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Abstract
In this paper, we investigate the three-dimensional Cauchy problem of the
compressible quantum magnetohydrodynamic model. It is proved that the system
admits a unique global solution, provided that the initial energy is suitably small.
Furthermore, the large time behavior of the global solution is obtained.
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1 Introduction
This paper is concerned with the compressible viscous quantum magnetohydrodynamic
(vQMHD) model which has the following form (see, e.g., [7]):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) – μ�u – (μ + λ)∇ div u + ∇P(ρ) – �
2

2 ρ∇( �
√

ρ√
ρ

)

= (curl B) × B,

Bt – v�B = curl(u × B), div B = 0,

(1.1)

where (x, t) ∈R
3 × [0,∞). Here ρ , u, and B represent the fluid density, velocity, and mag-

netic field, respectively. P(ρ) = ργ with γ > 1 denotes the pressure. � is the Planck constant,
and v is the magnetic diffusivity. μ and λ are two viscosity constants satisfying the physical
restrictions

μ > 0 and 2μ + 3λ ≥ 0.

The expression �
√

ρ√
ρ

indicates a quantum potential, i.e., Bohm potential, satisfying

2ρ∇
(

�
√

ρ√
ρ

)

= div
(
ρ∇2 logρ

)
= �∇ρ +

|∇ρ|2∇ρ

ρ2 –
∇ρ�ρ

ρ
–

∇ρ · ∇2ρ

ρ
,
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which was considered for the thermodynamic equilibrium by Wigner [25]. The quantum
hydrodynamic models are viewed as a quantum correction to the classical hydrodynamic
equations. Manfredi and Haas [17] introduced a quantum hydrodynamic model for plas-
mas, and then this model was extended to a quantum magnetohydrodynamic model by
Hass [7, 8] from a Wigner–Maxwell system. In dense astrophysical plasmas, such as at-
mospheres of neutron stars or interiors of massive white dwarfs, the quantum magne-
tohydrodynamic model plays an important role [18], where the dimensionless magnetic
diffusivity v > 0 was considered. Later, Yang and Ju [30] induced the electric field E by
moving conductive flow in the magnetic field, i.e.,

E = v∇ × B – u × B +
�

2

2
ρ∇

(
�

√
ρ√

ρ

)

and introduced vQMHD system (1.1). Although the electric field E does not appear in
system (1.1) as in the compressible magnetohydrodynamic models, it is indeed induced
according to the above relation. The main purpose of this paper is to study the Cauchy
problem of system (1.1) supplemented with initial data

(ρ, u, B)(x, t)|t=0 =
(
ρ0(x), u0(x), B0(x)

) → (1, 0, 0) as |x| → ∞. (1.2)

In the last decade, there have been many results on the well-posedness of the vQMHD
system. Yang and Ju [30] studied the global weak solution in a three-dimensional torus
by the Faedo–Galerkin method and weak compactness techniques. Then, Li et al. [15] in-
vestigated the large time behavior of the global weak solution. In [20, 21], the global well-
posedness of classical solutions of compressible isentropic and nonisentropic vQMHD
system under the condition that Hk-norm (k ≥ 3) of initial data is small in a three-
dimensional whole space was proved by Pu and Xu. They established the optimal time
decay rates for the global solution as well. Later, Xie et al. [29] showed faster time conver-
gence rates for the solutions with the initial data belonging to L1. In [31], Yang proved that
the classical solutions of the vQMHD equations converge to those of the incompressible
magnetohydrodynamic equations with a sharp convergence rate as the Mach number goes
to zero. Recently, Xi and her collaborators [26, 27] established the optimal time decay rates
for higher-order spatial derivatives of solutions by using the Fourier splitting method. In
[32], Yang et al. investigated the existence of the time-periodic solution combined with the
topological degree theory. In addition, for related models of the vQMHD system, there is
a rich body of literature concerned with the compressible fluid model of Korteweg type.
We refer to [1–4, 12–14, 16, 19, 22, 24, 28] and the references therein for instance.

To our knowledge, the known results on the global smooth solutions of vQMHD equa-
tions need conditions as the initial perturbation is small in Hk (k ≥ 3). Motivated by the
study of compressible Navier–Stokes equations [10, 11], we discuss the global existence
and large time behavior of the solution for the three-dimensional compressible vQMHD
system with small initial energy. The condition of small initial energy in our paper is equiv-
alent to the smallness for L2-norm of the initial data. Our results improve previous works
in [26, 27], in which the existence of global solutions is obtained for Hk (k ≥ 3)-norm of the
initial data. On the other hand, due to the strongly nonlinear degeneracy of the quantum
Bohm potential and the nonlinear coupling of the velocity field and the magnetic field, it
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is more difficult to estimate high-order terms. In order to overcome these difficulties, we
establish suitable a priori assumption (2.4) and introduce the continuity argument.

Throughout this paper, we use Hs(R3) (s ∈ N) to denote the usual Sobolev spaces with
norm ‖ · ‖Hs and Lp(R3) (1 ≤ p ≤ ∞) to denote the Lp spaces with norm ‖ · ‖Lp . For given
initial data (ρ0, u0, B0), we define the initial energy E0:

E0 =
∫ (

1
2
ρ0|u0|2 +

1
2
|B0|2 + G(ρ0)

)

dx,

where G(ρ) = ρ
∫ ρ

1
P(s)–P(1)

s2 ds. For constants ρ̄ ≥ ρ > 0, it is clear that

c1(ρ, ρ̄)(ρ – 1)2 ≤ G(ρ) ≤ c2(ρ, ρ̄)(ρ – 1)2,

if ρ ≤ ρ ≤ ρ̄ . Here positive constants c1(ρ, ρ̄) and c2(ρ, ρ̄) are dependent on ρ and ρ̄ .
Now, we state our main result.

Theorem 1.1 For given M1 > 0 (not necessarily small) and ρ̄ ≥ ρ > 0, suppose that the
initial data (ρ0, u0, B0) satisfy

ρ ≤ ρ0 ≤ ρ̄, (ρ0 – 1, u0, B0) ∈ H4 × H3 × H3,
∥
∥∇2ρ0

∥
∥2

L2 + ‖∇u0‖2
L2 + ‖B0‖4

L4 ≤ M1.
(1.3)

Then there exists a unique global solution (ρ, u, B) satisfying

1
2
ρ < ρ < 2ρ̄, ρ – 1 ∈ L∞(

0, T ; H4), ∇ρ ∈ L2(0, T ; H4),

u, B ∈ L∞(
0, T ; H3), ∇u,∇B ∈ L2(0, T ; H3),

(1.4)

and enjoying the following large time behavior

lim
t→0

(‖ρ – 1‖2
Lq + ‖u‖2

Lq + ‖B‖2
Lq

)
= 0 for any q ∈ (2, 6], (1.5)

provided E0 ≤ δ, where δ is a positive constant depending on ρ , ρ̄ , μ, λ, γ , �, v, and M1, but
independent of t.

Remark 1.1 If the initial data has more regularity (ρ0 – 1, u0, B0) ∈ H5 × H4 × H4 in The-
orem 1.1, employing arguments similar to Sect. 4 (particular Lemma 4.5) in [10] and
Lemma 2.1 in [27], one can further prove that the solution (ρ, u, B) belongs to

ρ – 1 ∈ L∞(
0, T ; H5), u ∈ L∞(

0, T ; H4), B ∈ L∞(
0, T ; H4).

Thus, together with equations in (2.2) and using the following standard embedding:

L∞(
0, T ; H1) ∩ H1(0, T ; H–1) ↪→ C

(
0, T ; Lq) for any q ∈ [2, 6),

this solution is classical. For more details, one can see [10].
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Remark 1.2 It is worth to point out that in previous works [26, 27] the smallness of
‖ρ0 – 1‖H5 + ‖u0‖H4 + ‖B0‖H4 was required, which means the initial data can only have
small oscillations. Notice that in this paper we generalize the result in [26] to the case of
large oscillations. Indeed, we only require the smallness of the initial energy E0, which is
equivalent to the smallness of the L2-norm of (ρ0 – 1, u0, B0). Based on the difference of
initial data, in [26, 27], the authors can establish higher derivative estimates directly, since
some terms with Hk (k ≤ 4) norms could be bounded by an appropriate small δ and be
viewed as coefficients of other terms. It leads to the fact that the argument in [26, 27] can-
not be used in this paper, since we do not have any smallness of higher derivative terms in
assumptions. Therefore, in order to overcome difficulties from the higher derivative terms
and nonlinear coupling, our strategy is to establish new and more precise estimates from
lower to higher derivative to improve the regularity constantly.

The rest of the paper is organized as follows. In Sect. 2, we prove the local well-posedness
of the solution and derive a priori estimates. In Sect. 3, the proof of Theorem 1.1 is pro-
vided.

2 A priori estimates
First of all, let us give the local existence of the solution for problem (1.1).

Lemma 2.1 Assume that the initial data (ρ0, u0, B0) satisfy (ρ0 – 1, u0, B0) ∈ H4 ×H3 ×H3

with 0 < ρ ≤ ρ0. Then there exists a time T∗ > 0 such that in 0 ≤ t ≤ T∗ Cauchy problem
(1.1)–(1.2) possesses a unique solution (ρ, u, B) satisfying

ρ – 1 ∈ L∞(
0, T∗; H4) ∩ L2(0, T∗; H5),

u, B ∈ L∞(
0, T∗; H3), ∇u,∇B ∈ L2(0, T∗; H3).

Proof Following the fixed point argument (for instance, Theorem 2.1 in [5] and Theo-
rem 2.1 in [23]), using the technique in [9] to deal with the higher-order derivatives of
density and the energy method to estimate the magnetic field B (see Lemma 2.3 in [6]),
the local existence and uniqueness are quite standard. For completeness, we outline the
proof here. Let us begin with the following auxiliary system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρt + div(ρũ) = 0,

(ρu)t + div(ρũ ⊗ u) – μ�u – (μ + λ)∇ div u + ∇P(ρ) – �
2

2 ρ∇( �
√

ρ√
ρ

)

= (curl B) × B,

Bt – v�B = curl(ũ × B), div B = 0,

(2.1)

with initial condition (1.2). Here, ũ ∈ RT∗ is a known function with ũ(x, 0) = u0(x) and

RT∗ =
{

z
∣
∣
∣ sup

0≤t≤T∗
‖z‖2

H3 +
∫ T∗

0
‖∇z‖2

H3 dt ≤ R
}

,

where R > 1 and T∗ > 0 will be chosen later.
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It is obvious that (2.1)1 is a linear transport equation with regular ũ. The existence and
uniqueness are well known. As did Lemma 2.2 in [6], let

dx(X, t)
dt

= ũ
(
x(X, t), t

)
and x(X, 0) = X,

then we have

dρ(x(X, t), t)
dt

= –ρ div ũ,

that is,

ρ(x, t) = ρ0 exp

(

–
∫ t

0
div ũ ds

)

.

Therefore,

ρ(x, t) ≤ ρ0 exp

(∫ t

0
‖div ũ‖L∞ ds

)

≤ ρ0 exp

(∫ t

0
C‖ũ‖H3 ds

)

.

Thus, if T∗ > 0 is suitably small, we can get the bound of ρ . On the other hand, (2.1)3 is
a linear parabolic equation with respect to the function B. Following the standard energy
argument for linear parabolic equation, we have the existence of a unique solution B and
the desired estimates. With the estimates for (ρ, B) at hand and using the classical theory
of linear parabolic equation again, we can get the existence and uniqueness of u by (2.1)2,
which implies that we obtain the existence and uniqueness for the linearized system (2.1).

Next, we can define a map � on RT∗ to the solution of (2.1)2 as

�(ũ) = u.

Taking advantage of the energy argument, one can get some desired estimates for (ρ, u, B),
which yields that u belongs to RT∗ for some large positive constant R and an appropri-
ately small T∗. Finally, Schauder’s fixed point theorem gives us the local well-posedness of
Cauchy problem (1.1)–(1.2). �

Now, we are ready to show a priori estimates on the solutions. Firstly, we need to rewrite
system (1.1)–(1.2) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ρt + div(ρu) = 0,

ρut – μ�u – (μ + λ)∇ div u + ∇P – �
2

4 �∇ρ = –ρu · ∇u + F1,

Bt – v�B = curl(u × B), div B = 0,

(2.2)

where

F1 =
�

2

4

( |∇ρ|2∇ρ

ρ2 +
∇ρ�ρ

ρ
–

∇ρ∇2ρ

ρ

)

+ (curl B) × B,

with the prescribed initial condition

(ρ, u, B)(x, t)|t=0 =
(
ρ0(x), u0(x), B0(x)

) → (1, 0, 0) as |x| → ∞. (2.3)
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Define

A(T) = sup
0≤t≤T

∫
(∣
∣∇2ρ

∣
∣2 + |∇u|2 + |B|4)dx.

In what follows, the generic constants C > 0 and Ci > 0 (i = 1, 2, 3) and a suitably small
constant δ1 > 0 are dependent on some known constants ρ , ρ̄ , μ, λ, γ , �, and v, but inde-
pendent of t, respectively. Particularly, we write C(M) to emphasize that C may depend
on M, where M = (1 + C3)M1.

Next, let us establish necessary lower-order estimates for the global solution (ρ, u, B)
independent of time. We assume that (ρ, u, B) is a solution of system (2.2)–(2.3) on R

3 ×
(0, T) for positive time T > 0. Here, we set E0 ≤ 1 without loss of generality.

Proposition 2.1 Under the assumptions of Theorem 1.1, assume that the solution (ρ, u, B)
satisfies

A(T) ≤ 2M,
1
4
ρ ≤ ρ ≤ 2ρ̄, (2.4)

for (x, t) ∈R
3 × (0, T), then it holds that

A(T) ≤ 3
2

M,
1
2
ρ ≤ ρ ≤ 3

2
ρ̄, (2.5)

provided E0 ≤ δ, where δ is a positive constant depending on ρ , ρ̄ , μ, λ, γ , v, and M but
independent of t.

In order to prove Proposition 2.1, we firstly investigate the following lemmas. Then, we
finish the proof of Proposition 2.1 after Lemma 2.5.

Lemma 2.2 Let (ρ, u, B)(x, t) be the solution of problem (2.2)–(2.3). Then it holds that

sup
0≤t≤T

∫ (
1
2
ρ|u|2 + G(ρ) +

�
2

8ρ
|∇ρ|2 + v|B|2

)

dx

+
∫ T

0

∫
(
μ|∇u|2 + (λ + μ)|div u|2 + v|∇B|2)dx dt ≤ E0.

(2.6)

Proof Multiplying (2.2)1–(2.2)3 by G′(ρ), ρu and B respectively, summing the resulting
equations up and integrating them by parts, we obtain (2.6). �

Lemma 2.3 Under the assumptions of Proposition 2.1, it holds that

1
2
ρ ≤ ρ ≤ 3

2
ρ̄ (2.7)

for (x, t) ∈R
3 × (0, T), provided E0 ≤ min{( 1– 1

2 ρ

C(M) )4, (
3
2 ρ̄–1
C(M) )4}.

Proof By (2.4), (2.6), and the Sobolev inequality, we obtain

‖ρ – 1‖L∞ ≤ C‖ρ – 1‖ 1
4
L2

∥
∥∇2ρ

∥
∥

3
4
L2 ≤ C(M)E

1
4
0 ,
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which implies

1 – C(M)E
1
4
0 < ρ < 1 + C(M)E

1
4
0 .

When E0 ≤ min{( 1– 1
2 ρ

C(M) )4, (
3
2 ρ̄–1
C(M) )4}, we get (2.7). �

Lemma 2.4 Under the assumptions of Proposition 2.1, it holds that

∫ T

0
‖∇ρ‖2

L2 dt +
∫ T

0

∥
∥∇2ρ

∥
∥2

L2 ≤ C(M)E0, (2.8)

provided E0 ≤ ( �
2

32C(M) )4.

Proof Multiplying (2.2)2 by 1
ρ
∇ρ and using (2.2)1, then integrating the resulting equation

over R3, one has

∫

γργ –2|∇ρ|2 dx +
∫

�
2

4
ρ–1∣∣∇2ρ

∣
∣2 dx

= –
d
dt

∫

u · ∇ρ dx +
∫

div u · div(ρu) dx

+
∫ 1

ρ
∇ρ · (μ�u + (μ + λ)∇ div u

)
dx –

∫

∇ρ · u · ∇u dx

+
∫ 1

ρ
∇ρ · F1 dx +

�
2

4

∫ (
1
ρ2

)

∇ρ · ∇ρ · ∇2ρ dx

= –
d
dt

∫

u · ∇ρ dx +
5∑

i=1

Ji.

(2.9)

In view of (2.4), (2.6), and (2.7), and using Hölder, Young, and Sobolev inequalities, we
obtain

J1 + J2 + J3 ≤ C‖∇u‖L2‖∇ρ‖L6‖u‖L3 + C‖∇u‖2
L2 + C

∥
∥∇2ρ

∥
∥

L2‖∇u‖L2

≤ �
2

16
∥
∥∇2ρ

∥
∥2

L2 + C(M)‖∇u‖2
L2 ,

J4 + J5 ≤ C
(‖∇ρ‖L4‖∇ρ‖L4

∥
∥∇2ρ

∥
∥

L2 + ‖∇ρ‖4
L4 + ‖∇ρ‖L6‖B‖L3‖∇B‖L2

)

≤ C(M)E
1
4
0
(∥
∥∇2ρ

∥
∥2

L2 + ‖∇B‖2
L2

)
.

Substituting the estimates of Ji (i = 1, . . . , 5) into (2.9), for E0 ≤ ( �
2

32C(M) )4, it leads to

‖∇ρ‖2
L2 +

∥
∥∇2ρ

∥
∥2

L2 ≤ –C
d
dt

∫

u · ∇ρ dx + C(M)
(‖∇u‖2

L2 + ‖∇B‖2
L2

)
. (2.10)

Integrating (2.10) from 0 to T , combining with (2.6) and (2.7), we obtain the desired result
(2.8). The proof of this lemma is complete. �
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Lemma 2.5 Under the assumptions of Proposition 2.1, it holds that

∫ T

0

∥
∥∇3ρ

∥
∥2

L2 dt ≤ C(M)
(

1 +
∫ T

0

∥
∥∇2u

∥
∥2

L2 dt
)

+ C
∫ T

0
‖∇B · B‖2

L2 dt, (2.11)

provided E0 ≤ ( �
2ρ

9
2

16(ρ2+�
3
2 (ρρ̄)

1
4 )C(M)

)4.

Proof Multiplying (2.2)2 by – 1
ρ
�∇ρ , integrating by parts over R3, we have

�
2

4

∫ 1
ρ

|�∇ρ|2 dx

=
d
dt

∫

�∇ρ · u dx +
∫

�∇ div(ρu) · u dx +
∫

�∇ρ · (γργ –2∇ρ
)

dx

+
∫

�∇ρ ·
(

u · ∇u –
1
ρ

(
μ�u + (μ + λ)∇ div u

)
)

dx –
∫ 1

ρ
�∇ρ · F1 dx

=
d
dt

∫

�∇ρ · u dx +
4∑

i=1

Li.

(2.12)

Utilizing (2.4), (2.6), (2.7), Hölder, Sobolev, and Young inequalities, then integrating by
parts, we have

L1 =
∫

�∇ div(ρu) · u dx =
∫

∇ div(ρu) · �u dx

=
∫

∇2ρ · u�u dx + 2
∫

∇ρ · ∇u�u dx +
∫

ρ
∣
∣∇2u

∣
∣2 dx

≤ C‖ρ‖L∞
∥
∥∇2u

∥
∥2

L2 + C‖∇ρ‖L3‖∇u‖L6
∥
∥∇2u

∥
∥

L2 + C‖u‖L∞
∥
∥∇2ρ

∥
∥

L2

∥
∥∇2u

∥
∥

L2

≤ C
∥
∥∇2u

∥
∥2

L2 + C‖∇ρ‖ 1
2
L2

∥
∥∇2ρ

∥
∥

1
2
L2

∥
∥∇2u

∥
∥2

L2 + C‖∇u‖ 1
2
L2

∥
∥∇2u

∥
∥

3
2
L2

∥
∥∇2ρ

∥
∥

1
2
L2

∥
∥∇2ρ

∥
∥

1
2
L2

≤ C(M)
(∥
∥∇2ρ

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)
,

L2 =
∫

�∇ρ · (γργ –2∇ρ
)

dx

≤ γ
(
ρ̄γ –2 + ργ –2)‖�∇ρ‖L2‖∇ρ‖L2

≤ ε

2
‖�∇ρ‖2

L2 + γ 2(ρ̄γ –2 + ργ –2)2 1
2ε

‖∇ρ‖2
L2 ,

L3 =
∫

�∇ρ ·
(

u · ∇u –
1
ρ

(
μ�u + (μ + λ)∇divu

)
)

dx

≤ ‖�∇ρ‖L2‖u‖L3‖∇u‖L6 +
(2μ + λ)

ρ̄
‖�∇ρ‖L2

(‖�u‖L2 + ‖∇divu‖L2
)

≤ C‖u‖ 1
2
L2‖∇u‖ 1

2
L2

∥
∥∇2u

∥
∥

L2‖�∇ρ‖L2 +
ε

2
‖�∇ρ‖2

L2 +
(2μ + λ)2

ρ̄22ε

∥
∥∇2u

∥
∥2

L2

≤ C(M)
ρ

1
4

E
1
4
0
(‖�∇ρ‖2

L2 +
∥
∥∇2u

∥
∥2

L2
)

+
ε

2
‖�∇ρ‖2

L2 +
(2μ + λ)2

ρ̄22ε

∥
∥∇2u

∥
∥2

L2 ,
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and

L4 = –
∫ 1

ρ
�∇ρ · F1 dx

= –
∫ 1

ρ
�∇ρ ·

(
�

2

4

( |∇ρ|2∇ρ

ρ2 +
∇ρ�ρ

ρ
–

∇ρ∇2ρ

ρ

)

+ (curlB) × B
)

dx

≤ C
�

2

ρ3 ‖�∇ρ‖L2‖∇ρ‖3
L6 + C

�
2

ρ2 ‖�∇ρ‖2
L2‖∇ρ‖L3 +

1
ρ

‖�∇ρ‖L2‖∇B · B‖L2

≤ C
�

2

ρ3 ‖�∇ρ‖L2
∥
∥∇2ρ

∥
∥3

L2 + C
�

2

ρ2 ‖�∇ρ‖2
L2‖∇ρ‖ 1

2
L2

∥
∥∇2ρ

∥
∥

1
2
L2

+
1
ρ

‖�∇ρ‖L2‖∇B · B‖L2

≤ C(M)
�

2

ρ3 ‖�∇ρ‖L2
∥
∥∇2ρ

∥
∥

L2 + C(M)
�

3
2 ρ̄

1
4

ρ2 E
1
4
0 ‖�∇ρ‖2

L2 +
1
ρ

‖�∇ρ‖L2‖∇B · B‖L2

≤ ε

2
‖�∇ρ‖2

L2 + C(M)
�

4

ρ6

∥
∥∇2ρ

∥
∥2

L2 + C(M)
�

3
2 ρ̄

1
4

ρ2 E
1
4
0 ‖�∇ρ‖2

L2 +
ε

2
‖�∇ρ‖2

L2

+
1

ρ22ε
‖∇B · B‖2

L2 .

Therefore, it can be obtained that

L2 + L3 + L4

≤
(

2ε +
(

1
ρ

1
4

+
�

3
2 ρ̄

1
4

ρ2

)

C(M)E
1
4
0

)

‖�∇ρ‖2
L2 + γ 2(ρ̄γ –2 + ργ –2)2 1

2ε
‖∇ρ‖2

L2

+ C(M)
�

4

ρ6

∥
∥∇2ρ

∥
∥2

L2 +
(

C(M)
ρ

1
4

E
1
4
0 +

(2μ + λ)2

ρ̄22ε

)
∥
∥∇2u

∥
∥2

L2 +
1

ρ22ε
‖∇B · B‖2

L2

≤ �
2

8
‖�∇ρ‖2

L2 + C(M)
(‖∇ρ‖2

H1 +
∥
∥∇2u

∥
∥2

L2
)

+ C‖∇B · B‖2
L2

provided

ε =
�

2

32
and E0 ≤

(
�

2ρ
9
2

16(ρ2 + �
3
2 (ρρ̄) 1

4 )C(M)

)4

.

Substituting the estimates of Li (i = 1, . . . , 4) into (2.12), we obtain

�
2

8

∫

|�∇ρ|2 dx

≤ d
dt

∫

�∇ρ · u dx + C(M)
(‖∇ρ‖2

H1 +
∥
∥∇2u

∥
∥2

L2
)

+ C‖∇B · B‖2
L2 .

(2.13)

Integrating the above inequality over (0, T), by (2.4), (2.6), and (2.8), we get (2.11). �
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Lemma 2.6 Under the assumptions of Proposition 2.1, it holds that

d
dt

‖B‖4
L4 + v‖B · ∇B‖2

L2 ≤ 0, (2.14)

provided E0 ≤ ( 2v
C(M) )2.

Proof Multiplying (2.2)3 by |B|2B, integrating the resulting equation over R3, combining
with (2.4), we have

1
4

d
dt

‖B‖4
L4 + 3v‖B · ∇B‖2

L2 ≤ C‖B · ∇B‖L2
∥
∥|B|2∥∥L6‖u‖L3 ≤ C(M)E

1
2
0 ‖B · ∇B‖2

L2 .

Therefore, letting E0 ≤ ( 2v
C(M) )2, we obtain (2.14). �

Proof of Proposition 2.1 Multiplying (2.2)2 by – 1
ρ
�(ρu), using (2.2)1 and integrating it over

R
3, we have

1
2

d
dt

(

‖∇u‖2
L2 +

�
2

4
∥
∥∇2ρ

∥
∥2

L2

)

+
∫ 1

ρ
�u · (μ�u + (μ + λ)∇ div u

)
dx

=
∫

ut · (�(ρu) – �u
)

dx

–
∫ 1

ρ

(
μ�u + (μ + λ)∇ div u

) · (�ρu + 2∇ρ · ∇u) dx

+
�

2

4

∫ (

1 –
1
ρ

)

∇�ρ · �(ρu) dx +
∫

(u · ∇u) · �(ρu) dx

+
∫ 1

ρ
∇P�(ρu) dx –

∫ 1
ρ

F1 · �(ρu) dx

=
6∑

i=1

Ki.

(2.15)

Taking advantage of (2.4) and (2.6), we give the estimates about ‖ut‖L2 and ‖�(ρu)‖L2 as
follows:

‖ut‖L2 ≤ C
(∥
∥∇2u

∥
∥

L2 +
∥
∥∇3ρ

∥
∥

L2 + ‖∇ρ‖L2 + ‖B · ∇B‖L2
)
, (2.16)

∥
∥�(ρu)

∥
∥

L2 ≤ C
(∥
∥∇2u

∥
∥

L2 + ‖∇ρ‖L3‖∇u‖L6 + ‖u‖L∞
∥
∥∇2ρ

∥
∥

L2
)

≤ C
∥
∥∇2u

∥
∥

L2 + C(M)
∥
∥∇2ρ

∥
∥

L2 .
(2.17)

Recalling (2.4), (2.7), (2.15), and (2.16) and utilizing Hölder, Young, and Sobolev inequali-
ties, we obtain

K1 ≤ C‖ut‖L2
(‖ρ – 1‖L∞

∥
∥∇2u

∥
∥

L2 + ‖∇ρ‖L3‖∇u‖L6 + ‖u‖L3
∥
∥∇2ρ

∥
∥

L6
)

≤ C(M)E
1
2
0 ‖ut‖L2

(∥
∥∇2u

∥
∥

L2 +
∥
∥∇3ρ

∥
∥

L2
)

≤ C(M)E
1
4
0
(∥
∥∇2u

∥
∥2

L2 +
∥
∥∇3ρ

∥
∥2

L2 + ‖∇ρ‖2
L2 + ‖B · ∇B‖2

L2
)
,
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K2 ≤ C
∥
∥∇2u

∥
∥

L2
(‖∇u‖L6‖∇ρ‖L3 + ‖u‖L∞

∥
∥∇2ρ

∥
∥

L2
)

≤
(

μ

8
+ C(M)E

1
4
0

)
∥
∥∇2u

∥
∥2

L2 + C(M)
∥
∥∇2ρ

∥
∥2

L2

and

K3 + K4 + K5 + K6

≤ C
(‖ρ – 1‖L∞

∥
∥∇3ρ

∥
∥

L2 + ‖u‖L3‖∇u‖L6
)(∥

∥∇2u
∥
∥

L2 + C(M)
∥
∥∇2ρ

∥
∥

L2
)

+ C
(‖B · ∇B‖L2 + ‖∇ρ‖3

L6 + ‖∇ρ‖L3
∥
∥∇2ρ

∥
∥

L6
)(∥

∥∇2u
∥
∥

L2 + C(M)
∥
∥∇2ρ

∥
∥

L2
)

≤ C
(‖∇ρ‖ 1

2
L2

∥
∥∇2ρ

∥
∥

1
2
L2

∥
∥∇3ρ

∥
∥

L2 + ‖u‖ 1
2
L2‖∇u‖ 1

2
L2

∥
∥∇2u

∥
∥

L2
)

× (∥
∥∇2u

∥
∥

L2 + C(M)
∥
∥∇2ρ

∥
∥

L2
)

+ C
(‖B · ∇B‖L2 +

∥
∥∇2ρ

∥
∥3

L2
)(∥

∥∇2u
∥
∥

L2 + C(M)
∥
∥∇2ρ

∥
∥

L2
)

≤
(

μ

8
+ C(M)E

1
2
0

)
∥
∥∇2u

∥
∥2

L2 + C‖B · ∇B‖2
L2 + C(M)E– 1

2
0 ‖∇ρ‖2

H1 .

Substituting the estimates of Ki (i = 1, . . . , 6) into (2.15), by (2.6) and (2.8), one has

d
dt

(‖∇u‖2
L2 +

∥
∥∇2ρ

∥
∥2

L2
)

+ 2C1
∥
∥∇2u

∥
∥2

L2

≤ C2‖B · ∇B‖2
L2 + C(M)E

1
2
0
∥
∥∇3ρ

∥
∥2

L2 + C(M)E– 1
2

0 ‖∇ρ‖2
H1 .

(2.18)

Multiplying (2.14) by 2C2
v , then substituting the resulting equation and (2.18) into (2.11),

combining with (2.8), we obtain

‖B‖4
L4 + ‖∇u‖2

L2 +
∥
∥∇2ρ

∥
∥2

L2 + C1

∫ T

0

∥
∥∇2u

∥
∥2

L2 dt

≤ C(M)E
1
2
0 + C3‖B0‖4

L4 + ‖∇u0‖2
L2 +

∥
∥∇2ρ0

∥
∥2

L2

≤ 3
2

(C3 + 1)M1.

(2.19)

Thus we complete the proof of Proposition 2.1. �

Lemma 2.7 Under the assumptions of Theorem 1.1, it holds that

‖∇B‖2
L2 +

∫ T

0

(‖Bt‖2
L2 +

∥
∥∇2B

∥
∥2

L2
)

dt ≤ C(M)E0 + C‖∇B0‖2
L2 , (2.20)

∥
∥∇2B

∥
∥2

L2 +
∫ T

0

(‖∇Bt‖2
L2 +

∥
∥∇3B

∥
∥2

L2
)

dt ≤ C(M)
(
1 + ‖∇B0‖2

H1
)
. (2.21)
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Proof Squaring both sides of (2.2)3, then integrating the resulting equation over R
3, by

(2.4) and (2.6), we have

v
d
dt

‖∇B‖2
L2 + ‖Bt‖2

L2 + v2∥∥∇2B
∥
∥2

L2

≤ C
(‖∇u‖2

L2‖B‖2
L∞ + ‖∇B‖2

L6‖u‖L6‖u‖L2
)

≤ C
(‖∇u‖2

L2‖∇B‖L2
∥
∥∇2B

∥
∥

L2 +
∥
∥∇2B

∥
∥2

L2‖∇u‖L2‖u‖L2
)

≤
(

C(M)E
1
2
0 +

v2

4

)
∥
∥∇2B

∥
∥2

L2 + C(M)‖∇B‖2
L2 .

(2.22)

Integrating inequality (2.22) from 0 to T , we obtain (2.20). Similarly, combining with (2.4),
(2.6), and (2.20), we obtain (2.21). Thus, we complete the proof of this lemma. �

At last, we prove the high-order estimates depending on time t.

Lemma 2.8 Under the assumptions of Theorem 1.1, it holds that

∥
∥∇3ρ

∥
∥2

H1 +
∥
∥∇2u

∥
∥2

H1 +
∫ T

0

(∥
∥∇4ρ

∥
∥2

H1 +
∥
∥∇3u

∥
∥2

H1
)

dt ≤ CT , (2.23)

∥
∥∇3B

∥
∥2

L2 +
∫ T

0

∥
∥∇4B

∥
∥2

L2 dt ≤ CT . (2.24)

Proof Similar to the proofs of Lemma 3.10, Lemma 3.11, and Lemma 4.3 in [10], we can
obtain (2.23). In fact, following Lemma 3.10 in [10], multiplying (2.2)2 by – �2(ρu)

ρ
, inte-

grating by part over R3 × (0, T), we have

sup
0≤t≤T

(∥
∥∇3ρ

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)

+
∫ T

0

∥
∥∇3u

∥
∥2

L2 dt

≤ Cδ

∫ T

0

∥
∥∇4ρ

∥
∥2

L2 dt + C(M) –
∫ T

0

∫

(curl B) × B · �2(ρu)
ρ

dx dt

= Cδ

∫ T

0

∥
∥∇4ρ

∥
∥2

L2 dt + C(M) + I1,

(2.25)

where δ is small enough and determined later. Similar to Lemma 3.11 and Lemma 4.3 in
[10], multiplying – ∇�2ρ

ρ
, integrating by part over R3 × (0, T), we get

∫ T

0

∥
∥∇4ρ

∥
∥2

L2 dt

≤ C sup
0≤t≤T

(∥
∥∇3ρ

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)

+ C
∫ T

0

∥
∥∇3u

∥
∥2

L2 dt + C

–
∫ T

0

∫

(curl B) × B · ∇�2ρ

ρ
dx dt

= C sup
0≤t≤T

(∥
∥∇3ρ

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)

+ C
∫ T

0

∥
∥∇3u

∥
∥2

L2 dt + C + I2.

(2.26)
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Substituting (2.26) into (2.25) and choosing δ > 0 sufficiently small gives

sup
0≤t≤T

(∥
∥∇3ρ

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)

+
∫ T

0

∥
∥∇3u

∥
∥2

L2 dt ≤ C(M) + I1 + C + CI2. (2.27)

According to integrating by parts and the Cauchy inequality, we obtain

I1 = –
∫ T

0

∫

(curl B) × B · �2(ρu)
ρ

dx dt

= –
∫ T

0

∫

�

(
(curl B) × B

ρ

)

· �(ρu) dx dt

≤ C
∫ T

0

∫ ∣
∣
∣
∣∇2

(
(curl B) × B

ρ

)∣
∣
∣
∣

2

dx dt +
∫ T

0

∫
∣
∣∇2(ρu)

∣
∣2 dx dt.

Utilizing (2.19), (2.20), (2.21), Hölder, Young, and Sobolev inequalities, we get

∫ ∣
∣
∣
∣∇2

(
(curl B) × B

ρ

)∣
∣
∣
∣

2

dx

≤ C‖∇ρ‖4
L6‖∇B‖2

L6‖B‖2
L∞ + C

∥
∥∇2ρ

∥
∥2

L6‖∇B‖2
L6‖B‖2

L6 + C‖∇ρ‖2
L6‖∇B‖4

L6

+ C
∥
∥∇3B

∥
∥2

L2‖B‖2
L∞ + C

∥
∥∇2B

∥
∥2

L6‖∇B‖L6‖∇B‖L2

≤ C
∥
∥∇2ρ

∥
∥4

L2

∥
∥∇2B

∥
∥2

L2‖∇B‖2
H1 + C

∥
∥∇3ρ

∥
∥2

L2

∥
∥∇2B

∥
∥2

L2‖∇B‖2
L2 + C

∥
∥∇2ρ

∥
∥2

L2

∥
∥∇2B

∥
∥4

L2

+ C
∥
∥∇3B

∥
∥2

L2‖∇B‖2
H1 + C

∥
∥∇3B

∥
∥2

L2

∥
∥∇2B

∥
∥

L2‖∇B‖L2

≤ C(M)
(∥
∥∇2B

∥
∥2

L2 +
∥
∥∇3ρ

∥
∥2

L2 +
∥
∥∇3B

∥
∥2

L2
)
.

Thus, by (2.11), (2.14), (2.19), and (2.20), it is obtained that

∫ T

0

∫ ∣
∣
∣
∣∇2

(
(curl B) × B

ρ

)∣
∣
∣
∣

2

dx dt

≤ C(M)
(∫ T

0

∥
∥∇2B

∥
∥2

L2 dt +
∫ T

0

∥
∥∇3ρ

∥
∥2

L2 dt +
∫ T

0

∥
∥∇3B

∥
∥2

L2 dt
)

≤ C(M)
(

C(M) + C‖∇B0‖2
L2 +

∫ T

0

∥
∥∇2u

∥
∥2

L2 dt

+
∫ T

0
‖∇B · B‖2

L2 dt + ‖∇B0‖2
H1

)

≤ C(M)
(
C(M) + ‖B0‖4

L4 + ‖∇B0‖2
H1

)

≤ C(M).

(2.28)

In addition, using (2.4) and (2.19), we have

∫
∣
∣∇2(ρu)

∣
∣2 dx

≤ C
∫

∣
∣∇2ρ

∣
∣2u2 dx + C

∫

|∇ρ|2|∇u|2 dx + C
∫

ρ2∣∣∇2u
∣
∣dx
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≤ C
∥
∥∇2ρ

∥
∥

L2

∥
∥∇2ρ

∥
∥

L6‖u‖2
L6 + C‖∇u‖L2‖∇u‖L6‖∇ρ‖2

L6 + C
∥
∥∇2u

∥
∥2

L2

≤ C
∥
∥∇2ρ

∥
∥

L2

∥
∥∇3ρ

∥
∥

L2‖∇u‖2
L2 + C‖∇u‖L2

∥
∥∇2u

∥
∥

L2

∥
∥∇2ρ

∥
∥

L2

∥
∥∇2ρ

∥
∥

L2 + C
∥
∥∇2u

∥
∥2

L2

≤ C(M)
(∥
∥∇2ρ

∥
∥2

L2 +
∥
∥∇3ρ

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)
.

Hence, using (2.8), (2.20), (2.14), and (2.19), it leads to

∫ T

0

∫
∣
∣∇2(ρu)

∣
∣2 dx dt ≤ C(M)

∫ T

0

(∥
∥∇2ρ

∥
∥2

L2 +
∥
∥∇3ρ

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)

dt

≤ C(M)
(
C(M) + E0 + ‖B0‖4

L4
)

≤ C(M).

(2.29)

Therefore,

I1 ≤ C(M). (2.30)

On the other hand, for I2, integrating by parts, the Cauchy inequality, (2.14), (2.20), (2.26),
and (2.28), one has

I2 = –
∫ T

0

∫

(curl B) × B · ∇�2ρ

ρ
dx dt

= –
∫ T

0

∫

�

(
(curl B) × B

ρ

)

· ∇�ρ dx dt

≤ C
∫ T

0

∫ ∣
∣
∣
∣∇2

(
(curl B) × B

ρ

)∣
∣
∣
∣

2

dx dt + C
∫ T

0

∫
∣
∣∇3ρ

∣
∣2 dx dt

≤ C(M).

(2.31)

Substituting (2.30) and (2.31) into (2.27), we obtain

sup
0≤t≤T

(∥
∥∇3ρ

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)

+
∫ T

0

∥
∥∇3u

∥
∥2

L2 dt ≤ C(M).

Together with (2.26), it yields

∫ T

0

∥
∥∇4ρ

∥
∥2

L2 dt ≤ C(M).

Therefore, we get the desired estimate (2.23).
Using (2.4), (2.6), (2.20), (2.21), and (2.23), similar to the proof of Lemma 2.7, one can

obtain (2.24). �

3 Proof of Theorem 1.1
Lemma 3.1 Under the assumptions of Proposition 2.1, it holds that

∫ T

0

∣
∣
∣
∣

d
dt

(‖∇ρ‖2
L2 + ‖∇u‖2

L2 + ‖∇B‖2
L2

)
∣
∣
∣
∣dt ≤ C(M). (3.1)
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Proof Combining with (2.20) and (2.21), we get

∫ T

0

∣
∣
∣
∣

d
dt

‖∇B‖2
L2

∣
∣
∣
∣dt ≤ C(M).

In view of (2.2)1, (2.5), and using Hölder, Young, and Sobolev inequalities, one has

‖∇ρt‖2
L2 ≤ C

∫
∣
∣∇2ρ

∣
∣2|u|2 + |∇ρ|2|∇u|2 + |ρ|2∣∣∇2u

∣
∣2 dx

≤ C
(‖u‖2

L∞
∥
∥∇2ρ

∥
∥2

L2 + ‖∇u‖L3‖∇u‖L6‖∇ρ‖2
L6 + ‖ρ‖2

L∞
∥
∥∇2u

∥
∥2

L2
)

≤ C(M)
(∥
∥∇2ρ

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)
.

Noticing (2.8) and the above inequality leads to

∫ T

0

∣
∣
∣
∣

d
dt

‖∇ρ‖2
L2

∣
∣
∣
∣dt ≤ C(M).

Multiplying (2.2)2 by ∇2u, integrating by parts, and using Hölder, Sobolev, and Young
inequalities, we get

∣
∣
∣
∣

d
dt

‖∇u‖2
L2

∣
∣
∣
∣ ≤ C

∥
∥∇2u

∥
∥2

L2 + C‖∇ρ‖2
H2 + ‖∇B · B‖2

L2 .

Integrating the above inequality over 0 to T , it follows from (2.6), (2.16), (2.13), and (2.14)
that

∫ T

0

∣
∣
∣
∣

d
dt

‖∇u‖2
L2

∣
∣
∣
∣dt ≤ C(M).

Thus, we complete the proof of this lemma. �

Finally, we prove Theorem 1.1.

Proof of Theorem 1.1 Applying all a priori estimates above, we arrive at

‖ρ – 1‖2
H4 + ‖u‖2

H3 + ‖B‖2
H3 +

∫ T

0
‖∇ρ‖2

H4 + ‖∇u‖2
H3 + ‖∇B‖2

H3 dt ≤ CT . (3.2)

Now, let [0, T∗) be the maximal existence interval of the solution to system (1.1)–(1.2).
Based on the local existence result (Lemma 2.1) and (3.2) and using the standard continuity
argument, we have that T∗ = +∞. Hence, the global existence of the solution is obtained.

Next, we investigate the large time behavior for solution. Following (2.6) and (2.8), we
have

∫ ∞

0

(‖∇ρ‖2
L2 + ‖∇u‖2

L2 + ‖∇B‖2
L2

)
dt ≤ C(M). (3.3)

Together with (3.1) and (3.3), it gives

lim
t→∞

(‖∇ρ‖2
L2 + ‖∇u‖2

L2 + ‖∇B‖2
L2

)
= 0. (3.4)
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Combining this with

‖ρ – 1‖2
H1 + ‖u‖2

H1 + ‖B‖2
H1 ≤ C(M)

and using the Sobolev inequality, we prove (1.5). Thus, we complete the proof of Theo-
rem 1.1. �
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