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Abstract
The object of this paper is to develop an accurate combined spectral collocation
approach to numerically solve the generalized nonlinear
Benjamin–Bona–Mahony–Burgers equation. The first stage is devoted to
discretization in time, which is carried out with the aid of the well-known Taylor series
expansions. Then the spectral collocation procedure based on the Boubaker
polynomials is applied for the resulting discretized spatial operator in each time step.
A detailed error analysis of the presented technique is carried out with regard to the
space variable. The advantages of the hybrid technique are shown via performing
several simulations through four test examples. Comparisons between our numerical
results and the outcomes of some existing schemes indicate that the proposed
technique is not only simple and easy-to-implement, but also sufficiently accurate
using a moderate number of bases and a large time step.
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1 Introduction
Diverse important physical phenomena in nature are mathematically described by means
of (nonlinear) partial differential equations (PDEs) with appropriate initial and boundary
conditions. Except for some particular cases, the closed-form solutions to the most PDEs
either do not exist or are not intractable in practice. Thus developing an accurate approxi-
mate or numerical solution for nonlinear PDEs becomes practically important in the filed.
In the past decades the subject has attracted many authors, and difference equations have
been appeared as a promising research field on both applied and theoretical levels (see
[1–17]).

The generalized Benjamin–Bona–Mahony–Burgers (BBMB) model (1) was first con-
sidered in [1]. Due to the importance and vast applications, many researchers have been
considered the BBMB-type equations over the past decades. In this respect, diverse com-
putational and approximation techniques were proposed in the literature. The Galerkin
approach was applied to the Benjamin–Bona–Mahony (BBM) equations in [18–20]. The
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finite difference schemes with different combined methods in space and time are devel-
oped in [6, 7]. The B-spline collocation approaches are studied in [21–23]. The meshless-
based methods were investigated in the previously published papers [24, 25]. The spectral
collocation procedures based upon (orthogonal) basis functions were discussed in [26–
29]. Additionally, a discussion of some other methods for solving PDEs can be found in
[30–41]. In most of the proposed numerical solution algorithms for (13), the implemented
time marching procedure has the first-order accuracy. In addition, to achieve a reasonable
accuracy, the time step cannot be taken rather large. Alternatively, in this research work,
we construct a second-order time advancement technique for the numerical treatment of
the BBMB equation. Our efficient and accurate approach based upon a hybrid of Taylor
method for the time discretization and exponential spectral Boubaker collocation scheme
for the spatial operator. The presented hybrid technique is straightforward in implemen-
tation compared to other existing numerical models; see also [42–44].

Recently, the authors in [45] obtained new exact solitary solutions for a version of (3+1)-
dimensional Wazwaz–Benjamin–Bona–Mahony equation formulated in the sense of con-
formable derivative with the help of two novel techniques: the generalized Kudryashov
method and exp(–φ(ℵ)) method. The general fractional formulation of the Wazwaz–
Benjamin–Bona–Mahony equation can be expressed as follows:

Dζ
t � + Dζ

x � + Dζ
y � – Dζ

xzt� = 0,

where Dζ is the fractional operator of order 0 < ζ ≤ 1, and the function � : [0,∞) →R is
ζ -differentiable at a point t. Matar et al. [46], studied the following fractional differential
equation:

⎧
⎪⎪⎨

⎪⎪⎩

d
dt (ϕp(CDα,ρx(t))) = q(t, x(t), CDγ ,ρx(t)), 0 ≤ t ≤ 1,

x(0) + μx(1) = θ1(x(0), x(1)),

x′(1) = θ2(x(0), x(1)),

where CDα,ρ and CDγ ,ρ are the generalized Caputo fractional derivatives of orders 0 < α <
1 and 0 < γ < 1, respectively, ρ > 1, and s q : [0, 1] × R

2 → R and θi : R2 → R, i = 1, 2,
are given nonlinear continuous functions. They investigated possible solutions to the fol-
lowing fractional boundary value problem for an implicit nonlinear an implicit nonlinear
fractional differential equation:

⎧
⎨

⎩

Dq(t)
0+ x(t) = θ (t, x(t),Dq(t)

0+ x(t)), 0 ≤ t ≤ 
,

x(0) = 0, x(
) = 0,

where 
 > 0, q : [0,
] → (1.2] and θ : [0,
] ×R
2 →R are continuous functions, and Dq(t)

0+

is the Riemann–Liouville fractional derivative in the context of variable order q(t) [47].
Matar et al. [48] consider the FDE

⎧
⎪⎪⎨

⎪⎪⎩

d
dt (ϕp(CDς1,ρ

℘(t))) = w(t,℘(t), CDς2,ρ
℘(t)), t ∈ [0, 1],

℘(0) + μ℘(1) = v1(℘(0),℘(1)), μ �= 1,

℘ ′(1) = v2(℘(0),℘(1)),
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where CDς1,ρ and CDς2,ρ
℘(t) are generalized Caputo fractional derivatives of orders 1 <

σ1 < 2 and 0 < σ2 < 1, respectively, ρ > 1, ϕp(p > 1) is a p-Laplacian operator, and w : [0, 1]×
R

2 → R and v1,v2 : R2 → R are given nonlinear continuous functions. Also, the authors
in [49] found a theoretical method to investigate the existence of solutions for the strongly
singular fractional model of thermostat control given as

⎧
⎪⎪⎨

⎪⎪⎩

CDωx(t) + q(t)θ (x(t)) = 0, ω > 0, w ∈ (n – 1, n],

x(j) = 0, j = 1, 2, . . . , n – 1,

(p(t)x(t))′|t=1 + ax(η) = 0, a > 0, 0 < η < 1,

where (ω–k –1)p(1) > aηk , with j �= k coupled, q : [0, 1] →R is singular or strongly singular
at some points of [0, 1], p : [0, 1] → [0,∞) is differentiable at t = 1, θ ∈ C(R,R), and CDω

is the Caputo derivative of order ω. For more studied related application, see [50, 51].
Rezapour et al. investigated the multisingular integro-differential pointwise equation

⎧
⎪⎪⎨

⎪⎪⎩

Dς
q ℘(t) = w(t,℘(t),℘ ′(t),Dγ1℘(t),Iγ1℘(t)), t ∈ [0, 1],

℘ ′(0) = ℘(a),

℘(1) =
∫ b

0 ℘(ξ ) dξ ,

℘(j)(0) = 0, j = 2, . . . , [σ ] – 1, where ℘ ∈ C1([0, 1]), γ1,γ2 ∈ [2,∞), a, b ∈ (0, 1), Dς is the Ca-
puto fractional q-derivative of order ς , and w : [0, 1] × R

4 → R is a function such that
w(t, ., ., ., .) is singular at some points 0 ≤ t ≤ 1 [52]. In 2021, Izadi [42] presented an effec-
tive approximation algorithm to solve the nonlinear Hunter–Saxton equation

⎧
⎨

⎩

wxt + wwxx + 0.5w2
x = 0,

w|t=0 = w0(x),

subjected to the boundary condition limx→∞ w(x, t) = 0. Abdelwahed and Chorf [53] con-
sider the nonlinear heat equation: Find a solution ϕ of

⎧
⎪⎪⎨

⎪⎪⎩

∂ϕ

∂t – div(λ(ϕ)∇ϕ) = f in 
×]0, T[,

ϕ(x, t) = 0 on ∂
×]0, T[,

ϕ(x, 0) = ϕ0 in ∂
,

where 
 is a bounded simply connected domain of Rd (d = 1, 2, 3), ∂
 is its connected
Lipschitz continuous boundary, and T is a positive constant. They considered families
of large eddy simulation models, which are variants of the classical Smagorinsky model,
and similarly to the model of Cottet, Jiroveanu, and Michaux, proposed a selective model
based on the local behavior of the angle of the vorticity direction [54].

The chief goal of this research paper is developing an effective time-accurate compu-
tational procedure for finding the solutions of a PDE model problem arising in broad
branches of science and engineering. We consider a hybrid approximation technique to
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numerically treat the following BBMB equation:

∂w(x, t)
∂t

– μ
∂3w(x, t)
∂t∂x2 – γ

∂2w(x, t)
∂x2 + σ

∂w(x, t)
∂x

+ ηw(x, t)
∂w(x, t)

∂x
= h(x, t),

(1)

where x ∈ [xL, xR] and t ∈ [0, Tf ]. Also, two coefficient parameters μ,γ ,σ are positive con-
stants, η ∈ R, and h(x, t) is a familiar real-valued function. Along with this equation, an
initial condition is given as

w(x, t = 0) = w0(x), x ∈ [xL, xR]. (2)

Moreover, with the initial-value problem (1)–(2), the following boundary conditions are
supplemented:

⎧
⎨

⎩

w(x = xL, t) = wL(t),

w(x = xR, t) = wR(t),
(3)

for t ∈ [0, Tf ], where wL(t) and wR(t) are two prescribed functions. If γ = 0, then equation
(1) is called the BBM equation, which first studied as a model for the propagation of long
waves in nonlinear dispersive systems [2]. Some facts on physical significance of this model
were given in [3, 5]. For μ = 0 and η = –1, the model (1) reduces to (generalized) Burgers
equation [4].

Our plan in the rest of the paper is as follows. In the next Sect. 2, we illustrate the time
advancement procedure for BBMB equation (1), which is relied on the Taylor series ex-
pansion. Afterward, in Sect. 3, we give an overview of the Boubaker functions together
with some important their properties. In this section, we also discuss the convergence for
this class of polynomials. The hybrid strategy of Taylor and Boubaker functions is illus-
trated in Sect. 4 in detail. The results of numerical simulations presented through tables
and figures are given in Sect. 5. We end the paper with the conclusion Sect. 6.

2 Time-marching procedure
To gain an accurate time solution of the nonlinear BBMB equation (1), we first consider
the Taylor expansion series to discretize it in time. For this purpose, we uniformly partition
the time interval [0, Tf ] into J uniform subdivisions. The corresponding grid points and
time-step �t are given by

t0 = 0 < t1 = �t < · · · < tJ = J�t = Tf ,

where �t = tj – tj–1, and j = 1, 2, . . . , J . In what follows, by wj we denote the approximate
solution at time level tj, that is,

wj(x) ≈ w(x, tj).

We then evaluate the original BBMB equation (1) at time level tj to arrive at

∂

∂t

(

wj – μ
∂2wj

∂x2

)

= γ
∂2wj

∂x2 – σ
∂wj

∂x
– ηwj ∂wj

∂x
+ h(x, tj). (4)



Izadi and Samei Boundary Value Problems         (2022) 2022:17 Page 5 of 29

Let us for convenience define

uj := wj – μ
∂2wj

∂x2 .

Application of the Taylor formula to uj yields

∂uj

∂t
=

uj+1 – uj

�t
–

1
2
�t

∂2uj

∂t2 + O
(
�t2). (5)

Differentiating (4) with regard to t reveals

∂2uj

∂t2 = γ
∂2wj

∂t∂x2 – σ
∂2wj

∂t∂x
– η

∂wj

∂t
∂wj

∂x
– ηwj ∂

2wj

∂t∂x
+

h(x, tj)
∂t

.

Now we replace all first-order derivatives ∂wj

∂t by the forward difference relation

wj+1 – wj

�t
.

After multiplying both sides by �t and some manipulations, the resultant equation be-
comes

�t
∂2uj

∂t2 = γ

(
∂2wj+1

∂x2 –
∂2wj

∂x2

)

–
(
σ + ηwj)

(
∂wj+1

∂x
–

∂wj

∂x

)

– η
∂wj

∂x
(
wj+1 – wj) + hj+1 – hj, (6)

where hj := h(x, tj). Our next task is to place (6) into the right-hand side of (5) followed
by equating to (4). After multiplying by 2�t, we get the time-discretized equation for the
nonlinear model (1) with second-order accuracy in time. Again for simplicity of notations,
we introduce

χj+1(x) := wj+1(x).

Similarly, we define

aj(x) := –(γ�t + 2μ),

bj(x) := �t
(
ηwj(x) + σ

)
,

cj(x) := 2 + �tη
∂wj

∂x
(x),

fj(x) := 2wj(x) – [2μ – �tγ ]
∂2wj

∂x2 – �tσ
∂wj

∂x
+ �t

(
hj+1 + hj).

Therefore the resulting second-order equation with regard to space variable can be written
as

aj(x)χ ′′
j+1(x) + bj(x)χ ′

j+1(x) + cj(x)χj+1(x) = fj(x), x ∈ [xL, xR], (7)
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for j = 0, 1, . . . , J –1. In each time level, we must solve the linear equation (7). So we need the
given initial condition w0 = w0(x) and its first- and second-order derivatives as they appear
in the coefficients of (7). In other words, for j = 0, we have χ0(x) = w0(x) for x ∈ [xL, xR].
At each time level tj+1, we exploit the boundary conditions obtained from (3) at two end-
points x = xL, xR as follows:

⎧
⎨

⎩

χj+1(xL) := χ
j+1
L = wL(tj+1),

χj+1(xR) := χ
j+1
R = wR(tj+1),

(8)

for j = 0, 1, . . . , J – 1.

3 Boubaker functions: an overview
The family of nonorthogonal Boubaker polynomials B�(x) naturally appeared in the study
of heat transfer equation when its solution can be expanded in terms of Bessel functions
of the first kind [55]. These polynomials are very closely related to the Chebyshev polyno-
mials U�(x) of the second kind denoted by the relation

B�(x) = U�

(
x
2

)

+ 3U�–2

(
x
2

)

.

These polynomials are obtained via the following recursive formula:

B�(x) = xB�–1(x) – B�–2(x), � = 3, 4, . . . , (9)

where the first three Boubaker functions are B0(x) = 1, B1(x) = x, and

B2(x) = x2 + 2.

For � > 0, these functions are the unique solutions of the second-order differential equa-
tion

(
x2 – 1

)(
3�x2 + � – 2

)
y′′ + 3x

(
�x2 + 3� – 2

)
y′

– �
(
3�2x2 + �2 – 6� + 8

)
y = 0 (� ∈N), (10)

where y(x) = B�(x). Furthermore, the explicit series solution of Boubaker polynomial B�(x)
of degree � is given by

B�(x) =
� �

2 �
∑

r=0

(–1)r
(

� – r
r

)
� – 4r
� – r

x�–2r (� > 1). (11)

The next theorem establishes the distribution of the zeros of these polynomials on [–2, 2];
see [56, Theorem 2.4].

Theorem 3.1 The function B�(x) of degree � has has � – 2 real zeros and two nonreal,
purely imaginary complex zeros. All zeros of B�(x) are located in [–2, 2], and the two purely
imaginary zeros lie outside the unit circle.
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Remark 3.1 Based on the observation established in Theorem 3.1, the shifted version of
these polynomials were previously considered on an arbitrary domain [xL, xR] in [57]. This
can be accomplished trough the change of variable

η =
4x – 2(xL + xR)

xR – xL
,

where x ∈ [xL, xR] and η ∈ [–2, 2]. Thus we get the shifted version of these polynomial
by using B∗

� (η) = B�(x). In the numerical examples, we may appropriately use the shifted
Boubaker polynomials.

3.1 Convergence results
To proceed, we define 
 = [xL, xR] and the related weighted L2 space as [57]

L2,ω(
) =
{

s : 
 →R|s is measurable, and ‖s‖ω < ∞}
,

where

‖s‖2
ω =

∫ xR

xL

∣
∣s(x)

∣
∣2

ω(x) dx

with ω(x) = 1
xR–xL

denotes the induced norm resulting from the following inner product of
the space L2,ω(
):

〈
s(x), p(x)

〉

ω
=

∫ xR

xL

s(x)p(x)ω(x) dx.

In practice, we consider a finite-dimensional subspace of L2,ω(
) of the form

LM = span
〈
B∗

0(x),B∗
1(x), . . . ,B∗

M(x)
〉
.

Clearly, dim(LM) = M + 1, and LM is a closed and thus complete subspace of L2,ω(
). Thus
any function u ∈ L2,ω(
) has a unique best approximation u∗ ∈ LM in the sense that

∥
∥u(x) – u∗(x)

∥
∥

ω
≤ ∥

∥u(x) – v(x)
∥
∥

ω
∀v ∈ LM. (12)

We further invoke the following result from the approximation theory [58].

Theorem 3.2 Let u be an M times continuously differentiable function on 
. Also, let PM

denote the interpolating function of u at M Chebyshev nodes in the interval 
. Then, for
every x ∈ 
, we have

∣
∣u(x) – PM(x)

∣
∣ ≤ (xR – xL)M‖u‖∞

22M–1M!
,

where ‖u‖∞ := maxx∈
 |u(M)(x)|.
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Now assume that an arbitrary function u ∈ L2,ω(
) can be written in terms of shifted
Boubaker functions as

u(x) =
∞∑

�=0

λ�B∗
� (x).

By restricting our attention to the finite subsets LM of L2,ω(
) we may write a truncated
series for u as

u(x) ≈ uM(x) =
M∑

�=0

λ�B∗
� (x).

The next theorem provides an error bound for EM(x) = u(x) – uM(x).

Theorem 3.3 Let

u ∈ C(M+1)(
) ∩ L2,ω(
).

Let uM be the best approximation to u in the space LM in the sense of (12). Then we have

∥
∥EM(x)

∥
∥

ω
→ 0

as M → ∞.

Proof Since uM is the best approximation belonging to LM , we obtain

∥
∥EM(x)

∥
∥2

ω
=

∥
∥u(x) – uM(x)

∥
∥2

ω
≤ ∥

∥u(x) – v(x)
∥
∥2

ω
∀v ∈ LM.

The foregoing inequality is valid in particular for v = P ∈ LM . We therefore conclude that

∥
∥EM(x)

∥
∥2

ω
≤ ∥

∥u(x) – PM+1(x)
∥
∥2

ω
=

∫




∣
∣u(x) – PM+1(x)

∣
∣2

ω(x) dx.

According to Theorem 3.2 with (M + 1) nodes, we get

∥
∥EM(x)

∥
∥2

ω
≤

∫ xR

xL

∣
∣
∣
∣
‖u‖∞(xR – xL)M+1

(M + 1)!22M+1

∣
∣
∣
∣

2

ω(x) dx

≤
[‖u‖∞(xR – xL)M+1

(M + 1)!22M+1

]2

.

The proof is finished by tending M to infinity. �

4 The hybrid procedure
The discretization of the BBMB equation (1) with regard to time is already carried out
by relation (7). Also, the given boundary conditions (3) are converted to the boundary
conditions (8) for the second-order differential equation (7). So the main objective is to
treat the initial-boundary value problem (7)–(8) numerically with respect to the space
variable x. Suppose that the solutions χj+1(x) of (7) at each time level j can be written as
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combinations of the (shifted) Boubaker functions defined by (11). Let assume that Xj,M(x)
are the computed Boubaker approximations to χj(x) at the time steps tj. To start, we need
χ0(x), which can be derived from the given initial condition w0(x). In the next time step
tj+1, we look for the approximate solution Xj+1,M(x) for j = 0, 1, . . . , J – 1 as follows:

Xj+1,M(x) =
M∑

�=0

λ
j+1
� B�(x), x ∈ 
. (13)

Here our ultimate goal is to find the unknowns λ
j+1
� for � = 0, 1, . . . , M at time level j ≥ 0.

For convenience, we set

OOOM(x) =
[
B0(x) B1(x) . . . BM(x)

]
,

���
j+1
M =

[
λk+1

0 λk+1
1 . . . λk+1

M
]T .

With the aid of these vectors, the (M+1)-term finite expansion series (13) can be expressed
compactly in the matrix form as

Xj+1,M(x) = OOOM(x)���j+1
M . (14)

After defining the vector of monomials

VVV M(x) =
[
1 x x2 . . . xM]

,

we further decompose the vector of Boubaker bases as

OOOM(x) = VVV M(x)NNNM, (15)

where the upper-triangular matrix

NNNM = (ni,j)M
i=j–2� j

2 �,j=2
(i ≤ j)

has the following elements:

nj,i :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(–1)
i–j
2 ( 4j–2i

i+j ) �( i+j
2 +1)

�(j+1)�( i–j
2 +1)

if (i – j) is even,

0 if (i – j) is odd or i > j,

1 if i = j,

where the only nonzero elements on the first and second columns are n0,0, n1,1 = 1. For
example, for M = 6, we get

NNN6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 2 0 –2 0 2
0 1 0 1 0 –3 0
0 0 1 0 0 0 –3
0 0 0 1 0 –1 0
0 0 0 0 1 0 –2
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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We note that determinant of NNNM is equal to unity. Ultimately, we requires a set of col-
location points on [xL, xR] to acquire an approximate solution of the discretized model
problem (7) in the form (9). In this respect, we use the zeros of the shifted Chebyshev
polynomials on [xL, xR] given by

xτ =
xL + xR

2
+

xR – xL

2
sτ , τ = 0, 1, . . . , M, (16)

where sτ are roots of Chebyshev functions of degree (M + 1) on (–1, 1). Further, we com-
bine relationships (14) and (15) to express the approximate solution Xj+1,M(x) in (13) in a
compact form as

Xj+1,M(x) = OOOM(x)���j+1
M = VVV M(x)NNNM���

j+1
M . (17)

Using points of collocation (16) and putting them into (17), we obtain

XXXj+1 = VVVNNNM���
j+1
M , XXXj+1 =

⎛

⎜
⎜
⎜
⎜
⎝

Xj+1,M(x0)
Xj+1,M(x1)

...
Xj+1,M(xM)

⎞

⎟
⎟
⎟
⎟
⎠

, VVV =

⎛

⎜
⎜
⎜
⎜
⎝

VVV M(x0)
VVV M(x1)

...
VVV M(xM)

⎞

⎟
⎟
⎟
⎟
⎠

. (18)

The next objective would be finding a connection between VVV M(x) and its derivatives. We
can show that the derivatives of VVV M(x) can be stated in terms of differentiation matrix DDD
as

dk

dxk VVV M(x) = VVV M(x)EEE, EEE =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0
0 0 2 . . . 0
...

...
. . .

...
...

0 0 0
. . . M

0 0 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(M+1)×(M+1)

, (19)

for k = 1, 2. Twice differentiation of relation (17) with respect to x and using the former
relation (19) reveal that

⎧
⎨

⎩

χ ′
j+1(x) ≈X (1)

j+1,M(x) = VVV M(x)EEENNNM���
j+1
M ,

χ ′′
j+1(x) ≈X (2)

j+1,M(x) = VVV M(x)EEE2NNNM���
j+1
M .

(20)

Now it is sufficient to insert the points of collocations (16) into the last formulas to obtain
the following matrix expressions for the first and second derivatives in (7):

XXX(1)
j+1 = VVVEEENNNM���

j+1
M , XXX(1)

j+1 =

⎛

⎜
⎜
⎜
⎜
⎝

X (1)
j+1,M(x0)

X (1)
j+1,M(x1)

...
X (1)

j+1,M(xM)

⎞

⎟
⎟
⎟
⎟
⎠

, (21)



Izadi and Samei Boundary Value Problems         (2022) 2022:17 Page 11 of 29

XXX(2)
j+1 = VVVEEE2NNNM���

j+1
M , XXX(2)

j+1 =

⎛

⎜
⎜
⎜
⎜
⎝

X (2)
j+1,M(x0)

X (2)
j+1,M(x1)

...
X (2)

j+1,M(xM)

⎞

⎟
⎟
⎟
⎟
⎠

. (22)

If we substitute the approximate solution Xj+1,M(x) and its two derivatives

X (1)
j+1,M(x), X (2)

j+1,M(x)

into (7), then the resulting equation for j = 0, 1, . . . , J – 1 is

aj(x)X (2)
j+1,M(x) + bj(x)X (1)

j+1,M(x) + cj(x)Xj+1,M(x) = fj(x) (23)

for x ∈ [xL, xR]. Inserting the collocation points inserted into the foregoing equation fol-
lowed by writing it in a matrix representation yields

AAAXXX(2)
j+1 + BBBXXX(1)

j+1 + CCCXXXj+1 = FFFj, j = 0, 1, . . . , J – 1, (24)

where we have used the coefficient matrices AAAj (BBBj or CCCj) of size (M + 1) × (M + 1) and the
vectors FFFj of size (M + 1) × 1 defined as

AAAj(BBBj or CCCj) =

⎛

⎜
⎜
⎜
⎜
⎝

aj(bj or cj)(x0) 0 . . . 0
0 aj(bj or cj) . . . 0
...

...
. . .

...
0 0 . . . aj(bj or cj)(xM)

⎞

⎟
⎟
⎟
⎟
⎠

,

FFFj =

⎛

⎜
⎜
⎜
⎜
⎝

fj(x0)
fj(x1)

...
fj(xM)

⎞

⎟
⎟
⎟
⎟
⎠

.

Based on the matrix forms derived in relations (18)–(22), we get the fundamental matrix
equation

YYY j���
j+1
M = FFFj, [YYY j;FFFj], (25)

where

YYY j :=
{
AAAjVVVEEE2 + BBBjVVVEEE + CCCjVVV

}
NNNM.

To obtain the unknowns λ
j+1
0 ,λj+1

1 , . . . ,λj+1
M , we may use any linear solver to solve the matrix

equation (25) consisting of M +1 linear equations and M +1 unknowns. The incorporation
of the boundary conditions (8) into the fundamental matrix equation (25) is still demand-
ing to get a unique solution. By means of representation (15) the boundary conditions
Xj+1,M(xL) = χ

j+1
L and Xj+1,M(xR) = χ

j+1
R can be written in the matrix notation:

�YYY L,j���
j+1
M = χ

j+1
L , �YYY L,j := VVV M(xL)NNNM = [ȳL,0 ȳL,1 . . . ȳL,M],
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�YYY R,j���
j+1
M = χ

j+1
R , �YYY R,j := VVV M(xR)NNNM = [ȳR,0 ȳR,0 . . . ȳR,0].

After the replacements of two rows (first and last rows) of the augmented matrix [YYY j;FFFj] by
two row matrices [�YYY L,j;χ

j+1
L ] and [�YYY L,j;χ

j+1
R ], we get the linear algebraic system of equations

[�YYY j;�FFFj] =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ȳL,0 ȳL,1 ȳL,2 ȳL,3 . . . ȳL,M ; χ
j+1
L

ȳ1,0 ȳ1,1 ȳ1,2 ȳ1,3 . . . ȳ1,M ; Fj(x1)
ȳ2,0 ȳ2,1 ȳ2,2 ȳ2,3 . . . ȳ2,M ; Fj(x2)

...
...

...
. . .

...
... ;

...
ȳM–1,0 ȳM–1,1 ȳM–1,2 ȳM–1,3 . . . ȳM–1,M ; Fj(xM–1)

ȳR,0 ȳ1 ȳR,1 ȳR,3 . . . ȳR,M ; χ
j+1
R

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (26)

Ultimately, once the above linear system is solved, we get the unknown Boubaker coeffi-
cients in (13) or (17).

5 Graphical and experimental results
We performed some numerical experiments to testify the exactness of theoretical find-
ings as well as the practicability and utility of the presented hybrid algorithm for the
model problem (1) with initial and boundary conditions (2)–(3). Our calculations were
performed utilizing Matlab 2021a on a laptop computer with a 2.2 GHz Intel Core i7 CPU
and 16 GB memory.

Additionally, the numerical errors are assessed by defining the (pointwise) absolute er-
rors at time step t = tj via

Ej,M(x) :=
∣
∣w(x, tj) – Xj,M(x)

∣
∣, x ∈ [xL, xR] (j = 1, . . . , J).

The calculation of the L2 and the L∞ error norms at t = Tf are accomplished through
defining

E∞ := max
xL≤x≤xR

EJ ,M(x),

E2 :=
(∫ xR

xL

[w(x, Tf ) – XJ ,M(x)]2

M + 1
dx

)1/2

.

Furthermore, the estimated rates of convergence of E∞ and E2 are calculated as the the
number bases and grid size are halved successively. Suppose that E� ≡ E�(J , M) for � = 2,∞.
Then the rates of convergence (ROCs) with regard to x and t are estimated as

ROCx� := log2
E�(J , 2M)
E�(J , M)

,

ROCt� := log2
E�(J , M)
E�(2J , M)

, � = 2,∞.

Test Problem 5.1 We first consider (1) using the following coefficients and right-hand side
[7]: μ = 1,γ = 1,σ = 1,η = 1,

h(x, t) = πe–2t sin(2πx) + 2πe–t cos(2πx) – e–t sin(2πx).
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The given periodic initial and boundary conditions are

⎧
⎪⎪⎨

⎪⎪⎩

w(x, 0) = sin(2πx),

w(xL, t) = 0,

w(xL, t) = 0, [xL, xR] = [0, 1].

The exact analytical solution takes the form

w(x, t) = e–t sin(2πx), x ∈ [0, 1], t ∈ [0, Tf ].

We first consider �t = 0.1 and Tf = 1. We use (13) with M = 8 to obtain the following
approximate solutions at the first and last time steps t = �t and t = Tf for 0 ≤ x ≤ 1:

X1,8(x) = –0.0253645x8 + 51.0847x7 – 178.607x6

+ 197.218x5 – 46.6584x4 – 27.7309x3

– 1.00867x2 + 5.72667x – 3.48812 × 10–105

and

X10,8(x) = –0.210542x8 + 21.5219x7 – 73.7469x6

+ 81.07x5 – 19.3787x4 – 11.1573x3

– 0.426105x2 + 2.3278x.

The profile of the approximate solution using these parameters are presented in Fig. 1,
left. In Fig. 1, right, we further present the achieved absolute errors Ej,M(x) for x ∈ [0, 1],
�t = 0.1, and Tf = 1, evaluated at various time levels

tj = j�t, j = 1, 2, . . . , 10.

In Tables 1 and 2, some comparisons are done to validate our computational results.
For this purpose, the error norms in the L∞ evaluated at the final time t = Tf are cal-

culated. In Table 1 the spatial rate of convergence of the proposed hybrid technique for a
moderate time step �t = 0.01 and some

M = 2i, i = 1, 2, 3, 4,

are reported. In addition, the elapsed CPU time (in seconds) are further presented in Ta-
ble 1. It should be emphasized that in each case the required times for solving the modi-
fied linear system of equations (26) in all time steps are added together. Here we have 100
time steps. Moreover, analogue results obtained by the fourth-order difference method
(FODM) [7] using the parameters k = 10–4 and different

h =
0.1
2i , i = 0, 1, 2, 3,
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Figure 1 Graphs of approximate solution (a) and absolute errors (b) in Test Problem 5.1 for �t = 0.1,M = 8,
and Tf = 1

are tabulated in Table 1. We can clearly see that the performance of the proposed hybrid
technique is better than the FODM with less computational efforts and the number of
bases.

The second-order accuracy of the present technique with respect to time variable is
investigated in Table 2. In this respect, we use a fixed M = 10 and various

�t =
1
2i , i = 1, 2, 3, 4.

The related outcomes of the existing FODM [7] are also presented in Table 2 for com-
parison. Obviously, our method with considerably larger time steps �t shows its order of
accuracy as O(�t2) in comparison with FODM.

Finally, for this example, we go beyond the unit time interval and consider Tf = 3π . In
this case the approximate solutions at time t = Tf is given by

X94,10(x) = 0.000214278x10 – 0.00364302x9 + 0.0137945x8

– 0.0196859x7 + 0.00787041x6 + 0.00367164x5
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Table 1 The results of L∞ error norms, CPU times, and the related spatial rate of convergence in Test
Problem 5.1 with �t = 0.01 and diverse M

M Taylor–Boubaker (�t = 10–2) FODM [7] (k = 10–4)

E∞ ROCx∞ CPU(s) h e∞(h, k) Orderh

2 5.788417× 10–1 – 16.8013 1
10 4.612813× 10–4 –

4 9.243067× 10–2 2.6467 20.1999 1
20 3.103213× 10–5 3.893812

8 2.426774× 10–4 8.5732 27.4852 1
40 1.980428× 10–6 3.969878

16 3.371226× 10–6 6.1696 45.2692 1
80 1.244767× 10–7 3.991864

Table 2 The results of L∞ error norms, CPU times, and the related temporal rate of convergence in
Test Problem 5.1 with M = 10 and diverse �t

�t Taylor–Boubaker (M = 10) FODM [7] (h = 10–3)

E∞ ROCt∞ CPU(s) k e∞(h, k) Orderk
1
2 8.620986× 10–3 – 0.47193 1

10 3.117640× 10–4 –
1
4 2.119906× 10–3 2.0239 0.94799 1

20 7.787890× 10–5 2.001150
1
8 5.286064× 10–4 2.0037 1.89863 1

40 1.946593× 10–5 2.000280
1
16 1.328693× 10–4 1.9922 3.80004 1

80 4.866066× 10–6 2.000123

Figure 2 Plot of numerical solutions in Test Problem 5.1 at diverse time instants t = ��t,� = 1, 2, . . . , �30π�,
for �t = 0.1,M = 10, and Tf = 3π

+ 0.000685197x4 – 0.00340879x3 – 0.00000189864x2

+ 0.000503632x – 5.32245 × 10–110.

Here we have used �t = 0.1 and M = 10. The achieved absolute errors Ej,10(x) at all time
steps are depicted in Fig. 2.

Test Problem 5.2 As the second test problem, let us consider [6, 27, 28] μ = 1,γ = 1,σ =
1,η = 1,

h(x, t) = e–t cos(x) – e–t sin(x) +
e–2t

2
sin(2x).
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The initial and boundary conditions are taken for x ∈ [xL, xR] = [0,π ] and t ∈ [0, Tf ] as

⎧
⎪⎪⎨

⎪⎪⎩

w(x, 0) = sin(x),

w(xL, t) = 0,

w(xR, t) = 0.

The exact solution for this model problem is

w(x, t) = e–t sin(x).

Let us first consider �t = 0.1, Tf = 1, 2, 4, and Tf = 10. The approximated solutions using
M = 8 obtained at these t = Tf are given as follows:

X10,8(x) = 9.3804 × 10–6x8 – 1.1566 × 10–4x7 + 1.0527 × 10–4x6

+ 0.00293115x5 + 1.3398 × 10–4x4 – 0.0614951x3

– 2.3178 × 10–5x2 + 0.367838x + 1.70 × 10–8,

X20,8(x) = 3.8074 × 10–6x8 – 4.7055 × 10–5x7 + 5.8875 × 10–5x6

+ 1.0406 × 10–3x5 + 8.5359 × 10–5x4 – 0.02265x3

– 1.0890 × 10–6x2 + 0.135264x,

X40,8(x) = 5.6989 × 10–7x8 – 7.2805 × 10–6x7 + 1.3162 × 10–5x6

+ 1.2898 × 10–4x5 + 2.4261 × 10–5x4 – 0.00307087x3

– 1.4795 × 10–5x2 + 0.0182886x

and

X100,8(x) = 3.3011 × 10–10x8 – 7.4345 × 10–9x7 + 1.2907 × 10–8x6

+ 3.3227 × 10–7x5 + 5.6666 × 10–8x4 – 7.7921 × 10–6x3

– 1.5728 × 10–7x2 + 4.5477 × 10–6x.

Graphics of the whole approximate solutions on (x, t) ∈ [0,π ] × [0, Tf ] using various
Tf = 1, 2, 4, 10 are presented in Figs. 3 and 4. The maximum absolute errors in all four cases
is are than E∞ = 5 × 10–5. However, to get more accurate results, we may use a smaller time
step �t or increase the number of bases M. To show this fact, we utilize M = 8 and set
�t = 0.01. The snapshots of absolute errors at all time steps

t = s�t, s = 1, . . . , 1000,

are visualized in Fig. 5.
A comparison of the outcomes obtained by the present Taylor–Boubaker method (TBM)

with the outcomes of some existing approaches are carried out in the next experiments. For
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Figure 3 Plots of approximate solution for Tf = 1 (a) Tf = 2 (b) in Test Problem 5.2 for �t = 0.1,M = 8

this purpose, we exploit the quartic B-spline collocation method (QSCM) [21], the nonpoly-
nomial spline method (NPSM) [22], and the improvised cubic B-spline collocation method
(ICSCM) [23].

The results using fixed M = 15 and �t = 0.01, and diverse values of Tf = 1, 2, 4, 10 are
listed in Table 3. Clearly, our approach with less computational efforts is more accurate
than the QSCM/ICSCM and is comparable with the NPSM.

We next fix M = 12 and vary �t as 1/2, 1/4, 1/8, 1/16. The estimated order of ac-
curacy in time (ROCt∞) is investigated at time Tf = 10 for this Test Problem as well.
The results of achieved E∞ error norms, together with related ROCt∞, are shown in Ta-
ble 4, where a further comparison with some other available computational methods is
done.

We have used the combined method based on a finite difference procedure and a new
class of polynomials (FDCP) [28], the FDM [6], and the method based on Lucas polyno-
mials [27]. Obviously, the presented results confirm that the order of accuracy of two is
obtainable for the used time-marching algorithm and with relatively large time steps in
comparison with other approaches.
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Figure 4 Plots of approximate solution for Tf = 4 (left) Tf = 10 (right) in Test Problem 5.2 for �t = 0.1,M = 8

Test Problem 5.3 The third test problem is devoted to the following nonhomogeneous
model with nonunity coefficients [27, 28], μ = 0.1,γ = 1,σ = 0.01,η = 1:

h(x, t) =
(

9
5

+
189
100

(
x2 – 1

)
+

179
50

x
)

ex–t

+
(
x2 – 1

)(
x2 + 2x – 1

)
e2x–2t .

The computational domain is taken as

x ∈ [xL, xR] = [–1, 1], t ∈ [0, Tf ],

and the initial and boundary conditions are

⎧
⎪⎪⎨

⎪⎪⎩

w(x, 0) = ex(1 – x2),

w(xL, t) = 0,

w(xR, t) = 0.
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Figure 5 Plot of absolute errors in Test Problem 5.2 at different time instants t = ��t,� = 1, 2, . . . , 103, for
�t = 0.01,M = 8, and Tf = 10

Table 3 The comparison results of the L∞ and L2 error norms for Test Problem 5.2 using M = 15,
�t = 0.01, and various Tf

Tf BTM (M = 15) QSCM [21] (N = 121)

E∞ E2 E∞ E2
1 4.5054–6 4.9885–6 7.67–3 5.13–3
2 4.0853–6 4.8560–6 2.84–3 1.73–3
4 2.1470–6 2.8457–6 3.84–4 2.12–4
10 5.1292–7 5.8866–7 4.06–6 4.08–6

Tf NPSM [22] (N = 121) ICSCM [23] (N = 40)

E∞ E2 E∞ E2
1 4.4267–6 4.7852–6 1.4488–3 1.5039–3
2 3.6552–6 4.0397–6 1.1685–3 1.2023–3
4 1.3915–6 1.5514–6 3.9228–4 3.9224–4
10 2.4379–8 2.4004–8 3.1695–6 2.7150–6

The exact solution of this example is

w(x, t) = ex–t(1 – x2).

We first set M = 8 and Tf = 1 and use �t = 0.1 in the computations. The approximate
solution at t = Tf on [xL, xR] is obtained as

X10,8(x) = –6.1430 × 10–4x8 – 0.00321614x7 – 0.0147067x6

– 0.0578943x5 – 0.168302x4 – 0.306555x3

– 0.18433x2 + 0.367665x + 0.367954.

The profiles of the approximate solutions along with related exact solutions at diverse time
steps

t = ��t, � = 1, 2, . . . , 10,
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Table 4 The results of L∞ error norms and the related temporal rates of convergence in Test
Problem 5.2 with M = 12, Tf = 10, and diverse �t

�t TBM (M = 12)

E∞ ROCt∞
1
2 1.7213–3 –
1
4 4.2667–4 2.0123
1
8 1.0575–4 2.0124
1
16 2.5685–5 2.0417

�t FDCP [28] (N = 10) FDM [6] Lucas [27]

τ L∞ (Reg) L∞ (CGL) L∞ L∞ (Reg) L∞ (RegLin)
1
2

1
10 2.1255–5 2.4317–6 2.1800–2 2.1292–5 2.4317–6

1
4

1
20 9.7989–6 6.0862–7 5.3000–3 9.8171–6 6.0857–7

1
8

1
40 4.6914–6 1.5231–7 1.3000–3 4.7005–6 1.5215–7

1
16

1
80 2.2936–6 3.8081–8 3.3291–4 2.2981–6 3.7998–8

Figure 6 Plot of numerical solutions (a) and related absolute errors (b) in Test Problem 5.3 at t = ��t,
� = 1, 2, . . . , 10, for �t = 0.1,M = 8, and Tf = 1

are shown in Fig. 6, left. The related absolute errors are further shown in Fig. 6, right.
In the next experiments, we indicate the second-order convergence of our approach with
respect to time discretization. In Table 5, using M = 10 and various
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Table 5 The results of L∞ error norms and the related temporal rate of convergence in Test
Problem 5.3 with M = 10, Tf = 1 and diverse �t

�t TBM (M = 10)

E∞ ROCt∞
1
2 2.5261–3 –
1
4 7.7570–4 1.7033
1
8 1.9739–4 1.9745
1
16 4.9553–5 1.9940

�t FDCP [28] CLM [26] Lucas [27]

τ L∞(N = 18) L∞(N = 36) Order L∞(N = 18)
1
2

2
103

5.0010–08 2.048–07 – 5.0011–08
1
4

1
103

1.2502–08 5.119–08 2.00 1.2503–08
1
8

2
104

5.0011–10 2.047–09 2.00 5.0014–10
1
16

1
104

1.2496–10 5.117–10 2.00 1.2511–10

�t = 1/2i, i = 1, 2, 3, 4,

we present the achieved E∞ and calculate the corresponding ROCt∞. Similar results re-
ported by other the existing schemes but with larger number of resources are also pre-
sented in Table 5. These approaches are the FDCP [28] with N = 18, the Chebyshev–
Legendre method (CLM) [26] with N = 36, and the method based on Lucas polynomials
[27] with N = 18. Clearly, the TBM using a few bases, together with relatively large time
steps, confirms the order of convergence two.

The spectral accuracy with regard to the achieved E2/E∞ error norms for the space vari-
able is also investigated in Fig. 7. In these results, we have used �t = 10–3 and diverse

M = 2i, i = 1, 2, 3, 4.

The corresponding rates of convergence ROCx2 and ROCx∞ are also visualized in Fig. 7.
Finally, for this test problem, let us see the behavior of numerical solution and error norms
when Tf = 5. These results using M = 12 are depicted in Fig. 8. Note that in the left plot,
we used �t = 0.05 whereas for the right plotted absolute errors, we used �t = 0.005. Ad-
ditionally, the approximate solution for �t = 0.05 on x ∈ [–1, 1] at t = Tf is given by

X100,12(x) = –1.920 × 10–9x12 – 1.897 × 10–8x11 – 1.659 × 10–7x10

– 1.320 × 10–6x9 – 9.196 × 10–6x8 – 5.482 × 10–5x7

– 2.714 × 10–4x6 – 0.0010669x5 – 0.0030883x4

– 0.00561447x3 – 0.00336744x2 + 0.00673753x

+ 0.00673652.

Test Problem 5.4 In the last test problem, we pay attention to [24, 25] with μ = 1,γ =
1,σ = 1, and η = ±1. For η = ±1, we have the right-hand side functions h(x, t), respectively,

cosh4(t – x)h(x, t) = –5 sinh(t – x) + 2 cosh(t – x) ± sinh(2t – 2x)/2
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M E2 E∞

21 1.0783623 × 10–1 2.4542623 × 10–1

22 5.3756008 × 10–3 1.9198625 × 10–2

23 1.3250421 × 10–6 6.8540817 × 10–6

24 1.9556590 × 10–9 1.2793891 × 10–8

(a) E2/E∞ errors

Figure 7 The results of E2/E∞ errors (a) and related rate of convergence (b) in Test Problem 5.3 at t = Tf for
�t = 0.001, Tf = 1, and various M

– cosh3(t – x) + sinh3(t – x).

The model problem (1) is solved on

x ∈ [xL, xR] = [0, 1], [–1, 1], t ∈ [0, Tf ].

The corresponding exact solution is

w(x, t) = sec h(x – t).

The initial and boundary conditions are obtained from the exact solution for this example.
We first consider M = 7 and Tf = 1 and use �t = 0.1 in the computations. The approximate
solutions for η = ±1 at t = Tf on [–1, 1] are obtained, respectively, as

X +
10,7(x) = 0.00842799x7 + 0.0184003x6 – 0.00867362x5

– 0.0846306x4 – 0.126626x3 + 0.0502792x2

+ 0.49397x + 0.648852

and

X –
10,7(x) = 0.00869142x7 + 0.018303x6 – 0.00922897x5

– 0.0843227x4 – 0.126124x3 + 0.0499579x2

+ 0.493761x + 0.648963.
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Figure 8 Plot of numerical solutions with �t = 0.05 (a) and graphs of absolute errors with �t = 0.005 (b) in
Test Problem 5.3 using M = 12 and Tf = 5

As we can see, both approximate solutions are very close to each other. We thus only plot
the the graphs of X –

10,7(x) and the related absolute errors for η = –1 in Fig. 9.
Next, we examine the behavior of E∞ error norms when M = 8 is fixed and �t varies as

1/2, 1/4, 1/8, 1/16. In addition, the final time is taken as Tf = 1, and [xL, xR] = [0, 1]. These
results for η = –1 are reported in Table 6. For comparison, the outcomes of the previously
existing computational procedures are also displayed in Table 5. To this end, we use the Lie-
group approach based on radial basis functions (LG-RBFs) [25], the meshless method [24],
and the Legendre spectral element method (LSEM) [29]. We can observe from the results
shown in Table 6 that our numerical results provide second-order accuracy in time while
employing a smaller number of bases and time steps compared to other well-established
numerical procedures in the literature.

Similar results for η = +1 are further reported in Table 7. However, here we have used Tf =
0.1, and the values of �t are 1/10, 1/20, 1/40 as used in the results presented in the ICSCM
[23] and meshless methods [24] with parameter h = 1/10. Clearly, the results obtained by
the TBM are more accurate in comparison with two other methods. The next experiments
show further the accuracy of our approach in the framework of results evaluated at time
t = Tf , where Tf = 5. We use η = –1 and M = 8 and compare with the methods used in
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Figure 9 Plots of approximate solution (a) and absolute errors (b) in Test Problem 5.4 for �t = 0.1,M = 7,
η = –1, and Tf = 1

Table 6 The results of L∞ error norms and the related temporal rate of convergence in Test
Problem 5.4 with M = 8, Tf = 1, η = –1, and diverse �t on [0, 1]

�t TBM (M = 8)

E∞ ROCt∞
1
2 4.9238–3 –
1
4 1.2592–3 1.9672
1
8 3.1642–4 1.9926
1
16 7.9514–5 1.9925

�t LG-RBFs [25] LSEM [29] Meshless [24]

τ dx = 0.1 Ne = 20,pe = 5 C-order dx = 0.1
1
2

1
10 1.1899–2 5.8541–4 – 1.1306–2

1
4

1
20 6.4885–3 2.4834–4 0.9974 5.6005–3

1
8

1
40 3.2224–3 1.1379–4 0.9986 2.7770–3

1
16

1
80 1.6079–3 5.4413–5 0.9992 1.3862–3

Table 6. The aforementioned results are shown in Table 8, which indicate the superiority
of our procedure compared to the LG-RBFs, LSEM, and meshless approaches. Besides, the
second-order accuracy in time is visible from the given results if Table 8. For completeness,
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Table 7 The results of L∞ error norms and the related temporal rate of convergence in Test
Problem 5.4 with M = 8, Tf = 0.1, η = +1, and diverse �t on [0, 1]

�t TBM (M = 8)

E2 ROCt2 E∞ ROCt∞
1
10 1.5275–6 – 8.8717–5 –
1
20 2.5300–7 2.5939 2.1601–5 2.0381
1
40 8.8279–8 1.5190 4.9149–6 2.1359

�t ICSCM [23] Meshless [24]

L2 L∞ L2 L∞
1
10 3.1380–4 5.2316–4 4.8125–3 2.4109–3
1
20 1.6563–4 2.7764–4 2.3406–3 1.1911–3
1
40 8.5147–5 1.4284–4 1.1793–3 6.0771–4

Table 8 The results of L∞ error norms and the related temporal rate of convergence in Test
Problem 5.4 with M = 8, Tf = 5, η = –1, and diverse �t on [0, 1]

�t TBM (M = 8) LG-RBFs [25]

E∞ ROCt∞ dx = 0.1
1
10 8.3562–6 – 5.4835–4
1
20 2.0867–6 2.0016 2.8818–4
1
40 5.2139–7 2.0008 1.5032–4
1
80 1.3018–7 2.0019 7.7388–5

�t LSEM [29] Meshless [24]

Ne = 20,pe = 5 C-order dx = 0.1
1
10 2.4232–4 – 1.0335–3
1
20 1.2138–4 0.9974 5.8509–4
1
40 6.0748–5 0.9986 2.9635–4
1
80 3.0390–5 0.9992 1.4801–4

the graphical representations of approximate solutions together with their absolute errors
at diverse time instants

t = ��t, s = 1, 2, . . . , 50,

are visualized in Fig. 10. Finally, for the last test example, we also investigate the spectral
accuracy of the numerical solutions for �t = 0.001 and moderate values of

M = 2i, i = 1, 2, 3, 4.

For the simulations, we employ both η = ±1 and compute the results at Tf = 1 and the
spatial domain [–1, 1]. The results are shown in Table 9.

6 Conclusions
We have developed an accurate time numerical solution algorithm (using a large time
step) for the generalized BBMB-type equations (1) arising in diverse disciplines of engi-
neering science. The proposed technique is constructed based on a combination of the
Boubaker collocation procedure for the spatial variable and the Taylor series formula for
the temporal discretization. The main characteristic of the presented work is that we need
to solve an algebraic system of equations at each time step rather than solving a global sys-
tem obtained in the spectral collocation methods developed in the past. The convergence
analysis of the hybrid technique is discussed. The numerical results shown in tables and
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Figure 10 Plot of approximate solutions (a) and absolute errors (b) in Test Problem 5.4 for �t = 0.1,M = 8,
η = –1, and Tf = 5

Table 9 The results of E2/E∞ error norms and the related spatial rate of convergence in Test
Problem 5.4 with �t = 0.001, Tf = 1, η = ±1, and diverse M on [–1, 1]

M η = –1

E2 ROCx2 E∞ ROCx∞
2 3.8426–2 – 8.6267–2 –
4 2.8716–3 3.7421 8.3279–3 3.3728
8 6.4843–5 5.4688 3.1262–4 4.7355
16 2.8165–8 11.169 1.3819–7 11.144

M η = +1

E2 ROCx2 E∞ ROCx∞
2 1.9233–2 – 5.0755–2 –
4 9.1990–4 4.3860 3.8484–3 3.7212
8 7.8660–5 3.5478 3.4115–4 3.4958
16 1.9247–8 11.997 8.8667–8 11.910

figures justify the second-order accuracy in time and the high-order accuracy in the space
of the presented technique in comparison with some existing well-established computa-
tional schemes.
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