). If for any t ≥ t0 such that

x2(t + θ )e
1–ρ
ρ θ ≤ x2(t) for all θ ∈ [–τ , 0), (3.3)

the inequality

(C
t0D

α,ρx2)(t) ≤ 0 (3.4)

holds, then

∣
∣x(s)

∣
∣ ≤

√
max

θ∈[–τ ,0]
φ2(θ )e

ρ–1
ρ (s–t0) for all s ≥ t0. (3.5)
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Proof Let x = x(·, t0,φ) be a solution of (2.1). We define

η(s) := x2(s) – Be
ρ–1
ρ (s–t0) – εe

ρ–1
ρ s for s ≥ t0,

where

B := max
θ∈[–τ ,0]

φ2(θ ) ≥ 0.

Observe that

η(t0) = x2(t0) – B – εe
ρ–1
ρ t0 < x2(t0) – B ≤ B – B = 0.

We claim

η(s) < 0 for all s ≥ t0, (3.6)

from which (3.5) would follow. Assuming that (3.6) is not true, there exists t > t0 such that

η(s) < 0 for all s ∈ [t0, t) and η(t) = 0. (3.7)

Note that η ∈ C1([t0, t],R) and η(t) = 0, hence η satisfies the assumptions of Lemma 3.1.
According to Lemma 3.1 and the choice of the point t, we have (C

t0D
α,ρη)(t) > 0. For any

θ ∈ [–τ , 0], we have

x2(t + θ )e
1–ρ
ρ θ =

{
η(t + θ ) + Be

ρ–1
ρ (t+θ–t0) + εe

ρ–1
ρ (t+θ )}e

1–ρ
ρ θ

= η(t + θ )e
1–ρ
ρ θ + Be

ρ–1
ρ (t–t0) + εe

ρ–1
ρ t

= η(t + θ )e
1–ρ
ρ θ + x2(t) – η(t)

= x2(t) + η(t + θ )e
1–ρ
ρ θ

< x2(t),

so for this t, (3.3) holds, and thus

0
(3.4)≥ (C

t0D
α,ρx2)(t) (2.2)=

(C
t0D

α,ρη
)
(t) > 0,

where the last inequality follows from Lemma 3.1, contradicting (3.7), proving (3.6), and
hence implying (3.5). �

Remark 3.4 The condition “if for a point t such that (3.3) holds, then (3.4) is satisfied”
is a (modified) Razumikhin condition. In the case of the Caputo fractional derivative, i.e.,
ρ = 1, this condition reduces to the classical Razumikhin condition (see, for example [12]).

Remark 3.5 The main characteristic of Lyapunov functions applied to delay differential
equations is the condition for its derivative, the so-called Razhumikhin condition (for ex-
ample, the negativity of the derivative). It allows us to assume a restriction on their deriva-
tives only at some point, not for all values of t. This is different from the applications to
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ordinary differential equations and to Caputo fractional differential equations without de-
lays.

Corollary 3.6 If the conditions of Lemma 3.3 are satisfied, then

∣
∣x(s)

∣
∣ ≤

√
max

θ∈[–τ ,0]
φ2(θ ) for all s ≥ t0. (3.8)

Proof This follows from (3.5), (C0), and e
ρ–1
ρ (s–t0) ≤ 1 for s ≥ t0. �

4 Stability and boundedness properties
We introduce the following assumptions.

(C1) F ∈ C([t0,∞) ×R,R), and for k = 1, 2, . . . , n,
• ψk ∈ C([t0,∞) ×R

2,R),
• fk ∈ C([t0 – τk ,∞) ×R, [0,∞)),
• Ck ∈ C([t0,∞) × [t0 – τ ,∞),R).

(C2) F(t, 0) = 0, and for k = 1, 2, . . . , n,
• ψk(t, 0, 0) = 0 for t ≥ t0,
• fk(t, 0) = 0 for t ≥ t0 – τk .

(C3) There exist b ∈ C((t0,∞), [0,∞)) and, for k = 1, 2, . . . , n, Ak , Bk ∈ C((t0,∞), [0,∞)),
�k ∈ C((t0 – τk ,∞), [0,∞)) such that

• xF(t, x) ≥ b(t)x2 for t ≥ t0, x ∈R,
• |ψk(t, x, y)| ≤ Ak(t)|x| + Bk(t)|y| for t ≥ t0, x, y ∈R,
• |fk(t, x)| ≤ �k(t)|x| for t ≥ t0 – τk , x ∈R.

(C4) The inequality

b(t) ≥
n∑

k=1

[
Ak(t) +

1 + e
1–ρ
ρ gk (t)

2
Bk(t)

+
∫ t

t–gk (t)

1 + e
1–ρ
ρ (t–s)

2
∣
∣Ck(t, s)

∣
∣�k(s) ds

]

holds for all t ≥ t0.
Our first main result is concerned with stability. Note that, in contrast to ordinary

derivatives, fractional derivatives depend significantly on the initial time point t0, which
is equal to the lower limit of the derivative. Hence, any change of the initial time leads
to a change of the fractional derivative. For this reason, we will not consider the case of
uniform stability and study only the cases of stability, exponential stability, and asymptotic
stability.

Theorem 4.1 (Stability) If (C1)–(C4) hold, then the zero solution of (2.1) with zero initial
function is stable.

Proof Let x = x(·, t0,φ) be any solution of (2.1). We will show that the assumptions of
Lemma 3.3 are satisfied. To this end, suppose t ≥ t0 is such that (3.3) is satisfied. If
s ∈ [t – gk(t), t] ⊂ [t – τ , t], then θ := s – t ∈ [–τ , 0], and from (3.3), we obtain

x2(s)e
1–ρ
ρ (s–t) ≤ x2(t) for all s ∈ [

t – gk(t), t
]
. (4.1)
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In the calculation below, we also use the “trivial” inequality

|2ab| ≤ a2 + b2 for all a, b ∈ R. (4.2)

Now,

(C
t0D

α,ρx2)(t)
(3.2)≤ 2x(t)

(C
t0D

α,ρx
)
(t)

= –2x(t)F
(
t, x(t)

)
+ 2

n∑

k=1

x(t)ψk(t, x(t), x
(
t – gk(t)

)

+ 2
n∑

k=1

∫ t

t–gk (t)
Ck(t, s)x(t)fk

(
s, x(s)

)
ds

≤ –2x(t)F
(
t, x(t)

)
+ 2

n∑

k=1

∣
∣x(t)

∣
∣|ψk(t, x(t), x

(
t – gk(t)

)|

+ 2
n∑

k=1

∫ t

t–gk (t)

∣
∣Ck(t, s)

∣
∣
∣
∣x(t)

∣
∣
∣
∣fk

(
s, x(s)

)∣∣ds

(C3)≤ –2b(t)x2(t) + 2
n∑

k=1

∣∣x(t)
∣∣{Ak(t)

∣∣x(t)
∣∣ + Bk(t)

∣∣x
(
t – gk(t)

)∣∣}

+ 2
n∑

k=1

∫ t

t–gk (t)

∣∣Ck(t, s)
∣∣�k(s)|x(t)x(s)|ds

= –2b(t)x2(t) +
n∑

k=1

2Ak(t)x2(t) +
n∑

k=1

Bk(t)
∣∣2x(t)x

(
t – gk(t)

)∣∣

+
n∑

k=1

∫ t

t–gk (t)

∣
∣Ck(t, s)

∣
∣�k(s)

∣
∣2x(t)x(s)

∣
∣ds

(4.2)≤ –2b(t)x2(t) +
n∑

k=1

2Ak(t)x2(t) +
n∑

k=1

Bk(t)
{

x2(t) + x2(t – gk(t)
)}

+
n∑

k=1

∫ t

t–gk (t)

∣∣Ck(t, s)
∣∣�k(s)

{
x2(t) + x2(s)

}
ds

= –2b(t)x2(t) +
n∑

k=1

{
2Ak(t) + Bk(t)

}
x2(t) +

n∑

k=1

Bk(t)x2(t – gk(t)
)

+
n∑

k=1

∫ t

t–gk (t)

∣∣Ck(t, s)
∣∣�k(s)

{
x2(t) + x2(s)

}
ds

(4.1)≤ –2b(t)x2(t) +
n∑

k=1

{
2Ak(t) + Bk(t)

}
x2(t)

+
n∑

k=1

Bk(t)x2(t)e
ρ–1
ρ (t–gk (t)–t)

+
n∑

k=1

∫ t

t–gk (t)

∣∣Ck(t, s)
∣∣�k(s)

{
x2(t) + x2(t)e

ρ–1
ρ (s–t)}ds
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= 2x2(t)

[

–b(t) +
n∑

k=1

{
Ak(t) +

1 + e
1–ρ
ρ gk (t)

2
Bk(t)

}

+
n∑

k=1

∫ t

t–gk (t)

∣∣Ck(t, s)
∣∣�k(s)

1 + e
1–ρ
ρ (t–s)

2
ds

]

(C4)≤ 0,

i.e., (3.4) holds. Hence, the assumptions of Lemma 3.3 are satisfied. According to Corol-
lary 3.6, (3.8) holds. This completes the proof. �

Corollary 4.2 (Boundedness) If (C1), (C3), and (C4) hold, then the solutions of (2.1) are
bounded.

Proof As in the proof of Theorem 4.1, we obtain (3.8) for any solution x = x(·, t0,φ) of (2.1),
i.e., boundedness is established. �

Remark 4.3 The above-obtained sufficient conditions for stability and boundedness are
true for the case of delay Caputo fractional integro-differential equations (ρ = 1). Note
that a partial case of (2.1), namely F in a special form, ψ1 not depending on the third
variable, ψk = 0 for all 2 ≤ k ≤ n, constant delays, and the Caputo fractional derivative
is studied in [8], and the stability of the zero solution and boundedness of solutions are
proved. A modified Razhumikhin condition and results known in the literature (see [8,
Lemma 1, Lemma 4]) are used. However, this condition is not applied adequately in the
proof of the result for stability (see [8, Theorem 1]). In the proof of the boundedness [8,
Theorem 2], the negativeness of the Caputo fractional derivative of the Lyapunov function
is applied for all points t instead of only for those for which the Razhumikhin condition
is true (compare with Remark 3.5). Hence, our results do not only generalize theorems
from [8], they also remove the inconsistencies in the case of regular Caputo fractional
differential equations.

In connection with the above-mentioned remarks and for future reference, we state
our results for delay integro-differential equations with Caputo fractional derivative (with
ρ = 1)

(C
t0D

α,1x
)
(t) = –F

(
t, x(t)

)
+

n∑

k=1

ψk(t, x(t), x
(
t – gk(t)

)

+
n∑

k=1

∫ t

t–gk (t)
Ck(t, s)fk

(
s, x(s)

)
ds, t > t0,

x(t0 + θ ) = φ(θ ), θ ∈ [–τ , 0].

(4.3)

As a partial case of Theorem 4.1 and Corollary 4.2, we obtain the following result.

Corollary 4.4 Assume (C1)–(C3) hold and

b(t) ≥
n∑

k=1

[
Ak(t) + Bk(t) +

∫ t

t–gk (t)

∣∣Ck(t, s)
∣∣�k(s) ds

]
. (4.4)
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Then,
• the solutions of (4.3) are bounded and the bound depends on the initial function;
• the zero solution of (4.3) with zero initial function is stable.

From Theorem 4.1 and Corollary 4.2, we obtain the following results.

Corollary 4.5 (Exponential Stability) Let ρ ∈ (0, 1). If (C1)–(C4) hold, then the zero solu-
tion of (2.1) is exponentially stable.

Proof Let x = x(·, t0,φ) be any solution of (2.1), and suppose the point t ≥ t0 is such that
(3.3) holds. If s ∈ [t – gk(t), t] ⊂ [t – τ , t], then

θ := s – t ∈ [–τ , 0],

and from (3.3), we obtain (4.1), i.e.,

x2(s)e
1–ρ
ρ (s–t) ≤ x2(t) for all s ∈ [

t – gk(t), t
]

holds. Following the ideas of the proof of Theorem 4.1, we obtain

(C
t0D

α,ρx2)(t) ≤ 0,

i.e., (3.4) holds. Therefore, the assumptions of Lemma 3.3 are satisfied, and thus

∣
∣x(s)

∣
∣ ≤

√
max

θ∈[–τ ,0]
φ2(θ )e

ρ–1
2ρ (s–t0) for all s ≥ t0 (4.5)

holds, i.e., since ρ ∈ (0, 1), exponential stability is established. �

Corollary 4.6 (Asymptotic Stability) Let ρ ∈ (0, 1). If (C1)–(C4) hold, then the zero solu-
tion of (2.1) is asymptotically stable.

Proof The proof follows from ρ ∈ (0, 1) and (4.5). �

Remark 4.7 The above-proved results about exponential stability and asymptotic stabil-
ity are true only for ρ ∈ (0, 1), i.e., we do not provide sufficient conditions for the case
of the Caputo fractional derivative (with ρ = 1). For Caputo fractional derivatives, results
concerning the asymptotic stability [8, Theorem 3] and Mittag-Leffler stability [8, The-
orem 4] are studied, but the negativeness of the Caputo fractional derivative of the Lya-
punov function is applied for all points instead of only for those for which the Razumikhin
condition holds (compare with Remark 3.5). Hence, the question about asymptotic stabil-
ity and Mittag-Leffler stability is still open for delay Caputo fractional integro-differential
equations.

5 Examples
We first look at [8, Example 1] with appropriate modifications.



Bohner and Hristova Boundary Value Problems         (2022) 2022:14 Page 10 of 15

Example 5.1 Consider

(C
0.25D

α,1x
)
(t) = –

(
24 +

1
1 + t

)(
4x(t) + x(t)e–x2(t)–t2)

– 3x(t) – sin
(
x(t)

)
+

sin(x(t))
1 + et

+
∫ t

t–0.25
es–t sin(x(s))

1 + es2 ds, t > 0.25,

x(0.25 + θ ) = φ(θ ), θ ∈ [–0.25, 0].

(5.1)

Problem (5.1) is a special case of (2.1) with

n = 1, ρ = 1, t0 = 0.25, g1(t) ≡ τ1 = 0.25,

C1(t, s) = es–t , f1(t, x) =
sin(x)
1 + et2 , ψ1(t, x, y) =

sin(x)
1 + et ,

F(t, x) =
(

24 +
1

1 + t

)(
4x + xe–x2–t2)

+ 3x + sin(x).

It is easy to check that

F(t, 0) = 0, xF(t, x) ≥
(

98 +
4

1 + t

)
x2, b(t) = 98 +

4
1 + t

,

ψ1(t, 0, 0) = 0,
∣
∣ψ1(t, x, y)

∣
∣ ≤ |x|

1 + et , A1(t) =
1

1 + et , B1(t) ≡ 0,

f1(t, 0) = 0,
∣
∣f1(t, x)

∣
∣ ≤ |x|

1 + et2 ≤ |x|
2

, �1(t) =
1
2

.

Therefore, (C1)–(C3) are satisfied. Moreover, we have (recall that B1(t) ≡ 0)

A1(t) +
∫ t

t–g1(t)

∣
∣C1(t, s)

∣
∣�1(s) ds =

1
1 + et +

1
2

∫ t

t–0.25
es–t ds

=
1

1 + et +
1

2(1 – e–0.25)
< 3.3 < 98 < 98 +

4
1 + t

= b(t),

so that (4.4) is fulfilled. According to Corollary 4.4, the zero solution is stable.

Example 5.2 Let α ∈ (0, 1) and let ρ ∈ (0.0247292, 1). Consider (5.1) with the generalized
Caputo proportional fractional derivative instead of the Caputo fractional derivative, i.e.,
consider

(C
0.25D

α,ρx
)
(t) = –

(
24 +

1
1 + t

)(
4x(t) + x(t)e–x2(t)–t2)

– 3x(t) – sin
(
x(t)

)
+

sin(x(t))
1 + et

+
∫ t

t–0.25
es–t sin(x(s))

1 + es2 ds, t > 0.25,

x(0.25 + θ ) = φ(θ ), θ ∈ [–0.25, 0].

(5.2)
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As in Example 5.1, (C1)–(C3) are satisfied. Let us define

κ :=
1

4ρ
–

1
2

≤ 9.6095062.

We have (recall that B1(t) ≡ 0)

A1(t) +
∫ t

t–g1(t)

1 + e
1–ρ
ρ (t–s)

2
∣∣C1(t, s)

∣∣�1(s) ds

=
1

1 + et +
∫ t

t–0.25

1 + e
1–ρ
ρ (t–s)

2
es–t ds

2

< 1 +
1
4

∫ t

t–0.25

(
es–t + e–4κ(s–t))ds

= 1 +
1
4
(
1 – e–0.25) +

1
4

∫ t

t–0.25
e–4κ(s–t) ds

= 1 +
1
4
(
1 – e–0.25) +

1
16

⎧
⎨

⎩
1 if κ = 0,
eκ –1

κ
otherwise

< 97.995812 < 98 < 98 +
4

1 + t
= b(t),

and the first inequality in the last line is due to the fact that the function f defined by
f (x) = (ex – 1)/x for x ∈ R \ {0} and f (0) = 1 is strictly increasing. Thus, the condition (C4)
is fulfilled. According to Corollary 4.5, the zero solution of (5.2) is exponentially stable.

Example 5.3 Consider

(C
0D

α,1x
)
(t) = –

2 + t
1 + t

x(t) +
x(t)

1 + t2 +
∫ t

t–1
(t – s)x(s) ds, t > 0,

x(θ ) = φ(θ ), θ ∈ [–1, 0].
(5.3)

Problem (5.3) is a special case of (2.1) with

n = 1, ρ = 1, t0 = 0, g1(t) ≡ τ1 = 1,

C1(t, s) = t – s, f1(t, x) = x, ψ1(t, x, y) =
x

1 + t2 ,

F(t, x) =
2 + t
1 + t

x.

It is easy to check that

F(t, 0) = 0, xF(t, x) =
2 + t
1 + t

x2, b(t) =
2 + t
1 + t

,

ψ1(t, 0, 0) = 0,
∣
∣ψ1(t, x, y)

∣
∣ ≤ |x|

1 + t2 , A1(t) =
1

1 + t2 , B1(t) ≡ 0,

f1(t, 0) = 0,
∣
∣f1(t, x)

∣
∣ = |x|, �1(t) = 1.
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Therefore, (C1)–(C3) are satisfied. Moreover, we have (recall that B1(t) ≡ 0)

A1(t) +
∫ t

t–g1(t)

∣
∣C1(t, s)

∣
∣�1(s) ds =

1
1 + t2 +

∫ t

t–1
|t – s|ds

=
1

1 + t2 +
1
2

<
2 + t
1 + t

= b(t),

so that (4.4) is fulfilled. According to Corollary 4.4, the zero solution is stable.

Example 5.4 Let α ∈ (0, 1) and let ρ ∈ (0.3420471, 1). Consider (5.3) with the generalized
Caputo proportional fractional derivative instead of the Caputo fractional derivative, i.e.,
consider

(C
0D

α,ρx
)
(t) = –

2 + t
1 + t

x(t) +
x(t)

1 + t2 +
∫ t

t–1
(t – s)x(s) ds, t > 0,

x(θ ) = φ(θ ), θ ∈ [–1, 0].
(5.4)

As in Example 5.3, (C1)–(C3) are satisfied. Let us define

κ :=
1
ρ

– 1 ≤ 1.9235739, g(t) :=
1

1 + t2 –
2 + t
1 + t

,

μ := max
t>0

g(t) = –1 – 2
(

1
2

+
√

5
2

–

√
1 +

√
5

2

)2

.

We have for t > 0 (recall that B1(t) ≡ 0)

A1(t) +
∫ t

t–g1(t)

1 + e
1–ρ
ρ (t–s)

2
∣∣C1(t, s)

∣∣�1(s) ds

=
1

1 + t2 +
∫ t

t–1

1 + eκ(t–s)

2
(t – s) ds

=
1

1 + t2 +
1
2

∫ 1

0

(
v + veκv)dv

=
1

1 + t2 +
1
2

{
1
2

+
(κ – 1)eκ + 1

κ2

}

= g(t) + b(t) +
1
2

{
1
2

+
(κ – 1)eκ + 1

κ2

}

≤ μ +
1
2

{
1
2

+
(κ – 1)eκ + 1

κ2

}
+ b(t)

< b(t),

and the last inequality is due to the fact that the function f defined by f (x) =
((x – 1)ex + 1)/x2 for x > 0 is strictly increasing. Thus, the condition (C4) is fulfilled. Ac-
cording to Corollary 4.5, the zero solution of (5.4) is exponentially stable.
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Example 5.5 Consider

(C
0D

0.3,0.8x
)
(t) = –

2 + t
1 + t

x(t) + 0.03x(t – 1) cos2 t

+
x(t – 1 – sin t)

10 + t2

+
∫ t

t–1
(t – s)x(s) ds, t > 0,

x(θ ) = φ(θ ), θ ∈ [–2, 0].

(5.5)

Problem (5.5) is a special case of (2.1) with

n = 2, ρ = 0.8, α = 0.3, t0 = 0,

g1(t) ≡ 1, g2(t) = 1 + sin t, τ1 = 1, τ2 = 2, τ = 2,

C1(t, s) = t – s, C2(t, s) ≡ 0, f1(t, x) = f2(t, x) = x,

ψ1(t, x, y) = 0.03y cos2 t, ψ2(t, x, y) =
y

10 + t2 , F(t, x) =
2 + t
1 + t

x.

If we put

b(t) =
2 + t
1 + t

, �1(t) = �2(t) ≡ 1,

A1(t) = A2(t) ≡ 0, B1(t) = 0.03, B2(t) = 0.1,

then (C1)–(C3) are satisfied. We put κ := (1 – ρ)/ρ = 0.25 and estimate for t > 0 (recall that
A1(t) = A2(t) = C2(t) ≡ 0)

1 + eκg1(t)

2
B1(t) +

1 + eκg2(t)

2
B2(t) +

∫ t

t–g1(t)

1 + eκ(t–s)

2
∣
∣C1(t, s)

∣
∣�1(s) ds

=
1 + eκ

2
0.03 +

1 + eκ(1+sin t)

2
0.1 +

∫ t

t–1

1 + eκ(t–s)

2
(t – s) ds

≤ 1 + eκ

2
0.03 +

1 + e2κ

2
0.1 +

1
2

∫ 1

0

(
v + veκv)dv

=
1 + eκ

2
0.03 +

1 + e2κ

2
0.1 +

1
2

{
1
2

+
(κ – 1)eκ + 1

κ2

}

< 0.712544 < 1 < 1 +
1

1 + t
= b(t),

and thus (C4) is fulfilled. From Corollary 4.5, follows the exponential stability and therefore
the asymptotic stability of the zero solution of (5.5), and according to (4.5), any solution
of (5.5) satisfies

∣∣x(s)
∣∣ ≤

√
max

θ∈[–2,0]
φ2(θ )e–0.125s for all s ≥ 0.
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6 Conclusions
A scalar nonlinear fractional integro-differential equation with time-variable bounded de-
lays and the generalized Caputo proportional fractional derivative is studied. Some qual-
itative properties such as stability, exponential stability, asymptotic stability, and bound-
edness are investigated. The main apparatus is the application of Lyapunov functions and
a Razumikhin method, modified for our special situation. Five examples are provided to
illustrate the usefulness of the obtained sufficient conditions for generalized Caputo pro-
portional fractional delay integro-differential equations, as well as for classical Caputo
fractional delay integro-differential equations. Also, the main lemma about the inequal-
ity for quadratic functions offers a tool for successful study of stability of various types
of models described by generalized Caputo proportional fractional differential equations
with and without delays.

Acknowledgements
The authors would like to thank the two anonymous referees and the handling editor for many useful comments and
suggestions, leading to a substantial improvement of the presentation of this article.

Funding
S.H. is partially supported by the Bulgarian National Science Fund under Project KP-06-N32/7.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and
approved the final manuscript.

Author details
1Missouri S&T, Rolla, MO 65409, USA. 2Faculty of Mathematics and Informatics, University of Plovdiv “Paisii Hilendarski”,
Plovdiv, Bulgaria.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 December 2021 Accepted: 2 March 2022

References
1. Abbas, M.I.: Investigation of Langevin equation in terms of generalized proportional fractional derivatives with

respect to another function. Filomat 35(12), 4073–4085 (2021)
2. Abbas, M.I., Hristova, S.: Existence results of nonlinear generalized proportional fractional differential inclusions via the

diagonalization technique. AIMS Math. 6(11), 12832–12844 (2021)
3. Abbas, M.I., Ragusa, M.A.: On the hybrid fractional differential equations with fractional proportional derivatives of a

function with respect to a certain function. Symmetry 13(2), Article ID 264, 16 (2021)
4. Agarwal, R., Hristova, S., O’Regan, D.: Lyapunov functions and stability of Caputo fractional differential equations with

delays. Differ. Equ. Dyn. Syst. (2018). https://doi.org/10.1007/s12591-018-0434-6
5. Aljaaidi, T.A., Pachpatte, D.B., Shatanawi, W., Abdo, M.S., Abodayeh, K.: Generalized proportional fractional integral

functional bounds in Minkowski’s inequalities. Adv. Differ. Equ. 2021, Article ID 419 (2021)
6. Baleanu, D., Ranjbar, A., Sadati, S.J., Delavari, H., Abdeljawad, T., Gejji, V.: Lyapunov–Krasovskii stability theorem for

fractional systems with delay. Rom. J. Phys. 56(5–6), 636–643 (2011)
7. Baleanu, D., Sadati, S.J., Ghaderi, R., Ranjbar, A., Abdeljawad, T., Jarad, F.: Razumikhin stability theorem for fractional

systems with delay. Abstr. Appl. Anal. 2010, Article ID 124812 (2010)
8. Bohner, M., Tunç, O., Tunç, C.: Qualitative analysis of Caputo fractional integro-differential equations with constant

delays. Comput. Appl. Math. 40(6), Paper No. 214, 17 (2021)
9. Chen, B., Chen, J.: Razumikhin-type stability theorems for functional fractional-order differential systems and

applications. Appl. Math. Comput. 254, 63–69 (2015)
10. Das, A., Suwan, I., Deuri, B.C., Abdeljawad, T.: On solution of generalized proportional fractional integral via a new

fixed point theorem. Adv. Differ. Equ. 2021, Article ID 427 (2021)

https://doi.org/10.1007/s12591-018-0434-6


Bohner and Hristova Boundary Value Problems         (2022) 2022:14 Page 15 of 15

11. Fahd, J., Abdeljawad, T., Alzabut, J.: Generalized fractional derivatives generated by a class of local proportional
derivatives. Eur. Phys. J. Spec. Top. 226(16–18), 3457–3471 (2017)

12. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional-Differential Equations. Applied Mathematical Sciences,
vol. 99. Springer, New York (1993)

13. Hristova, S., Tunç, C.: Stability of nonlinear Volterra integro-differential equations with Caputo fractional derivative
and bounded delays. Electron. J. Differ. Equ. 2019, Paper No. 30 (2019)

14. Hu, J.-B., Lu, G.-P., Zhang, S.-B., Zhao, L.-D.: Lyapunov stability theorem about fractional system without and with delay.
Commun. Nonlinear Sci. Numer. Simul. 20(3), 905–913 (2015)

15. Jarad, F., Abdeljawad, T., Rashid, S., Hammouch, Z.: More properties of the proportional fractional integrals and
derivatives of a function with respect to another function. Adv. Differ. Equ. 2020, Article ID 303 (2020)

16. Khaminsou, B., Thaiprayoon, C., Alzabut, J., Sudsutad, W.: Nonlocal boundary value problems for integro-differential
Langevin equation via the generalized Caputo proportional fractional derivative. Bound. Value Probl. 2020, Article ID
176 (2020)

17. Khaminsou, B., Thaiprayoon, C., Sudsutad, W., Jose, S.A.: Qualitative analysis of a proportional Caputo fractional
pantograph differential equation with mixed nonlocal conditions. Nonlinear Funct. Anal. Appl. 26(1), 197–223 (2021)

18. Pleumpreedaporn, S., Sudsutad, W., Thaiprayoon, C., Jose, S.A.: Qualitative analysis of generalized proportional
fractional functional integro-differential Langevin equation with variable coefficient and nonlocal integral conditions.
Mem. Differ. Equ. Math. Phys. 83, 99–120 (2021)

19. Podlubny, I.: Fractional differential equations. In: An Introduction to Fractional Derivatives, Fractional Differential
Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering,
vol. 198. Academic Press, San Diego (1999)

20. Sadati, S.J., Baleanu, D., Ranjbar, A., Ghaderi, R., Abdeljawad, T.: Mittag-Leffler stability theorem for fractional nonlinear
systems with delay. Abstr. Appl. Anal. 2010, Article ID 108651 (2010)

21. Zhao, H.Y.: Pseudo almost periodic solutions for a class of differential equation with delays depending on state. Adv.
Nonlinear Anal. 9(1), 1251–1258 (2020)


	Stability for generalized Caputo proportional fractional delay integro-differential equations
	Abstract
	MSC
	Keywords

	Introduction
	Problem statement
	Auxiliary results
	Stability and boundedness properties
	Examples
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


