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This paper deals with a class of nonlinear scalar field equations with an
inhomogeneous perturbation. Two positive solutions were obtained using the
variational methods.
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1 Introduction and main result
In this paper, we consider the following nonlinear scalar field equations with an inhomo-
geneous perturbation

–�u = g(u) + h(x), u ∈ H1(
R

N)
, N ≥ 3. (1.1)

Actually, g satisfies the Berestycki–Lions conditions:
(g1) g ∈ C(R,R);
(g2) –∞ < lim infs→0+

g(s)
s ≤ lim sups→0+

g(s)
s = –m < 0;

(g3) lims→+∞ g(s)
s2∗–1 = 0, where 2∗ = 2N

N–2 ;
(g4) there exists ζ > 0 such that G(ζ ) :=

∫ ζ

0 g(τ ) dτ > 0;
and h satisfies

(h1) there exists p ∈ [ 2N
N+2 , 2] such that h ∈ Lp(RN );

(h2) h is nonnegative and h �≡ 0;
(h3) h is radially symmetric;
(h4) (∇h, x) ∈ L

2N
N+2 (RN ), where (·, ·) denotes scalar product in R

N .
When h ≡ 0, Eq. (1.1) reduces to the following nonlinear scalar field equations

–�u = g(u), u ∈ H1(
R

N)
, N ≥ 3. (1.2)

Equation (1.2) possesses strong physical background as introduced in [1, 6] and has been
extensively studied, for example, in [3, 5, 10, 12]. Especially in [3], Berestycki and Lions
gave nearly optimal conditions known as the Berestycki–Lions conditions.
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In [2, 8, 9], the authors studied Eq. (1.2) with a homogeneous perturbation and obtained
a positive solution using the variational method. In this paper, we consider the effect of
an inhomogeneous perturbation. In other words, we investigate the existence of positive
solutions of Eq. (1.1). With regard to Eq. (1.1), there are some results, for example, [4,
14, 15]. Compared with those results, in the present paper, the nonlinearity g is almost
optimal.

Set | · |s = (
∫
RN | · |s dx) 1

s . Using the variational method, we get the following

Theorem 1.1 Suppose that (g1)–(g3) and (h1)–(h3) hold. Then there exists � > 0 such that
when |h|p < �, Eq. (1.1) has a positive solution. If we add (g4) and (h4), then when |h|p < �,
Eq. (1.1) has another positive solution.

We have something to say about the perturbation h. The assumptions (h1) and (h2) are
necessary, and (h3) is to overcome the lack of compactness. Moreover, to prove the second
positive solution, we need to use the Pohožaev identity, and then (h4) seems appropriate.

Set f (s) = g(s) + ms, then Eq. (1.1) equals to the following equation

–�u + mu = f (u) + h(x), u ∈ H1(
R

N)
, N ≥ 3. (1.3)

where f satisfies
(f1) f ∈ C(R,R);
(f2) –∞ < lim infs→0+

f (s)
s ≤ lim sups→0+

f (s)
s = 0;

(f3) lims→+∞ f (s)
s2∗–1 = 0;

(f4) there exists ζ > 0 such that F(ζ ) :=
∫ ζ

0 f (τ ) dτ > 1
2 mζ 2.

We only need to prove the following

Theorem 1.2 Suppose that (f1)–(f3) and (h1)–(h3) hold. Then there exists � > 0 such that
when |h|p < �, Eq. (1.3) has a positive solution. If we add (f4) and (h4), then when |h|p < �,
Eq. (1.3) has another positive solution.

Remark 1.3 (i) f can be sign-changing. (ii) There exist some functions that satisfy (h1)–
(h4). For example,

h1(x) =
�

2√
ωN (1 + |x|N )

, h2(x) =
�e– |x|

2√
NωN [1 + (N + 1)!]

,

where ωN denotes the volume of the unit ball in R
N . By computing, we have hi ∈ L2(RN ),

(∇hi, x) ∈ L
2N

N+2 (RN ) and |hi|2 < �, i = 1, 2.

The rest of the paper is organized as follows: In Sect. 2, we introduce some preliminaries.
In Sect. 3, we give the proof of the first positive solution. Section 4 is devoted to obtaining
the second positive solution.

2 Preliminaries
From now on, C, C1, C2, . . . , denotes various positive constant, u± = max{±u, 0} and
(H ,‖ · ‖) is a Hilbert space, where

H =
{

u ∈ H1(
R

N)
: u(x) = u

(|x|)}, ‖ · ‖ =
[∫

RN

(|∇ · |2 + m| · |2)dx
] 1

2
.
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To ensure the positivity of solutions and for simplicity, we always take f (s) = 0 for all s ≤ 0.
As is well known, the solutions of Eq. (1.3) correspond to the critical points of the following
energy functional

I(u) =
1
2
‖u‖2 –

∫

RN
F(u) dx –

∫

RN
h(x)u dx.

By Principle of symmetric criticality [13], we know that if u is a critical point of I restricted
to H , then u is a critical point of I in H1(RN ). Set

F1(s) =
∫ s

0
f +(t) dt and F2(s) =

∫ s

0
f –(t) dt,

then F1(s) ≥ 0, F2(s) ≥ 0, F(s) = F1(s) – F2(s) for all s ∈R,

I(u) =
1
2
‖u‖2 +

∫

RN
F2(u) dx –

∫

RN
F1(u) dx –

∫

RN
h(x)u dx

and by (f1)–(f3), we have

lim
s→0+

f +(s)
s

= lim
s→+∞

f ±(s)
s2∗–1 = 0. (2.1)

3 The first positive solution of Eq. (1.3)
In this section, we prove that Eq. (1.3) has a local minimal solution.

Lemma 3.1 Suppose that (f1)–(f3) and (h1) hold. Then there exist ρ > 0, � > 0, α > 0 such
that when |h|p < �, I(u) ≥ α for all ‖u‖ = ρ .

Proof From (2.1), it follows that

F1(s) ≤ m
4

|s|2 + C1|s|2∗
for all s ∈R.

Combining with Hölder’s inequality and Sobolev’s inequality, we get

I(u) ≥ 1
2
‖u‖2 –

m
4

∫

RN
u2 dx – C1

∫

RN
|u|2∗

dx – |h|p|u| p
p–1

≥ (
C2‖u‖ – C3‖u‖2∗–1 – C4|h|p

)‖u‖.

Define k(t) = C2t – C3t2∗–1 for t > 0, then there exists ρ > 0 such that k(t) is increasing in
[0,ρ], k(t) is decreasing in [ρ, +∞), and k(ρ) = maxt>0 k(t). Hence when |h|p < � := k(ρ)

C4
, we

have I(u) ≥ α := [k(ρ) – C4|h|p]ρ for all ‖u‖ = ρ . �

Define Bρ = {u ∈ H : ‖u‖ ≤ ρ} and m = infu∈Bρ
I(u), then we have

Lemma 3.2 Suppose that (f1)–(f3) and (h1)–(h2) hold. Then m ∈ (–∞, 0).

Proof It follows from (f1)–(f2) that there exist M > 0 and θ > 0 such that

F(s) ≥ –Ms2 for all s ∈ [0, θ ).
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By (h2), there exist L ∈ (0, θ ) and ϕ ∈ H such that
∫
RN hϕ dx > 0 and 0 ≤ ϕ(x) ≤ L for all

x ∈R
N . Then we have

lim
t→0+

I(tϕ)
t

≤ lim
t→0+

[
t‖ϕ‖2

2
+ Mt

∫

RN
ϕ2 dx –

∫

RN
hϕ dx

]
= –

∫

RN
hϕ dx < 0,

which implies that there exists t0 > 0 such that ‖t0ϕ‖ ≤ ρ and I(t0ϕ) < 0. Hence m < 0. It is
obvious that m > –∞. �

Lemma 3.3 Suppose that (f1)–(f3) and (h1)–(h3) hold. Then m is achieved.

Proof By the definition of m, there exists a sequence {un} ⊂ H such that ‖un‖ ≤ ρ and
I(un) = m + o(1). Then there exists u ∈ H such that up to a subsequence,

⎧
⎪⎪⎨

⎪⎪⎩

un ⇀ u, in H ,

un → u, in Ls
loc(RN ), 2 < s < 2∗,

un(x) → u(x), a.e. in R
N .

(3.1)

The weakly lower semicontinuity of the norm infers

‖u‖ ≤ lim inf
n→∞ ‖un‖. (3.2)

Thus ‖u‖ ≤ ρ . Fatou’s lemma [11] and Strauss’s compactness lemma [3] yield

∫

RN
F2(u) dx ≤ lim inf

n→∞

∫

RN
F2(un) dx (3.3)

and

∫

RN
F1(un) dx =

∫

RN
F1(u) dx + o(1). (3.4)

Since (h1) holds,

∫

RN
hun dx =

∫

RN
hu dx + o(1). (3.5)

By (3.2)–(3.5), we get

m = lim inf
n→∞ I(un)

≥ 1
2
‖u‖2 +

∫

RN
F2(u) dx –

∫

RN
F1(u) dx –

∫

RN
h(x)u dx

= I(u)

≥ m.

Hence I(u) = m. �
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The proof of the first positive solution From Lemma 3.3, there exists u ∈ H such that ‖u‖ ≤
ρ and I(u) = m. Lemma 3.1 infers ‖u‖ < ρ . Thus for any v ∈ H ,

〈
I ′(u), v

〉
= lim

t→0+

I(u + tv) – I(u)
t

≥ 0

and

〈
I ′(u), v

〉
= lim

t→0–

I(u + tv) – I(u)
t

≤ 0,

which imply I ′(u) = 0. By 〈I ′(u), u–〉 = 0, we know u– = 0. The strong maximum principle
deduces u > 0 in R

N . �

4 The second positive solution of Eq. (1.3)
In this section, we prove that Eq. (1.3) has another positive solution. In order to obtain a
bounded Palais–Smale sequence, we use the following Jeanjean’s theorem [7].

Theorem 4.1 Let X be a Banach space equipped with a norm ‖ · ‖X and let J ⊂ R
+ be an

interval. We consider a family {�μ}μ∈J of C1-functionals on X of the form

�μ(u) = A(u) – μB(u), ∀μ ∈ J ,

where B(u) ≥ 0 for all u ∈ X and such that either A(u) → +∞ or B(u) → +∞ as ‖u‖X →
+∞. We assume that there are two points v1, v2 in X such that

cμ = inf
γ∈�

max
t∈[0,1]

�μ

(
γ (t)

)
> max

{
�μ(v1),�μ(v2)

}
,

where

� =
{
γ ∈ C

(
[0, 1], X

)
: γ (0) = v1,γ (1) = v2

}
.

Then for almost every μ ∈ J , there is a sequence {un} ⊂ X such that
(i) {un} is bounded in X ,

(ii) �μ(un) → cμ and
(iii) �′

μ(un) → 0 in the dual X∗ of X .
Moreover, the map μ → cμ is non-increasing and continuous from the left.

From [3], we know that Eq. (1.2) has a positive ground state solution ω ∈ H and
∫

RN
F1(ω) dx –

∫

RN
F2(ω) dx –

m
2

∫

RN
ω2 dx > 0.

Then there exists δ ∈ (0, 1) such that

δ

∫

RN
F1(ω) dx –

∫

RN
F2(ω) dx –

m
2

∫

RN
ω2 dx > 0. (4.1)

In Theorem 4.1, we set

X = H , ‖ · ‖X = ‖ · ‖, �μ = Iμ, J = [δ, 1], B(u) =
∫

RN
F1(u) dx
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and

A(u) =
1
2
‖u‖2 +

∫

RN
F2(u) dx –

∫

RN
hu dx.

By Hölder’s inequality and Sobolev’s inequality, we have

A(u)
‖u‖ ≥ 1

2
‖u‖ –

∫

RN
h

u
‖u‖ dx ≥ 1

2
‖u‖ – C|h|p → +∞ as ‖u‖ → +∞,

which implies A(u) → +∞ as ‖u‖ → +∞. Note that

Iμ(u) = A(u) – μB(u) =
1
2
‖u‖2 +

∫

RN
F2(u) dx – μ

∫

RN
F1(u) dx –

∫

RN
hu dx.

In the following, I1 will always replace I . The next lemma is to verify the assumptions of
Theorem 4.1.

Lemma 4.2 Suppose that (f1)–(f4) and (h1)–(h2) hold. Then when |h|p < �, there ex-
ist v1, v2 ∈ E such that for any μ ∈ J , cμ ≥ α > max{Iμ(v1), Iμ(v2)}, where �, α are from
Lemma 3.1.

Proof From Lemma 3.1, it follows that for any μ ∈ J , Iμ(u) ≥ I1(u) ≥ α for all ‖u‖ = ρ .
Define

ωt(x) =

⎧
⎨

⎩
0, t = 0,

ω(t–1x), t > 0,

where ω satisfies (4.1). For any μ ∈ J , one has

Iμ(ωt) ≤ tN–2

2

∫

RN
|∇ω|2 dx – tN

∫

RN

[
δF1(ω) – F2(ω) –

m
2

ω2
]

dx.

Note that

‖ωt‖2 = tN–2
∫

RN
|∇ω|2 dx + mtN

∫

RN
|ω|2 dx.

Thus, there exists t0 > 0 such that ‖ωt0‖ > ρ and Iμ(ωt0 ) < 0. Set v1 = 0, v2 = ωt0 . Hence for
any γ ∈ �, maxt∈[0,1] Iμ(γ (t)) ≥ α > 0. Consequently, cμ ≥ α > 0 = max{Iμ(v1), Iμ(v2)}. �

From Theorem 4.1, we know that for almost every μ ∈ J , there is a sequence {un} ⊂ H
such that

(i) {un} is bounded in H ,

(ii) Iμ(un) → cμ,

(iii) I ′
μ(un) → 0 in the dual H∗ of H .

(4.2)

Moreover, the map μ → cμ is non-increasing and continuous from the left.
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Lemma 4.3 Fix μ ∈ J . Suppose that (f1)–(f4) and (h1)–(h3) hold. Assume that {un} ⊂ H
satisfies (4.2). Then there exists a positive function u ∈ H such that Iμ(u) = cμ and I ′

μ(u) = 0.

Proof Since {un} ⊂ H satisfies (4.2), there exists u ∈ H such that up to a subsequence,
(3.1)–(3.5) hold, and Fatou’s lemma [11] and Strauss’s compactness lemma [3] yield

∫

RN
f –(u)u dx ≤ lim inf

n→∞

∫

RN
f –(un)un dx (4.3)

and
∫

RN
f +(un)un dx =

∫

RN
f +(u)u dx + o(1). (4.4)

Obviously, I ′
μ(u) = 0. That is

‖u‖2 – μ

∫

RN
f +(u)u dx +

∫

RN
f –(u)u dx –

∫

RN
hu dx = 0. (4.5)

Note that

0 = lim inf
n→∞

〈
I ′
μ(un), un

〉

≥ lim inf
n→∞ ‖un‖2 – lim sup

n→∞

[
μ

∫

RN
f +(un)un dx –

∫

RN
f –(un)un dx +

∫

RN
hun dx

]
.

Using (3.1)–(3.5) and (4.3)–(4.5), we obtain

‖u‖2 ≤ lim inf
n→∞ ‖un‖2

≤ lim sup
n→∞

[
μ

∫

RN
f +(un)un dx –

∫

RN
f –(un)un dx +

∫

RN
hun dx

]

≤ μ

∫

RN
f +(u)u dx –

∫

RN
f –(u)u dx +

∫

RN
hu dx

= ‖u‖2.

It is easy to know that ‖un‖ → ‖u‖. Combining with (3.1), we get un → u in H . Therefore,
Iμ(u) = cμ and I ′

μ(u) = 0. By 〈I ′
μ(u), u–〉 = 0, we know u– = 0. The strong maximum principle

deduces u > 0 in R
N . �

The proof of the second positive solution We choose μn ∈ J and μn ↗ 1. Lemma 4.3 implies
that there exists a positive sequence {uμn} ⊂ H such that Iμn (uμn ) = cμn and I ′

μn (uμn ) = 0.
Note that (h4) holds. Then we have

0 =
〈
I ′
μn (uμn ), uμn

〉

= ‖uμn‖2 +
∫

RN
f –(uμn )uμn dx – μn

∫

RN
f +(uμn )uμn dx –

∫

RN
h(x)uμn dx (4.6)

and the following Pohožaev identity

0 = Pμn (uμn )
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:=
N – 2

2

∫

RN
|∇uμn |2 dx +

Nm
2

∫

RN
u2

μn dx + N
∫

RN
F2(uμn ) dx

– Nμn

∫

RN
F1(uμn ) dx – N

∫

RN
huμn dx –

∫

RN
(∇h, x)uμn dx.

Combining with Hölder’s inequality and Sobolev’s inequality, we get

cδ ≥ cμn

= Iμn (uμn ) –
1
N

Pμn (uμn )

=
1
N

∫

RN
|∇uμn |2 dx +

1
N

∫

RN
(∇h, x)uμn dx

≥ 1
N

∫

RN
|∇uμn |2 dx – C

∣
∣(∇h, x)

∣
∣ 2N

N+2

(∫

RN
|∇uμn |2 dx

) 1
2

.

So
∫

RN
|∇uμn |2 dx ≤ C for all n ∈N. (4.7)

By (2.1), (4.6), (4.7), Hölder’s inequality, and Sobolev’s inequality, we yield

m
∫

RN
u2

μn dx ≤ ‖uμn‖2 +
∫

RN
f –(uμn )uμn dx

= μn

∫

RN
f +(uμn )uμn dx +

∫

RN
h(x)uμn dx

≤ m
2

∫

RN
u2

μn dx + C1

∫

RN
u2∗

μn dx + C2|h|p‖uμn‖

≤ m
2

∫

RN
u2

μn dx + C3 + C2|h|p
(

C + m
∫

RN
u2

μn dx
) 1

2
.

So
∫

RN
u2

μn dx ≤ C for all n ∈N.

Hence {uμn} is bounded in H . Note that μn ↗ 1,

I1(uμn ) = Iμn (uμn ) + (μn – 1)
∫

RN
F1(uμn ) dx = cμn + (μn – 1)

∫

RN
F1(uμn ) dx

and

∥
∥I ′

1(uμn )
∥
∥∗ =

∥
∥I ′

1(uμn ) – I ′
μn (uμn )

∥
∥∗ = sup

‖v‖=1

∣∣
∣∣(μn – 1)

∫

RN
f +(uμn )v dx

∣∣
∣∣,

where ‖ ·‖∗ denotes the norm in H∗. Therefore, I1(uμn ) → c1 and ‖I ′
1(uμn )‖∗ → 0. Accord-

ing to Lemma 4.2 and Lemma 4.3, we get that there exists a positive function u ∈ H such
that I1(u) = c1 > 0 and I ′

1(u) = 0. �

By Sect. 3 and Sect. 4, we complete the proof of Theorem 1.2.



Sun et al. Boundary Value Problems         (2022) 2022:26 Page 9 of 9

Acknowledgements
The authors wish to thank the referees and the editor for their valuable comments and suggestions.

Funding
This research was supported by NNSFC (11861052), Natural Science Foundation of Education of Guizhou ([2019]065,
KY[2020]144), Science and Technology Foundation of Guizhou ([2019]5653) and Funds of QNUN (QNYSKYTD2018012).

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly to writing this paper. All authors wrote, read, and approved the final
manuscript.

Author details
1College of Science, Guizhou University of Engineering Science, Bijie, Guizhou 551700, People’s Republic of China.
2School of Mathematics and Statistics, Qiannan Normal University for Nationalities, Duyun, Guizhou 558000, People’s
Republic of China. 3Key Laboratory of Complex Systems and Intelligent Computing of Qiannan, Duyun, Guizhou 558000,
People’s Republic of China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 January 2022 Accepted: 1 April 2022

References
1. Anderson, D., Derrick, G.: Stability of time dependent particle like solutions in nonlinear field theories. J. Math. Phys.

11, 1336–1346 (1970)
2. Azzollini, A., Pomponio, A.: On the Schrödinger equation in R

N under the effect of a general nonlinear term. Indiana
Univ. Math. J. 58(3), 1361–1378 (2009)

3. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal.
82(4), 313–345 (1983)

4. Cao, D.-M., Zhou, H.-S.: Multiple positive solutions of nonhomogeneous semilinear elliptic equations in RN . Proc. R.
Soc. Edinb., Sect. A 126(2), 443–463 (1996)

5. Coleman, S., Glaser, V., Martin, A.: Action minima among solutions to a class of Euclidean scalar field equations.
Commun. Math. Phys. 58(2), 211–221 (1978)

6. Frampton, P.H.: Consequences of vacuum instability in quantum field theory. Phys. Rev. D 15(10), 2922–2928 (1977)
7. Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type

problem set on RN . Proc. R. Soc. Edinb., Sect. A 129(4), 787–809 (1999)
8. Li, G.-D., Li, Y.-Y., Tang, C.-L.: Existence and asymptotic behavior of ground state solutions for Schrödinger equations

with Hardy potential and Berestycki–Lions type conditions. J. Differ. Equ. 275, 77–115 (2021)
9. Liu, J., Liu, T., Liao, J.-F.: A perturbation of nonlinear scalar field equations. Nonlinear Anal., Real World Appl. 45,

531–541 (2019)
10. Pohožaev, S.I.: On the eigenfunctions of the equation �u + λf (u) = 0. Dokl. Akad. Nauk SSSR 165, 36–39 (1965)

(Russian)
11. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)
12. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162 (1977)
13. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser,

Boston (1996)
14. Zhu, X.-P.: A perturbation result on positive entire solutions of a semilinear elliptic equation. J. Differ. Equ. 92(2),

163–178 (1991)
15. Zhu, X.-P., Zhou, H.-S.: Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in

unbounded domains. Proc. R. Soc. Edinb., Sect. A 115(3–4), 301–318 (1990)


	An inhomogeneous perturbation for a class of nonlinear scalar ﬁeld equations
	Abstract
	MSC
	Keywords

	Introduction and main result
	Preliminaries
	The ﬁrst positive solution of Eq. (1.3)
	The second positive solution of Eq. (1.3)
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


