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Abstract
We present a new procedure for the numerical study of the wave equation. We use
the spectral discretization method associated with the Euler scheme for spatial and
temporal discretization. A detailed numerical analysis leads to an a priori error
estimate. We confirm the high precision of the method presented by a numerical
study.
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1 Introduction
During the last decade, many works have focused on the numerical analysis of second-
order parabolic and hyperbolic partial differential equations such as the heat and wave
equations [1–8].

The time and space approximation for the wave equation has been studied in [9] us-
ing the finite element method. We present a new study of this problem using the spectral
method associated with backward Euler discretization scheme. The spectral method is
known for its high precision [10, 11]. For the space discretization, the discrete spaces are
constructed from spaces of polynomials of high degree. Then the discrete problem is ob-
tained using the Galerkin method combined with numerical integration.

The outline of the paper is as follows. In Sect. 2, we study the continuous problem
and present some energy estimate properties. In Sect. 3, we are interested to the time-
semidiscrete problem. We discretize the second time derivative by using a second differ-
ence quotient of the solution on a nonuniform temporal grid. Then we obtain an optimal
a priori error estimate. In Sect. 4, we study the fully discrete problem and establish an
optimal a priori error estimate. Finally, in Sect. 5, we present a numerical study.

2 The continuous problem
Consider an open bounded connected domain � ⊂ R

d (d = 2 or 3) with Lipschitz con-
tinuous boundary �, and let T be a positive real number. Let Hs(�), s > 0, be the Sobolev
spaces associated with the norm ‖ · ‖s,� and seminorm | · |s,�. The space H1

0 (�) is the clo-
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sure in the space H1(�) of infinitely differentiable functions with compact support in �,
and H–1(�) is its dual space. We denote by (·, ·) and ‖ · ‖, respectively, the scalar prod-
uct and associated norm in L2(�). By H 1

2 (∂�) we denote the trace space of functions in
H1(�). Let γ ⊂ ∂�, H

1
2

00(γ ) be the space of functions in H 1
2 (γ ) such that their extension

by zero to ∂�/γ belongs to H 1
2 (∂�).

In the following, we define
• u(x, t) on �× ]0, T[ as

u : ]0, T[−→ X

t �−→ u(t) = u(·, t),

where X is a separable Banach space.
• C j(0, T ; X) represents the set of functions of time of class C j with values in X . It is a

Banach space with norm

‖u‖C j(0,T ;X) = sup
0≤t≤T

j∑

l=0

∥∥∂ l
t u

∥∥
X ,

where ∂ l
t u is the time partial derivative of u of order l.

• Lp(0, T ; X) = {v mesurable on ]0, T[ such that
∫ T

0 ‖v(t)‖p
X dt < ∞} is the Banach space

with norm

‖v‖Lp(0,T ;X) =

⎧
⎨

⎩
(
∫ T

0 ‖v(t)‖p
X dt)

1
p for 1 ≤ p < +∞,

sup0≤t≤T ‖v(t)‖X for p = +∞.

• Hs(0, T ; X) = {v ∈ L2(0, T ; X); ∂kv ∈ L2(0, T ; X); k ≤ s} is the Hilbert space with scalar
product

(u, v) =

(
(u, v)L2(0,T ;X) +

s∑

k=0

(
∂ku, ∂kv

)
L2(0,T ;X)

) 1
2

.

• W m,1(0, T , X) is the space of functions in L1(0, T , X) such that all their derivatives up
to the order m belong to L1(0, T , X).

Consider the wave equation problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2
t u – �u = 0 in �× ]0, T[,

u = 0 on �× ]0, T[,

u(·, 0) = u0 in �,

∂tu(·, 0) = v0 in �,

(1)

where the wave u is the unknown defined on �× ]0, T[, and (u0, v0) are the data functions
defined on �.
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This problem can be written in a more general form,

⎧
⎪⎪⎨

⎪⎪⎩

∂t� –
( 0 1

� 0

)
� = F in �× ]0, T[,

u = 0 on �× ]0, T[,

�(·, 0) = �0 in �,

(2)

where � =
( u

v=∂tu
)
, F =

( f
g
)
, and �0 =

( u0
v0

)
.

Lemma 1 If (f , g) ∈ L1(0, T ; H1
0 (�)) × L1(0, T ; L2(�)) and (u0, v0) ∈ H1

0 (�) × L2(�), then

(‖v‖2 + ‖∇u‖2) 1
2 ≤ (‖v0‖2 + ‖∇u0‖2) 1

2 +
∫ t

0

(‖f ‖ + ‖g‖)(s) ds, 0 ≤ t ≤ T . (3)

Proof 1 Taking the inner product of the first equation of problem (2) and
( –�u

v

)
and in-

tegrating by parts the second term, we obtain

1
2

d
dt

(‖∂tu‖2) +
1
2

d
dt

(‖∇u‖2) ≤ ‖f ‖ + ‖g‖.

By integrating this inequality between 0 and t we get estimate (3).

Remark 1 Consider the following Laplace problem:

⎧
⎨

⎩
–�u = h in �,

u = 0 on �.
(4)

Let u = (�)–1h be the solution of problem (4). The operator (�)–1 is a self-adjoint pos-
itive definite isometry of the space H–1(�) into H1

0 (�). Thus, for h ∈ H–1(�), we ob-
tain ‖((�)–1)

1
2 h‖ = ‖h‖H–1(�) (see [12], Chap. 1, Thm. 12.3, for the proof ). Then, for

(f , g) ∈ L1(0, T , L2(�)) × L1(0, T , H–1(�)), taking the inner product of the first equation
of system (2) and

( u
(�)–1v

)
, we obtain the following estimate:

(‖v‖2
H–1(�) + ‖u‖2) 1

2 ≤ (‖v0‖2
H–1(�) + ‖u0‖2) 1

2 +
∫ t

0

(‖f ‖ + ‖g‖H–1(�)
)
(s) ds.

Finally, we have the following result proved in [12, Chap. 1].

Proposition 1 For any data (u0, v0) ∈ H1
0 (�) × L2(�), system (1) has a unique solution

u ∈ C 1(0, T ; L2(�)) ∩ C 0(0, T ; H1
0 (�)). Moreover, this solution satisfies

‖∂tu‖2 + ‖∇u‖2 = ‖∇u0‖2 + ‖u0‖2.

3 Discretization on time
Consider a partition of the time interval [0, T] into subintervals [tk , tk+1], 1 ≤ k ≤ I ,
such that 0 = t0 < t1 < · · · < tK = T . We denote δtk = tk+1 – tk , δt = (δt1, . . . , δtK ), and
|δt| = max1≤k≤K |δtk|.
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To formulate the time semidiscrete problem, we apply the Euler implicit method to
system (1). Then it consists in finding the sequence of functions (uk)0≤k≤K in the space
H1

0 (�) × L2(�) × H1
0 (�)K–1 such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uk+1–uk

δtk
– uk –uk–1

δtk–1
– δtk�uk+1 = 0 in �, 1 ≤ k ≤ K ,

uk+1 = 0 on �, 1 ≤ k ≤ K ,

u0 = u0 in �,

u1 = u0 + δt0v0 in �.

(5)

We suppose that the data (u0, v0) ∈ H1
0 (�) × L2(�). Then, if u0 and v0 are known, then we

easily show that uk+1, k ≥ 1, is a solution of the following weak problem:
Find uk+1 ∈ H1

0 (�) such that for all v ∈ H1
0 (�),

∫

�

uk+1(x)v(x) dx + δt2
k

∫

�

∇uk+1(x)∇v(x) dx

=
∫

�

(
uk +

δtk

δtk–1

(
uk – uk–1)

)
(x)v(x) dx.

(6)

Proposition 2 If (u0, v0) ∈ H1
0 (�)×L2(�) is known, then problem (6) has a unique solution

uk+1, k ≥ 1, in H1
0 (�). Moreover, the solution (uk)0≤k≤K of problem (5) verifies for 0 ≤ k ≤ K

the following stability condition:

∥∥∥∥
uk+1 – uk

δtk

∥∥∥∥
2

+
∥∥∇uk+1∥∥2 ≤ ‖v0‖2 + 2‖∇u0‖2 + 2δt2

0‖∇v0‖2. (7)

Proof 2 Using the Lax–Milgram theorem, we show that problem (6) has a unique solu-
tion. Then, by iteration on k, we deduce that problem (5) has a unique solution.

Taking the inner product of uk+1–uk

δtk
and the first equation in (5), we obtain

∥∥∥∥
uk+1 – uk

δtk

∥∥∥∥
2

+
∥∥∇uk+1∥∥2 =

(
uk+1 – uk

δtk
,

uk – uk–1

δtk–1

)
+

(∇uk+1,∇uk). (8)

Applying the Cauchy–Schwarz inequality leads to

∥∥∥∥
uk+1 – uk

δtk

∥∥∥∥
2

+
∥∥∇uk+1∥∥2 ≤

∥∥∥∥
uk – uk–1

δtk–1

∥∥∥∥
2

+
∥∥∇uk∥∥2. (9)

Then by iteration on k we have

∥∥∥∥
uk+1 – uk

δtk

∥∥∥∥
2

+
∥∥∇uk+1∥∥2 ≤

∥∥∥∥
u1 – u0

δt0

∥∥∥∥
2

+
∥∥∇u1∥∥2.

Finally, we conclude by using the third and fourth equations of system (5).

Remark 2 1) We notice that for k ≥ 1, the solution uk+1 of problem (6) belongs to Hs+1(�),
s ≥ 1

2 . When the domain � is convex or of dimension 1, s ≥ 1 is explicitly known. For
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1
2 ≤ s ≤ 1, from condition (7) we derive the inequality

∥∥uk+1∥∥2 ≤ Cδt–2s
k

(‖v0‖2 + 2‖∇u0‖2 + 2δt2
0‖∇v0‖2), (10)

where the constant C is independent of the step δt.
This inequality is not optimal since ‖uk+1‖2 is not bounded independently of the step δt.
2) Using the implicit Euler scheme for the time discretization, problem (2) is written as

follows: Find �k =
( uk

vk

)
such that,

⎧
⎪⎪⎨

⎪⎪⎩

�k+1–�k

δtk
–

( 0 1
� 0

)
�k+1 = Fk+1 in �, 0 ≤ k ≤ K ,

uk+1 = 0 on �, 0 ≤ k ≤ K ,

�0 = �0 in �,

(11)

where Fk+1 =
( f k+1

gk+1

)
.

For n �= 0, systems (11) and (5) coincide if Fk+1 = 0, k ≥ 1. When n = 0, we propose the
following two cases where the two systems completely coincide:

i) We replace the fourth equation of system (5) by the following implicit equation:

⎧
⎨

⎩
u1 – δt2

0�u1 = u0 + δt0v0 in �,

u1 = 0 on �.
(12)

ii) We replace the third equation of system (11):

⎧
⎪⎪⎨

⎪⎪⎩

�k+1–�k

δtk
–

( 0 1
� 0

)
�k+1 = Fk+1 in �, 1 ≤ k ≤ K ,

uk+1 = 0 on �, 1 ≤ k ≤ K ,

v1 =
( u0+δt0v0

v0

)
in �.

(13)

Multiplying the first equation in (13) by
( –�uk+1

uk+1

)
, we obtain the following stability

condition:

∥∥vk+1∥∥2 +
∥∥∇uk+1∥∥2 ≤ 2

(∥∥v1∥∥2 +
∥∥∇u1∥∥2) + 2

( k∑

j=1

δtj
(∥∥gj+1∥∥ +

∥∥∇f j+1∥∥)
)2

. (14)

However, if we take the inner product of the first equation of system (13) and( uk+1

(�)–1uk+1

)
, we obtain the following stability condition in terms of weaker norms:

∥∥vk+1∥∥2
H–1(�) +

∥∥uk+1∥∥2

≤ 2
(∥∥v1∥∥2

H–1(�) +
∥∥u1∥∥2) + 2

( k∑

j=1

δtj
(∥∥gj+1∥∥

H–1(�) +
∥∥f j+1∥∥)

)2

.
(15)

To obtain the error estimate between the solutions u of (1) and (u)k
0≤k≤K of (5), we define

the error ϒk =
( e(u)k

e(v)k

)
such that e(u)k = u(tk) – uk and e(v)k = v(tk) – vk . We can easily show
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that (ϒ)k
0≤k≤K is a solution of (13), where the two components of Fk+1 are the following

consistency errors:

ε(u)k =
u(tk+1) – u(tk)

δtk
– ∂tu(tk+1), ε(v)k =

v(tk+1) – v(tk)
δtk

– ∂tv(tk+1). (16)

Theorem 1 If a solution u of problem (1) belongs to W 3,1(0, T ; L2(�)) ∩ W 2,1(0, T ; H1
0 (�)),

then
∥∥ε(u)k∥∥2 +

∥∥∇(
u(tk) – uk)∥∥2

≤ Cδt2
(∫ tk

0

(∥∥∂3
t u

∥∥ +
∥∥∂2

t ∇u
∥∥)

(s) ds
)2

, 0 ≤ k ≤ K ,
(17)

where C is a positive constant independent of δt.

Proof 3 Since (ϒ)k
0≤k≤K is a solution of (13), where the second member is Fk+1. Then

applying the stability condition (14) leads to

∥∥e(u)k∥∥2 +
∥∥∇e(u)k∥∥2

≤ 2
(∥∥e(v)0∥∥2 +

∥∥∇e(u)0∥∥2) + 2

( k∑

j=1

δtj
(∥∥ε(v)j∥∥ +

∥∥∇ε(u)j∥∥)
)2 (18)

thanks to the Taylor theorem with integral remainder to bound the terms ‖ε(v)j‖,
‖∇ε(u)j‖, ‖e(v)0‖, and ‖∇e(u)0‖. Then we conclude the desired estimate (17).

We can find the following error estimate in weaker norms by using the same technique
as the proof of Theorem 1 and replacing condition (14) by (15).

Corollary 1 Suppose that the solution u of system (1) belongs to W 3,1(0, T ; L2(�)) ∩
W 2,1(0, T ; H1

0 (�)). Then the following a priori error estimate between the solution u and
the solution (u)k

0≤k≤K of system (5) holds for 0 ≤ k ≤ K :

∥∥ε(u)k∥∥2
H–1(�) +

∥∥∇(
u(tk) – uk)∥∥2 ≤ Cδt2

(∫ tk

0

(∥∥∂3
t u

∥∥
H–1(�) +

∥∥∂2
t ∇u

∥∥)
(s) ds

)2

, (19)

where C is a positive constant independent of δt.

We remark that the obtained estimates (18) and (19) are optimal of order 1 in time, since
the discretization is based on the implicit Euler scheme, which is of order 1.

4 The spectral discretization
We further suppose that � is a rectangle for d = 2 or a parallelepiped rectangle for d = 3.

Let PN (�) the space of polynomials of degree ≤ N (N ≥ 2) for each variable, and let
P

0
N (�) = PN (�) ∩ H1

0 (�). We define ζi, 0 ≤ i ≤ N , the set of nodes, roots of the polynomial
(1 – x2)L′

N , where LN is the Legendre polynomial, and �i, 0 ≤ i ≤ N , are the weight set of
the following Gauss–Lobatto quadrature formula on the interval ]–1, 1[:

∀ηN ∈ P2N–1
(
]–1, 1[

)
,

∫ 1

–1
ηN (x) dx =

N∑

i=0

ηN (ζi)�i. (20)
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We recall the following property (see [10, 13]):

∀ηN ∈ PN
(
]–1, 1[

)
, ‖ηN‖2

L2(]–1,1[) ≤
N∑

i=0

η2
N (ζi)�i ≤ 3‖ηN‖2

L2]–1,1[. (21)

The reference domain ]–1, 1[d (d = 2, 3) is transformed to the domain � using the affine
mapping T , and the scalar product is defined on continuous functions u and v by

(u, v)N

=

⎧
⎨

⎩

meas(�)
4

∑N
i=0

∑N
j=0(u ◦ T)(ζi, ζj)(v ◦ T)(ζi, ζj)�i�j if d = 2,

meas(�)
8

∑N
i=0

∑N
j=0

∑N
k=0(u ◦ T)(ζi, ζj, ζk)(v ◦ T)(ζi, ζj, ζk)�i�j�k if d = 3.

(22)

Remark 3 For simplicity of analysis, we suppose that the spectral discretization is fixed
over time.

We suppose that u0 and v0 are continuous on �̄. The discrete problem is deduced from
(5) by applying the Galerkin method combined with numerical integration:

For u0
N = IN (u0) and u1

N = IN (u0) + δt0IN (v0) in �, (23)

where IN is the interpolating operator from L2(�) into PN (�), find uk
N ∈ P

0
N (�)×PN (�)×

(P0
N (�))K–1, 1 ≤ k ≤ K , such that for all vN ∈ P

0
N (�),

(
uk+1

N – uk
N

δtk
–

uk
N – uk–1

N
δtk–1

, vN

)

N
+ δtk

(∇uk+1
N ,∇vN

)
N = 0. (24)

As in (6), uk+1
N , 1 ≤ k ≤ K , is the solution of the discrete weak problem

(
uk+1

N , vN
)

N + δt2
k
(∇uk+1

N ,∇vN
)

N =
(

uk
N +

δtk

δtk–1

(
uk

N – uk–1
N

)
, vN

)

N
. (25)

Proposition 3 Let the data (u0, v0) ∈ H1
0 (�) × L2(�). If u0

N and v0
N are known, then prob-

lem (25) has a unique solution uk+1
N , k ≥ 1, in H1

0 (�). Moreover, the solution (uk
N )0≤k≤K of

problem (23)–(24) satisfies for 0 ≤ k ≤ K the following stability condition:

∥∥∥∥
uk+1

N – uk
N

δtk

∥∥∥∥
2

+
∥∥∇uk+1

N
∥∥2

≤ (
3d)K(∥∥IN (v0)

∥∥2 + 2
∥∥∇IN (u0)

∥∥2 + 2δt2
0
∥∥∇IN (v0)

∥∥2).

(26)

Proof 4 We show that problem (25) has a unique solution using the Lax–Milgram theo-
rem and property (21).

To prove the stability condition (26), we define ‖ · ‖d the discrete norm deduced from
the discrete scalar product (·, ·)N . Now letting vN = uk+1

N –uk
N

δtk
in (24) leads to

∥∥∥∥
uk+1

N – uk
N

δtk

∥∥∥∥
2

d
+

∥∥∇uk+1
N

∥∥2
d =

(
uk+1

N – uk
N

δtk
,

uk
N – uk–1

N
δtk–1

)

N
+

(∇uk+1
N ,∇uk

N
)

N .
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Using the Cauchy–Schwarz inequality and (21), we have

∥∥∥∥
uk+1

N – uk
N

δtk

∥∥∥∥
2

+
∥∥∇uk+1

N
∥∥2 ≤ 3d

(∥∥∥∥
uk

N – uk–1
N

δtk–1

∥∥∥∥
2

+
∥∥∇uk∥∥2

)
.

Then iterating over k, we obtain

∥∥∥∥
uk+1 – uk

δtk

∥∥∥∥
2

+
∥∥∇uk+1∥∥2 ≤ (

3d)K
(∥∥∥∥

u1 – u0

δt0

∥∥∥∥
2

+
∥∥∇u1∥∥2

)
.

Finally, estimate (26) is deduced from (23).

Proposition 4 Let u0, v0 be continuous on �, and let u0
N , v0

N be known. The error estimate
between solutions uk+1, k ≥ 1, and uk+1

N , k ≥ 1, of problems (6) and (25), respectively, is

∥∥uk+1 – uk+1
N

∥∥ ≤ C

(
inf

χk+1
N ∈P0

N (�)

∥∥uk+1 – χ k+1
N

∥∥ +

[
∥∥u0 – u0

N
∥∥ +

∥∥v0 – v0
N
∥∥

+
k∑

j=1

(
T1,j + T2,j + T3,j)

])
,

(27)

where

T1,j =
1

δt2
j

sup
vN ∈P0

N (�)

∫
�

(uj+1 – uj)vN dx – (χ j+1
N – χ

j
N , vN )N

‖vN‖ ,

T2,j = sup
vN ∈P0

N (�)

∫
�

∇uj+1∇vN dx – (∇χ
j+1
N ,∇vN )N

‖vN‖ ,

T3,j = sup
vN ∈P0

N (�)

∫
�

(uj – uj–1)vN dx – (IN (uj – uj–1), vN )N

‖vN‖ ,

and C is a positive constant independent of N .

Proof 5 Consider χ k+1
N ∈ P

0
N (�). By the triangle inequality we have

∥∥uk+1 – uk+1
N

∥∥ ≤ ∥∥uk+1 – χ k+1
N

∥∥ +
∥∥χ k+1

N – uk+1
N

∥∥.

To estimate ‖uk+1
N –χ k+1

N ‖, we begin by writing problems (5) and (25) for vN ∈ P
0
N (�). Then

we consider τk = δtk
δtk–1

and doing the difference term by term, we obtain

(
uk+1

N – χ k+1
N , vN

)
N + δt2

k
(∇(

uk+1
N – χ k+1

N
)
,∇vN

)
N =

(
uk

N – χ k
N , vN

)
N + τkK

k(vN ),

where

K k(vN ) =
1

δt2
k

(∫

�

(
uk+1 – uk)vN dx –

(
χ k+1

N – χ k
N , vN

)
N

)

+
∫

�

∇uk+1∇vN dx –
(∇χ k+1

N ,∇vN
)

N

+
∫

�

(
uk – uk–1)vN dx –

(
IN

(
uk – uk–1), vN

)
N .
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Since K k is linear and continuous on P
0
N (�), by the Riesz theorem there exists ϑk

N in
P

0
N (�) such that

K k(vN ) =
(
ϑk

N , vN
)

N .

Applying the result proved in [14, Prop. 4.1] and [15], we get

∥∥uk+1
N – χ k+1

N
∥∥ ≤ C

(
∥∥u0 – u0

N
∥∥ +

∥∥v0 – v0
N
∥∥ +

k∑

j=1

∥∥ϑ
j
N
∥∥2

)1/2

,

where C is a positive constant independent of N .
So we conclude (27), since

∥∥ϑ
j
N
∥∥ ≤ C sup

vN ∈P0
N (�)

(ϑ j
N , vN )N

‖vN‖ ,

where C is a positive constant independent of N .

To find the order of convergence as a function of N , it is necessary to estimate each of
the terms of the second member of inequality (27).

• Estimation of T1,j

We consider � j+1 = uj+1 – uj and χ
j+1
N – χ

j
N = �

1,0
N–1(� j+1). By the exactness of the Gauss–

Lobatto quadrature formula of (20),
∫
�

�
1,0
N–1(� j+1)vN dx and (�1,0

N–1(� j+1), vN )N are equal,
and thus

T1,j ≤ ∥∥� j – �
1,0
N–1

(
� j)∥∥, (28)

where �
1,0
N is the orthogonal projection operator from H1

0 (�) into P
0
N (�) related to the

inner product defined by the semi norm | · |1,�. (See ([13], Lemma VI.2.5) and [10] for all
the properties of this operator.)

• Estimation of T2,j

Since the Gauss–Lobatto quadrature formula is exact for a polynomial of degree ≤ 2N – 1,
we have

∫

�

∇uj+1∇vN dx –
(∇χ

j+1
N ,∇vN

)
N

=
∫

�

∇(
uj+1 – �

1,0
N–1uj+1)∇vN dx –

(∇(
χ

j+1
N – �

1,0
N–1χ

j+1
N

)
,∇vN

)
N .

(29)

Thanks to the triangle and Cauchy–Schwarz inequalities, we have

sup
vN ∈P0

N (�)

∫
�

∇uj+1∇vN dx – (∇χ
j+1
N ,∇vN )N

‖vN‖

≤ (∣∣uj+1 – �
1,0
N–1uj+1∣∣

1,� +
∣∣χ j+1

N – �
1,0
N–1χ

j+1
N

∣∣
1,�

)
.

(30)

Thus we conclude using the properties of �
1,0
N–1.
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• Estimation of T3,j

Let θ j = uj – uj–1. We use for this estimation �N–1 the orthogonal projection from L2(�)
into PN–1(�). By the same argument above for the Gauss–Lobatto formula, we have

∫

�

θ j(x)vN (x) dx –
(
INθ j, vN

)
N

=
∫

�

(
θ j – �N–1θ

j)(x)vN (x) dx –
(
INθ j – �N–1θ

j, vN
)

N .

Using inequality (21) in each direction leads to
∫

�

θ j(x)vN (x) dx –
(
INθ j, vN

)
N ≤ [∥∥θ j – �N–1θ

j∥∥2 + 9
∥∥θ j – INθ j∥∥2]‖vN‖.

Thanks to the approximation properties of operator �N–1 (see [10, Thm. 7.1]) and IN (see
[10, Thm. 14.2]), for θ j ∈ Hs(�); s > 1, we obtain

sup
vN ∈PN (�)

∫
�

θ j(x)vN (x) dx – (θ j, vN )N

‖vN‖ ≤ CN–2s∥∥θ j∥∥2
s,�. (31)

Finally, to estimate

inf
χk+1

N ∈P0
N (�)

∥∥uk+1 – χ k+1
N

∥∥,
∥∥u0 – u0

N
∥∥ and

∥∥v0 – v0
N
∥∥, (32)

we choose, respectively, χ k+1
N = �

1,0
N uk+1, u0

N = �
1,0
N u0, and v0

N = �N v0. Then we conclude
using properties of operators �

1,0
N and �N .

So, from estimates (28), (30), (31), and (32) we obtain the following main theorem.

Theorem 2 For (u0, v0) continuous on �̄, solution (uk)0≤k≤K of problem (5) belongs to
Hs(�); s > 1. The error between solutions uk+1 and (uk+1

N ) of problems (6) and (25), respec-
tively, satisfies

∥∥uk+1 – uk+1
N

∥∥ ≤ C

[
N–s

(
∥∥uk+1∥∥

s,� +
k∑

j=1

(
δt–2

j
∥∥uj+1 – uj∥∥

s,� +
∥∥uj – uj–1∥∥

s,�

)
)

+ N1–s
k∑

j=1

∥∥uj+1∥∥
s,�

]
,

(33)

where C is a positive constant independent of N .

5 Numerical results
Consider the interpolating Lagrange polynomial ϕj defined by

ϕj ∈ P
(
[–1, 1]

)
, ϕj(ζi) = δij, 0 ≤ i, j ≤ N ,

where δij is the Kronecker symbol. The solution uk+1
N of problem (25) is written as

uk+1
N (x, y) =

N–1∑

i=1

N–1∑

j=1

uk+1
N (ζi, ζj)ϕi(x)ϕj(y).
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Let Uk+1 be the admissible solution vector of components uk+1
N (ζi, ζj). The matrix system

deduced form of the discrete problem (25) is written

(
Dk+1 + δt2

k Ak+1)Uk+1 = Fk , (34)

where Dk+1 is a diagonal matrix of coefficients �r�s, 1 ≤ r, s ≤ N –1, Ak+1 is the matrix with
coefficients (∇(ϕiϕj);∇(ϕrϕs)), 1 ≤ i, j, r, s ≤ N – 1, and Fk is the vector with components

uk
N (ζr , ζs) +

δtk

δtk–1

(
uk

N (ζr , ζs) – uk–1
N (ζr , ζs)

)
�r�s, 1 ≤ r, s ≤ N – 1.

We remark that the matrix Dk+1 + δt2
k Ak+1 is symmetric and positive definite. Then system

(34) is solved using the gradient conjugate method at each iteration.

5.1 Iterative algorithm
Step 1: Let

u0
N = IN (u0) and u1

N = IN (u0) + δt0IN (v0).

Step 2: Suppose uk–1
N and uk

N are known The linear system (34) is solved by the gradient
conjugate method

(
Dk+1 + δt2

k Ak+1)Uk+1 = Fk .

We do the iterations until the following condition is satisfied:

∥∥Uk+1
N – Uk

N
∥∥

H1(�) ≤ ξ ,

where ξ = 10–10 for all the following numeric tests.

5.2 Time convergence
We consider the domain � = ]–1, 1[2. Two exact solutions are tested.

The first one is

u(t, x, y) = et sin(πx) sin(πy). (35)

We choose T = 1, N = 20, and δt = 10–k , k = 1, . . . , 4. Figure 1 deals with the quantities
log10 ‖u – uNδt‖H1(�) (in blue) and log10 ‖u – uNδt‖L2(�) (in red) as functions of log10(δt).

For test 2, we study the singular solution

u(t, x, y) = t3/2(1 – x2)5/2(1 – y2)5/2. (36)

Figure 2 deals with the same curves as in Fig. 1 tested for the solution (36) when N = 20,
T = 0.1, and δt = 5.10–2, 10–2, 5.10–3, 10–4. The obtained results show the convergence of
the method with an order of convergence almost equal to 1.
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Figure 1 Time error for solution (35)

Figure 2 Time error for solution (36)

5.3 Spectral convergence
In this test, we fix δt = 0.01 and take N = 5, 7, 9, 12, 14, 15, 17, 18, 20, 22 and T = 1. We con-
sider

u = (1 + t)
(
1 – x2)(1 – y2). (37)

Figure 3 (respectively, Fig. 4) deals with log10 ‖u – uNδt‖H1(�) (in blue) and log10 ‖u –
uNδt‖L2(�) (in red) as functions of N (respectively, log10(N)). We remark that the error
norms log10 ‖u – uNδt‖H1(�) decrease exponentially until N = 10 and stagnate for N > 10.
The errors log10 ‖u – uNδt‖L2(�) decrease until N = 10 and stagnate for N > 10. We remark
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Figure 3 Semilogarithmic spectral error for solution (37)

Figure 4 Logarithmic spectral error for solution (37)

Figure 5 Spectral convergence: Continuous solution (right), discrete solution (left)
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that convergence stagnates. This is due to the fact that the time order of convergence is
less than the order of the spectral method.

Finally, the isovalues of the exact and discrete solutions (37) are presented in Fig. 5.

6 Conclusion and future work
This work concerns the numerical analysis of the implicit Euler scheme in time and the
spectral discretization in space of the second-order wave equation. We prove an optimal
error estimate in time and space. These estimates depend only on the regularity of the
solution. Although the spectral methods are known as high-order methods in space, we
remark that they have the disadvantage of losing part of this accuracy due to lower order
of temporal discretization (often of order 1 or 2). The numerical analysis and implemen-
tation of the more difficult case where the spectral discretization depends on time using
the second-order BDF method for the time discretization will be the subject of our forth-
coming work.
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