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Abstract
The numerical analysis of the temporal distributed and spatial Riesz fractional
problem (TDSRFP) is presented in this work. To address the two independent
variables, the suggested technique employs a completely spectral Legendre
collocation approach. For the current model, our technique is proven to be more
accurate, efficient, and practical. The results confirmed that the spectral scheme is
exponentially convergent.

Keywords: Spectral collocation method; Distributed fractional; Riesz fractional

1 Introduction
As it is more appropriate for modeling many real-world situations than the classical
derivative [1–3], the notion of fractional derivatives [4–9] has become one of the most
important topics in applied mathematics. The major reason is that it is widely utilized
in fields like chemistry [10], biology [11], physics [12], engineering, and finance. In the
mathematical literature, fractional derivatives are defined in a variety of ways, including
the Riemann–Liouville and Caputo fractional senses.

The anomalous diffusion [13, 14] and relaxation processes have been thoroughly de-
scribed using distributed fractional problems, which are an extension of single-term and
multi-term problems. Chechkin et al. [15] were the first to list them, and they were there-
after widely used to characterize the phenomena of diffraction and relaxation, i.e., the
heating and cooling of objects in a thermal or magnetic field. Mashayekhi and Razzaghi
[16] solved temporal distributed fractional differential equations using the Riesz fractional
derivative, which is one of the key definitions of the spatial fractional derivative in quan-
tum mechanics [17]. To solve quantum mechanical problems, block-pulse functions and
Bernoulli polynomials, as well as Fourier transformations, have been employed. Chen et al.
[18] solved the one-dimensional temporal distributed fractional reaction-diffusion equa-
tion with unbounded domain, while the replicating kernel technique [19] was used to solve
the temporal distributed fractional diffusion equation with variable coefficients. To solve
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one- and multi-dimensional distributed-order diffusion equations, spectral Galerkin [20]
and collocation [21–25] have been used. Liu et al. [26] used a finite volume technique, Fan
and Liu [27] used a finite element method, and Jia and Wang [28] utilized a fast finite differ-
ence method for distributed fractional differential problems in space variables. Another
case is the use of anomalous diffusion, the issue in which the Riesz derivative indicates
nonlocality and is used to represent the dependency of diffusion concentration on route.
Fractional differential equations with the Riesz derivative are required to describe this type
of phenomena. Riesz derivatives are two-sided fractional operators that have both left and
right derivatives. This capability is especially useful for fractional modeling on finite do-
mains. There is limited literature on fractional differential equations with the Riesz deriva-
tive. Chen et al. [29] investigated the existence of Riesz-fractional differential equations in
the Caputo sense. In [30], the time-space Riesz fractional advection-diffusion equations
were solved using the finite difference method. Riesz–Caputo variational optimal prob-
lems have been discussed by Agrawal [31]. Noether’s theorem for Riesz–Caputo fractional
variational problems has been established by Frederico and Torres [32]. Almeida [33] in-
vestigated optimality criteria for Riesz–Caputo variational problems. Various numerical
techniques [34–38] have been developed to handle Riesz Riemann–Liouville derivative
fractional issues. Wang et al. [39] also used a second-order finite difference approach to
solve the linear Riesz-distributed advection-dispersion issue. Fan et al. [27] mentioned
the finite element technique for two-dimension linear Riesz-distributed diffusion prob-
lem on an irregular convex domain. To solve Riesz-distributed problems, finite volume
techniques were utilized in [26, 40].

Spectral techniques [41–44] are effective tools for solving many sorts of differential
[45, 46] and integral equations encountered in science and engineering [47–50]. Because
explicit analytical solutions to space and/or time-fractional differential equations are in
most circumstances impossible to acquire, creating efficient numerical methods is a high
priority. There has been significant growth in fractional differential and integral equations
due to their high-order accuracy. Compared to the effort put into analyzing finite differ-
ence schemes in the literature for solving the fractional-order differential equations, only
a little work has been put into developing and analyzing global spectral schemes [51–53].
The primary goal of this work is to develop the Gauss–Lobatto Legendre collection tech-
nique (GLLCT) and the Gauss–Radu shifted Legendre collection technique (GRSLCT)
for handling spatial and temporal variables.

The following is a description of the paper’s structure. The numerical approach for
solving the TDSRFP is presented in Sect. 2. Section 3 solves and analyzes three cases to
demonstrate the method’s efficiency and correctness. The major conclusions are outlined
in Sect. 4.

2 Spectral collocation treatment
2.1 Distributed and Riesz fractional convection–diffusion equation
To tackle the TDSRFP of the form, GLLCT and GRLCT are suggested.

∫ 1

0
κ(μ)c

0D
μ
t U (x, t) dμ + ε(–�)

δ
2 U (x, t) = �

(
x, t,U (x, t)

)
, (x, t) ∈ �• × ��, (2.1)
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where �• ≡ [–1, 1] and �� ≡ [0, tend]. Related to

U (x, 0) = �1(x), x ∈ �•,

U (0, t) = �2(t), U (xend, t) = �3(t), t ∈ ��.
(2.2)

To convert the TDSRFP into a nonlinear algebraic system, the GLLCT and GRSLCT are
used. The truncated solution is written as

UN ,M(x, t) =
∑

r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (x)Gtend
r2 (t), (2.3)

where Gr1 (x) and Gtend
r2 (t) are the Legendre and shifted Legendre polynomials, see [54, 55]

for more details. (–�) δ
2 U (x, t) is calculated as follows:

(–�)
δ
2 U (x, t) = –

1
2 cos( πδ

2 )
(c

–1Dδ
xU (x, t) + c

xDδ
1U (x, t)

)

= –
1

2 cos( πδ
2 )

( ∑
r1=0,...,N
r2=0,...,M

ςr1,r2

(c
–1Dδ

xGr1 (x) + c
xDδ

1Gr1 (x)
)
Gtend

r2 (t)
)

=
∑

r1=0,...,N
r2=0,...,M

ςr1,r2G�
r1 (x)Gtend

r2 (t),

(2.4)

where G�
r1 (x) = – 1

2 cos( πδ
2 )

(c
–1Dδ

xGr1 (x)+ c
xDδ

1Gr1 (x)), see [56, 57] for Riesz fractional derivative
definition.

The Caputo fractional derivative c
0D

μ
t U (x, t) is computed as

c
0D

μ
t U (x, t) =

∑
r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (x)Gtend
r2,μ(t), (2.5)

where Gtend
r2,μ(t) =c

0 Dμ
t G

tend
r2 (t), see [58]. The integrated operator’s treatment provides us

with

∫ 1

0
κ(μ)c

0D
μ
t U (x, t) dμ =

∫ 1

0

(
κ(μ)

∑
r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (x)Gtend
r2,μ(t)

)
dμ

=
∑

r1=0,...,N
r2=0,...,M

ςr1,r2

∫ 1

0
κ(μ)Gr1 (x)Gtend

r2,μ(t) dμ

=
∑

r1=0,...,N
r2=0,...,M
r3=0,...,Q

ςr1,r2Gr1 (x)F tend
r2,r3 (t),

(2.6)

where F tend
r2,r3 (t) = 
Q,r3κ(μQ,r3 )Gtend

r2,μQ,r3
and μQ,r3 , r3 = 0, 1, . . . ,Q are the shifted Legendre

Gauss–Lobatto collocation points in the interval [0, 1], see [54, 59, 60].
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At selected nodes, the preceding derivatives are calculated as follows:

(
(–�)

δ
2 U (x, t)

)x=xN ,n ,

t=t
tend
M,m

=
∑

r1=0,...,N
r2=0,...,M

ςr1,r2G�
r1 (xN ,n)Gtend

r2

(
ttend
M,m

)
, (2.7)

(∫ 1

0
κ(μ)c

0D
μ
t U (x, t) dμ

)x=xN ,n ,

t=t
tend
M,m

=
∑

r1=0,...,N
r2=0,...,M
r3=0,...,Q

ςr1,r2Gr1 (xN ,n)F tend
r2,r3

(
t = ttend

M,m
)
, (2.8)

where n = 0, 1, . . . ,N , m = 0, 1, . . . ,M and xN ,n, ttend
M,m are Gauss–Lobatto Legendre collo-

cation and Gauss–Radau shifted Legendre collocation nodes, respectively.
Equation (2.1) is coerced to zero at the (N – 1) × (M) nodes in the approach.

�
(
xN ,n, ttend

M,m
)

= �

(
xN ,n, ttend

M,m,
∑

r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (xN ,n)Gtend
r2

(
ttend
M,m

))
, (2.9)

where

�
(
xN ,n, ttend

M,m
)

=
∑

r1=0,...,N
r2=0,...,M

ςr1,r2G�
r1 (xN ,n)Gtend

r2

(
ttend
M,m

)

+ ε
∑

r1=0,...,N
r2=0,...,M
r3=0,...,Q

ςr1,r2Gr1 (xN ,n)F tend
r2,r3

(
ttend
M,m

)
.

Otherwise, initial-boundary can be obtained by

∑
l,r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (x)Gtend
r2 (0) = �1(x),

∑
l,r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (–1)Gtend
r2

(
ttend
M,m

)
= �2

(
ttend
M,m

)
,

∑
l,r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (1)Gtend
r2

(
ttend
M,m

)
= �3(t).

(2.10)

Therefore, adapting (2.1)–(2.10), we get

�
(
xN ,n, ttend

M,m
)

= �

(
xN ,n, ttend

M,m,
∑

r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (xN ,n)Gtend
r2

(
ttend
M,m

))
, (2.11)
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with n = 1, . . . ,N – 1, m = 1, . . . ,M, additionally

∑
l,r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (xN ,n)Gtend
r2 (0) = �1(xN ,n), k = 1, . . . ,N – 1,

∑
l,r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (–1)Gtend
r2

(
ttend
M,m

)
= �2

(
ttend
M,m

)
, l = 0, . . . ,M,

∑
l,r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (1)Gtend
r2

(
ttend
M,m

)
= �3

(
ttend
M,m

)
, l = 0, . . . ,M.

(2.12)

An algebraic equations system is produced by combining Eqs. (2.11) and (2.12), and it is
easy to solve.

2.2 Distributed and Riesz fractional Schrödinger equation
To address the TDSRFSP, GLLCT and GRLCT are developed

i
∫ 1

0
κ(μ)c

0D
μ
t ψ(x, t) dμ + ε(–�)

δ
2 ψ(x, t) +

∣∣ψ(x, t)
∣∣2

ψ(x, t)

= �(x, t), (x, t) ∈ �• × ��,
(2.13)

where �• ≡ [–1, 1] and �� ≡ [0, tend]. Related to

ψ(x, 0) = �1(x), x ∈ �•,

ψ(0, t) = �2(t), ψ(xend, t) = �3(t), t ∈ ��.
(2.14)

Firstly, we split ψ(x, t) into its real and imaginary functions U (x, t) and V(x, t) as ψ(x, t) =
U (x, t) + iU (x, t). Based on this transformation, we get

∫ 1

0
κ(μ)c

0D
μ
t U (x, t) dμ + ε(–�)

δ
2 V(x, t) +

(
U2(x, t) + V2(x, t)

)
V(x, t)

= �2(x, t), (x, t) ∈ �• × ��,

–
∫ 1

0
κ(μ)c

0D
μ
t V(x, t) dμ + ε(–�)

δ
2 U (x, t) +

(
U2(x, t) + V2(x, t)

)
U (x, t)

= �1(x, t), (x, t) ∈ �• × ��,

(2.15)

where �(x, t) = �2(x, t) + i�2(x, t), �• ≡ [–1, 1], and �� ≡ [0, tend]. Related to

U (x, 0) = θ1(x), U (0, t) = θ2(t), U (xend, t) = θ3(t), x ∈ �•, t ∈ ��,

U (x, 0) = ϑ1(x), U (0, t) = ϑ2(t), U (xend, t) = ϑ3(t), x ∈ �•, t ∈ ��,
(2.16)

where � ≡ θ + iϑ .
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To convert the TDSRFP into a nonlinear algebraic system, the GLLCT and GRSLCT are
used. The truncated solution is written as follows:

UN ,M(x, t) =
∑

r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (x)Gtend
r2 (t),

VN ,M(x, t) =
∑

r1=0,...,N
r2=0,...,M

σr1,r2Gr1 (x)Gtend
r2 (t).

(2.17)

Therefore, according to the previous analysis, we get

ϒ1
(
xN ,n, ttend

M,m
)

= �2
(
xN ,n, ttend

M,m
)
, n = 1, . . . ,N – 1, m = 1, . . . ,M,

ϒ2
(
xN ,n, ttend

M,m
)

= �1
(
xN ,n, ttend

M,m
)
, n = 1, . . . ,N – 1, m = 1, . . . ,M,

(2.18)

where

ϒ1(x, t) =
∑

r1=0,...,N
r2=0,...,M
r3=0,...,Q

ςr1,r2Gr1 (x)F tend
r2,r3 (t) + ε(–�)

δ
2

∑
r1=0,...,N
r2=0,...,M

σr1,r2Gr1 (x)Gtend
r2 (t)

+
( ∑

r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (x)Gtend
r2 (t)

)2( ∑
r1=0,...,N
r2=0,...,M

σr1,r2Gr1 (x)Gtend
r2 (t)

)

+
( ∑

r1=0,...,N
r2=0,...,M

σr1,r2Gr1 (x)Gtend
r2 (t)

)2( ∑
r1=0,...,N
r2=0,...,M

σr1,r2Gr1 (x)Gtend
r2 (t)

)
,

ϒ2(x, t) = –
∑

r1=0,...,N
r2=0,...,M
r3=0,...,Q

σr1,r2Gr1 (x)F tend
r2,r3 (t) + ε(–�)

δ
2

∑
r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (x)Gtend
r2 (t)

+
( ∑

r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (x)Gtend
r2 (t)

)2( ∑
r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (x)Gtend
r2 (t)

)

+
( ∑

r1=0,...,N
r2=0,...,M

σr1,r2Gr1 (x)Gtend
r2 (t)

)2( ∑
r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (x)Gtend
r2 (t)

)
.

In addition to

∑
l,r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (xN ,n)Gtend
r2 (0) = θ1(xN ,n), k = 1, . . . ,N – 1,

∑
l,r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (–1)Gtend
r2

(
ttend
M,m

)
= θ2

(
ttend
M,m

)
, l = 0, . . . ,M,

∑
l,r1=0,...,N
r2=0,...,M

ςr1,r2Gr1 (1)Gtend
r2

(
ttend
M,m

)
= θ3

(
ttend
M,m

)
, l = 0, . . . ,M, (2.19)
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∑
l,r1=0,...,N
r2=0,...,M

σr1,r2Gr1 (xN ,n)Gtend
r2 (0) = ϑ1(xN ,n), k = 1, . . . ,N – 1,

∑
l,r1=0,...,N
r2=0,...,M

σr1,r2Gr1 (–1)Gtend
r2

(
ttend
M,m

)
= ϑ2

(
ttend
M,m

)
, l = 0, . . . ,M,

∑
l,r1=0,...,N
r2=0,...,M

σr1,r2Gr1 (1)Gtend
r2

(
ttend
M,m

)
= ϑ3

(
ttend
M,m

)
, l = 0, . . . ,M,

when Eqs. (2.18) and (2.19) are combined, we have a linear system of algebraic equations
that is simple to solve.

3 Numerical results
We demonstrate the spectral collocation scheme’s resilience and accuracy by applying the
technique to three test problems.

Example 1 The convection–diffusion equation [57] is first presented

∫ 1

0
�(3 – μ)c

0D
μ
t U (x, t) dμ +

�(8 – δ)
�(8)

(–�)
δ
2 U (x, t)

= �(x, t), (x, t) ∈ [–1, 1] × [0, 0.5],
(3.1)

the conditions and �(x, t) are given where U (x, t) = t2(x2 – 1)4.

Table 1 compares our results to those in [57] for various parameter values based on L2-
errors. Based on these findings, the recommended technique delivers superior numerical
results than those reported in [57]. It is also worth mentioning that excellent predictions
are made. The numerical solution and absolute errors of problem (1) are shown in Figs. 1
and 2, respectively. We showed the x-direction curves of numerical and precise solutions
in Fig. 3, where δ = 1.8, N = 8, and M = 2. Figures 4 and 5 depict the x- and t-graphs
associated with absolute errors, respectively.

Table 1 L2-comparison for problem (1)

Our spectral results atM = 2 and different values ofN
δ 4 6 8

1.2 3.38359× 10–3 7.23926× 10–4 1.7081× 10–12

1.4 3.78916× 10–3 9.39218× 10–4 5.07319× 10–13

1.8 4.77345× 10–3 1.74284× 10–3 1.17669× 10–12

Local discontinuous Galerkin method [57]

K 5 10 15 20

N = 1 1.2 5.97× e–02 8.6× e–03 3.4× e–03 1.8× e–03

1.4 2.84× e–02 5.8× e–03 2.5× e–03 1.3× e–03

1.8 1.91× e–02 4.5× e–03 1.9× e–03 9.9× e–04

N = 2 1.2 3.52× e–02 4.3× e–03 1.2× e–03 4.8× e–04

1.4 1.57× e–02 2.1× e–03 5.9× e–04 2.6× e–04

1.8 1.45× e–02 1.8× e–03 5.5× e–04 2.2× e–04
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Figure 1 UN ,M of Eq. (1) with δ = 1.8,N = 8,M = 2

Figure 2 E(x, t) of Eq. (1) with δ = 1.8,N = 8,M = 2

Figure 3 x-direction curves of U and UN ,M of problem (1) with δ = 1.8,N = 8,M = 2
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Figure 4 E(0, t) of problem (1) with δ = 1.8,N = 8,M = 2

Figure 5 E(x, 0) of problem (1) with δ = 1.8,N = 8,M = 2

Example 2 We introduce the temporal distributed and spatial Riesz Burgers’ equation [57]

∫ 1

0
�(3 – μ)c

0D
μ
t U (x, t) dμ +

�(8 – δ)
�(8)

(–�)
δ
2 U (x, t) +

∂

∂x

(
(U (x, t))2

2

)

= �(x, t), (x, t) ∈ [–1, 1] × [0, 0.5],
(3.2)

�(x, t) and conditions are provided, U (x, t) = t2(x2 – 1)4.

Table 2 shows a comparison of our results with those in [57] at different parameter values
based on L2-errors. The suggested approach produces superior numerical results to those
published in [57] based on these findings. It is also worth noting that great estimates are
made.



Abdelkawy et al. Boundary Value Problems         (2022) 2022:13 Page 10 of 15

Table 2 L2-comparison for problem (2)

Our spectral results atM = 2 and different values ofN
δ 4 6 8

1.2 3.70018× 10–3 1.01319× 10–3 1.69633× 10–12

1.4 4.09205× 10–3 1.19241× 10–3 5.02948× 10–13

1.8 5.05627× 10–3 1.9247× 10–3 1.15406× 10–12

Local discontinuous Galerkin method [57]

K 5 10 15 20

N = 1 1.2 7.8× e–3 1.9× e–3 2.048.5× e–4 4.6× e–4

1.4 4.9× e–3 1.1× e–3 4.6× e–4 2.152.5× e–4

1.8 1.9× e–3 5.1× e–4 2.2× e–4 1.2× e–4

N = 2 1.2 3.4× e–3 4.2× e–4 1.3× e–4 5.2× e–5

1.4 1.3× e–3 1.8× e–4 5.6× e–5 2.5× e–5

1.8 8.2× e–4 1.1× e–4 3.1× e–5 1.3× e–8

Table 3 L2-comparison for problem (3)

Our spectral results atM = 2 and different values ofN
δ 4 6 8 10

1.2 3.37831× 10–3 1.01074× 10–3 1.22583× 10–4 3.61583× 10–12

1.4 3.50039× 10–3 1.12899× 10–3 1.42245× 10–4 3.35625× 10–12

1.8 3.70169× 10–3 1.39914× 10–3 1.88913× 10–4 1.76056× 10–12

Local discontinuous Galerkin method [57]

K 5 10 15 20

N = 1 1.2 1.23e–02 4.61e–03 1.97e–03 1.1e–03

1.4 1.01e–02 2.51e–03 1.11e–03 6.31e–04

1.8 7.31e–03 1.91e–03 8.35e–04 4.71e–04

N = 2 1.2 8.35e–03 1.21e–03 3.55e–04 1.41e–04

1.4 6.24e–03 9.23e–04 2.79e–04 1.13e–04

1.8 2.62e–03 3.54e–04 1.13e–04 4.66e–05

Example 3 We introduce the temporal distributed and spatial Riesz convection–diffusion
and Schrödinger-type equation [57]

∫ 1

0
�(3 – μ)c

0D
μ
t ψ(x, t) dμ –

�(10 – δ)
�(10)

(–�)
δ
2 ψ(x, t) +

∣∣ψ(x, t)
∣∣2

ψ(x, t)

= �(x, t), (x, t) ∈ [–1, 1] × [0, 0.5],
(3.3)

�(x, t) and conditions are provided ψ(x, t) = t2(1 + i)(x2 – 1)5.

Table 3 shows a comparison of our results with those in [57] at different parameter values
based on L2-errors. The suggested approach produces superior numerical results to those
published in [57] based on these findings. It is also worth noting that great estimates are
made.

We see in Figs. 6 and 7 the absolute errors of problem (3) for both real and imaginary
parts, respectively. In Figs. 8 and 9, we plotted the x-direction curves of numerical and
exact solutions for both real and imaginary parts, respectively, where δ = 1.8, N = 10,
M = 2; while the x-graphs related to the absolute errors are sketched in Figs. 10 and 11
for both real and imaginary parts, respectively.
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Figure 6 EU of problem (3), with δ = 1.8,N = 10,M = 2

Figure 7 EV (x, t) of problem (3) with δ = 1.8,N = 10,M = 2

Figure 8 x-direction curves of U and UN ,M of problem (3), where δ = 1.8,N = 10,M = 2
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Figure 9 x-direction curves of V and VN ,M of problem (3), where δ = 1.8,N = 10,M = 2

Figure 10 EU (x, 0) of problem of problem (3), where δ = 1.8,N = 10,M = 2

Figure 11 EV (x, 0) of problem (3), where δ = 1.8,N = 10,M = 2
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4 Conclusion
We present an extraordinarily accurate collocation approach for convection–diffusion and
Schrodinger-type equations for mixed Riesz and distributed fractional order. A compre-
hensive theoretical description as well as a series of numerical tests to demonstrate the
technique’s execution and eligibility are provided. We can see that our approach is highly
accurate and reliable based on the findings. More fractional order issues can be included
in the current theoretical debate. The current figures are completely consistent with the
predicted outcomes of the spectral collocation technique, and there is clear evidence of ex-
ponential convergence. In this study, the GLLCT and GRSLCT approaches are employed
to solve the given models. The shifted Legendre nodes are used as interpolation points
for the independent variables, and the solution is represented as a series of shifted Leg-
endre polynomials. After that, the residuals at the shifted Legendre quadrature points are
estimated. As a consequence, we have an algebraic system that can be solved using a suit-
able method. A variety of numerical problems are used to illustrate the precision of the
proposed technique. Due to their adaptability to both linear and nonlinear equations, the
spectral collocation approach has become widely used to estimate many types of differen-
tial and integral equations. Since their global character fits well with the nonlocal notion
of fractional operators, spectral techniques are excellent candidates for solving fractional
differential equations. Spectral techniques provide a high degree of precision and expo-
nential convergence rates. In the tables above, the cheap costs and excellent accuracy are
readily visible. The suggested approach is efficient and accurate according to simulation
results.
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