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Abstract
In our paper, we consider the mixed problem in the context of the Green-Naghdi
theory of thermoelastic Cosserat media. Using very accessible mathematical
calculations, we prove two qualitative results on the solutions of the formulated
mixed problem. Thus, in the first of these approaches, we obtain a result of stability, of
the Hölder type, with regards to the loads. In the second main result, we prove a
continuous dependence result regarding the initial values from the mixed problem. It
should be noted that we obtain these results without imposing very restrictive
conditions on the thermoelastic tensors in the constitutive equations. In fact,
imposed restrictions are commonly used in Mechanics of Continuous Media.
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1 Introduction
Generalized theories of continuous media aim to eliminate a shortcoming of classical elas-
ticity: the waves of heat propagate with infinite speed, the fact which is in contradiction
with real experiments. This paradox has two explanations: first, the heat conduction en-
ergy is of parabolic type and, second, the energy equation does not contain any elastic
term.

One of the best-known theories to eliminate these inaccuracies is the Green and Naghdi
theory, which approached in [1–3] the so-called type I, type II, and type III theory. In our
study, we consider the type III theory of Green-Naghdi for the following two reasons:
firstly, in this context, the dissipation of energy takes place and, secondly, the heat flux is
a combination of the flux of heat from the theory of type I and of the theory type II. Of
course, in the Green-Naghdi theory of type III, heat waves propagate with a finite speed.

Other studies, such as [4], replace the Fourier equation with a generalized form of this
law in which the thermal conductivity tensor, the conductivity rate tensor, and the function
of thermal displacement are taken into account. It should be noted that the three types of
theories of Green and Naghdi can be included in this new theory highlighted in [4]. To
support this statement, we can use, for example, the Taylor approximations.
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The theory of media having microstructure also falls within those theories dedicated
to eliminating the two discrepancies. This theory, first considered by Eringen (see for
instance [5, 6]), highlights the impossibility of the classical theory of elasticity to con-
sider the effect of microstructure in the case of deformation of modern materials, such
as graphite, ceramics, polymers, and even in the case of human bones. This explains the
large number of studies dedicated to this theory, of which we list [7–9]. We can find some
results in which the problem of waves propagation is approached, for instance, in [10–
12]. Other results regarding the microstructure can be found in [13–17]. The theory of
Cosserat thermoelastic bodies occupies an important place among the theories dedicated
to microstructure. Many studies dedicated to Cosserat bodies are published, of which we
mention the following: [18–21].

To describe the evolution of a Cosserat thermoelastic body in the context of the Green-
Naghdi theory of type III, we will use a vector of the displacement vector of components
vm, a vector of the couple displacement of components φm, the variation of the tempera-
ture θ and the thermal displacement, denoted by τ and defined by:

τ (t, x) =
∫ t

t0

θ (x, s) ds + τ0(x).

Also, in the formulation of the mixed initial-boundary value problem in the above con-
text, we will use the density of mass �, a thermal capacity c, a tensor of the conductivity
of heat, and some tensors that characterize the thermoelastic properties of the media. We
will assume that the above-mentioned quantities are enough regular functions, regarding
the variable of position, i.e., of the form f = f (x). During the description, we will impose
some restrictions, which are, in fact, common, on the mass density, the heat capacity, the
thermoelastic coefficients, and the tensor of the thermal conductivity, restrictions that will
ensure the well-posedness of the mixed problem in the context of the Green-Naghdi ther-
moelasticity of type III. We must emphasize that these restrictions will guarantee stability
in the Lyapunov sense of the solutions to the mixed problem. We can anticipate that if
we do not impose restrictions that will ensure a positive definition of the tensors of ther-
moelastic coefficients, then the mixed problem, considering the usual initial values and
boundary relations, becomes ill-posed.

First results regarding the continuous dependence of solutions, in the sense of Hölder,
were published by John, see for instance, [22]. Here it is clear that the solutions depend
continuously only if there are functions that belong to a class of constraints conveniently
chosen. The concept of continuous dependence, in the classical formulation, is stronger
than the continuous dependence concept that is proposed by Hölder. Based on the pos-
itivity of the tensors of thermoelastic coefficients, Quintanilla proved a stability result of
Hölder type in [23]. For this, he invoked an argument of logarithmic convexity. Results can
be obtained regarding the stability of the solutions of Hölder type, even if the tensors of the
thermoelastic coefficients are not positively definite. To obtain some results regarding the
Hölder stability of the solutions, it is necessary to use the method of the Lagrange identity,
which we will address in our later considerations. Many studies have been published that
address the Hölder stability, of which we mention Ames and Straughan [24], Ames and
Payne [25], and Wilkes [26].

Our work is organized as follows: To have a good formulation of the mixed problem for
the type III thermoelasticity of Cosserat bodies, we will introduce the main notations, the
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basic equations, the initial values, and the boundary relations in Sect. 2. Our basic results
are considered in Sect. 3. So, in our first two theorems, we obtain two estimations, on
the basis of which we deduce the two important results. In Theorem 2, we prove the first
result regarding the stability of the Hölder type. From the proof of this theorem, it is clear
that, in fact, this result ensures that the solution depends continuously on the loads. An
extension of the analysis of the stability of the Hölder type is included in the last theorem.
It can be easily deduced that it covers the continuous dependence of solutions regarding
the initial values.

2 Basic notations, equations and conditions
In the following, we will consider a three-dimensional domain �, as a part of the Euclidean
space R3 and assume that it is occupied, at the initial time t0, by a Cosserat thermoelastic
media. The boundary of � is denoted by ∂�, and it is a piecewise regular surface. All
points of the domain � are identifiable by three coordinates in form x = (x1, x2, x3), and
the functions we will use are dependent on the time variable t and position x, in the form
f = f (t, x). The domain of definition for a function of the form f = f (t, x) will be the cylinder
(0,∞) × �̄, in which �̄ is �̄ = � ∪ ∂�. We will use the summation rule over repeated
subscripts. In order to designate the differentiation with respect to the time variable, t, we
will use a superposed dot, that is, ḟ = ∂f /∂t. The partial differentiation regarding a spatial
variable used a comma followed by a subscript, i.e., f,j = ∂f /∂xj.

We want to introduce a mathematical model consisting of a system of partial differential
equations in the thermoelasticity of Cosserat media in the context of a linear theory. Ad-
dressing the technique proposed by Green and Rivlin, we can consider a new deformation
of the media, different from the given deformation by a rotation having a uniform angular
velocity that is superposed over the initial motion. Based on procedure Green and Rivlin,
we must assure that the other characteristics of the media remain unchanged as a result of
this overlap. Due to this technique, we deduce the geometric equations by which we can
express the strain tensors emn and εmn with the help of the motion variables (see Eringen
[5]):

emn = un,m + εmnkφk , εmn = φn,m. (1)

In the following, we will rely on the hypothesis that the vector of the deformation, the
vector of the couple deformation, the temperature variation, and the derivatives of all these
functions are small.

Let us consider our Cosserat body has a center of symmetry. Also, we suppose that in
the initial state of the media. there is no stress, and the values of the intrinsic body forces
and body couples are zero. In the context of a linear theory, it is normal to assume that the
internal energy has a quadratic form regarding all constitutive intern variables and denote
it by W . By expanding this energy as a series regarding the given undeformed state and
considering the principle of energy conservation, we can write the density of energy in the
form that follows:

W =
1
2

Amnklemnekl + Bmnklemnεkl

+
1
2

Cmnklεmnεkl – amnemnθ – bmnεmnθ –
1
2

cθ2. (2)



Marin et al. Boundary Value Problems         (2022) 2022:28 Page 4 of 13

If we take into account the above form of the internal energy and use the Clausius-Duhem
inequality, that is, the inequality of the entropy production, we obtain the constitutive
relations, which give the expression of the stress tensors and the entropy with the help of
the strain tensors:

tmn =
∂W
∂emn

= Amnklekl + Bmnklεkl – amnθ ,

τmn =
∂W
∂εmn

= Bmnklemn + Cmnklεkl – bmnθ ,

η = –
∂W
∂θ

= amnemn + bmnεmn + cθ .

(3)

It is clear that the above tensors of thermoelastic coefficients satisfy, in the domain �, the
relations of symmetry of the following form:

Amnkl = Aklmn, Bmnkl = Bklmn, Cklmn = Cmnkl. (4)

In Eq. (4), we used the notations tmn and τmn for the tensors of stress. We also denoted the
entropy by η.

According to [3], the vector of heat flux has the elements qm, which satisfy the following
equation:

qm = κmnθ,n + cmnβ,n, (5)

where κmn are the components of the thermal tensor of the conductivity of heat, and cmn

are the components of the tensor, which connect the thermal deformation with the flux
of heat. It is important to note that the tensor cmn was first included in the theories of
Green-Naghdi of type II and type III.

By using the first law of thermodynamics, we deduce the motion equations in the fol-
lowing form:

tmn,n + �Fm = �v̈m,

τmn,n + εmnktnk + �Gm = Imnφ̈n.
(6)

The equation of energy also receives the next form:

η̇ = qm,m + �r. (7)

With the help of the geometric Eqs. (1) and the constitutive relations (3) and (5), and the
kinetic relations (1), we obtain another form of the system of Eqs. (6) and (7), namely:

v̈m =
1
�

[
(Amnklekl),n + (Bmnklεkl),n – (amnθ ),n

]
+ Fm,

φ̈m =
1

Imn

[
(Bmnklekl),m + (Cmnklεkl),m – (bmnθ ),m

+ εmnj(Amjklekl + Bmjklεkl – amjθ ) + Gn
]
,

amnėmn + bmnε̇mn + cθ̇ =
�

T0
(κmnθ,n),m +

1
T0

r.

(8)
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3 Main results
Let us specify that the main hypotheses necessary to obtain the proposed results are the
following:

i) c, the function of the capacity of heat, and �, the density of mass, are positive with
regards to the variable of position, i.e.,

c(x) ≥ c0 > 0, �(x) ≥ �0 > 0, x ∈ �;

ii) all tensors of thermoelastic coefficients are bounded.
iii) the conductivity of heat tensor, kij, is positively definite, i.e., ∃k0 > 0 so that

κmnξmξn ≥ k0ξmξm, ∀ξm. (9)

Let us designate by c∗ the biggest value of the proper values for the matrix of components
cmn and, also, by k∗ the smallest of the proper values of the matrix of components κmn.
Then, for any vector ξm, from Eq. (10), we obtain the following estimate:

κmnξmξn ≥ k1|cmnξmξn|, k1 =
k∗

c∗ . (10)

Now, we consider that km is the minimum value of the eigenvalues for the matrix of com-
ponents κmn, and kM is the maximum value for the same matrix.

If we use the notation k2 = kM/km and consider any function τ , which satisfies the rela-
tion τ (0) = 0, we can deduce the next Poincaré type estimate:

k2t2
∫ t

0
κmnτ̇,mτ̇,n ds ≥ π2

4

∫ t

0
κmnτ,mτ,n ds. (11)

This estimate is useful in obtaining our main results.
To complete the mixed initial-boundary value problem in the above context, we adjoin

to the system of Eqs. (8) the following initial values:

vm(0, x) = v0
m(x), v̇m(0, x) = v1

m(x), φm(0, x) = φ0
m(x),

φ̇m(0, x) = φ1
m(x), θ (0, x) = θ0(x), θ̇ (0, x) = θ1(x), x ∈ �,

(12)

and the boundary conditions:

vm(t, x) = ṽm(t, x), φm(t, x) = φ̃m(t, x),

θ (t, x) = θ̃ (t, x), (t, x) ∈ [0, t0) × ∂�.
(13)

We will denote by P the mixed problem consisting of differential Eqs. (8), the initial values
(12), and the boundary relations (13).

Let us consider two systems of loads,

(
F (ν)

m , G(ν)
m , r(ν)), ν = 1, 2,

and denote by

(
v(ν)

m ,φ(ν)
m , τ (ν)), ν = 1, 2
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the solutions that correspond to each previous loads.
We will use the notations:

vm = v(2)
m – v(1)

m , φm = φ(2)
m – φ(1)

m , τ = τ (2) – τ (1),

Fm = F (2)
m – F (1)

m , Gm = G(2)
m – G(1)

m , R = r(2) – r(1)
(14)

relative to the difference of the two solutions and of the two loads, respectively.
As such, because of the linearity, the ordered array (vm,φm, τ ) is also a solution to the

mixed problem P , which now corresponds to:
– the partial differential equations:

�v̈m = (Amnklekl + Bmnklεkl),n – (amnθ ),n + �Fm,

Imnφ̈m = (Bmnklekl + Cmnklεkl),m – (bmnθ ),m

+ εmnj(Amjklekl + Bmjklεkl – amjθ ) + �Gn,

cθ̇ = –amnėmn – bmnε̇mn + (κmnθ,n),m + �R.

(15)

– the null initial values:

vm(0, x) = v̇m(0, x) = φm(0, x) = φ̇m(0, x) = θ (0, x) = θ̇ (0, x) = 0, ∀x ∈ �, (16)

– the null relations to the limit:

vm(t, x) = φm(t, x) = θ (t, x) = 0, ∀(t, x) ∈ [0, t0) × ∂�. (17)

The following two theorems are devoted to some estimations that will help us prove the
main results.

Theorem 1 If (vm,φm, τ ) is a solution to the mixed problem consisting of Eqs. (15) and
conditions (16), (17), then we have the following identity:

∫
�

(
�v̇mv̇m + Imnφ̇mφ̇n + cθ2 + Amnklemnekl + 2Bmnklemnεkl + Cmnklεmnεkl

)
dV

–
∫ t

0

∫
�

(�Fmv̇m + �Gmφ̇m + �Rθ ) dV ds +
∫ t

0

∫
�

κmnθ,mθ,n dV ds = 0. (18)

Proof It is easy to prove this estimation if we take into account the equation of energy and
consider the homogeneous Dirichlet boundary relations and zero initial values. �

The Lagrange identity, which we prove in the following theorem, is a useful tool in ob-
taining the Hölder type stability.

Theorem 2 For any solution (vm,φm, τ ) of the mixed problem consisting of Eqs. (15) and
conditions (16), (17), then we have the following identity:

∫
�

(�v̇mv̇m + Imnφ̇mφ̇n + cmnτ,mτ,n) dV +
∫ t

0

∫
�

κmnθ,mθ,n dV ds

=
∫ t

0

∫
�

�(Fmv̇m + Gmφ̇m + Rθ ) dV ds
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+
1
2

∫ t

0

∫
�

�
[
Fm(s)v̇m(2t – s) – Fm(2t – s)v̇m(s)

]
dV ds

+
1
2

∫ t

0

∫
�

�
[
Gm(s)φ̇m(2t – s) – Gm(2t – s)φ̇m(s)

]
dV ds

+
1
2

∫ t

0

∫
�

�
[
R(2t – s)θ (s) – Rij(s)θ (2t – s)

]
dV ds. (19)

Proof Based on the basic rule of deriving a product of functions, it is easy to show that the
following relations take place:

d
ds

[
�v̇m(s)v̇m(2t – s)

]
= �v̈m(s)v̇m(2t – s) – �v̇m(s)v̈m(2t – s),

d
ds

[
Imnφ̇m(s)φ̇n(2t – s)

]
= Imnφ̈m(s)φ̇n(2t – s) – Imnφ̇m(s)φ̈n(2t – s),

d
ds

[
θ (s)θ (2t – s)

]
= cθ̇ (s)θ (2t – s) – cθ (s)θ̇ (2t – s).

(20)

By summing up these three equalities, term by term we obtain an equality in which we
consider the differential Eqs. (15). Then, we introduce the constitutive Eqs. (3), and the
obtained relation is integrated into cylinder [0, t]×�. If we take into account that we have
zero initial values and null boundary relations, we get the following identity:

∫
�

(
�v̇mv̇m + Imnφ̇mφ̇n + cmnτ,mτ,n – cθ2

– Amnklemnekl – 2Bmnklemnεkl – Cmnklεmnεkl
)

dV

=
∫ t

0

∫
�

�
[
Fm(s)v̇m(2t – s) – Fm(2t – s)v̇m(s)

]
dV ds

+
∫ t

0

∫
�

�
(
Gm(s)φ̇m(2t – s) – Gm(2t – s)φ̇m(s)

)
dV ds

–
1
2

∫ t

0

∫
�

�
[
R(2t – s)θ (s) – R(s)θ (2t – s)

]
dV ds. (21)

Finally, using the identities (18) and (21), we ge the desired estimate (19). �

Our first main result will be proven in the next theorem. The inequality that will be
obtained ensures the stability for the solutions to the problem P of Hölder type, in relation
to the external loads.

Theorem 3 We suppose the the assumptions i)-iii) are satisfied and consider a solution
(vm,φm, τ ) to the mixed problem P , but consisting of Eqs. (15), conditions (16), and (17).
Then, we have the next inequality:

∫
�

(�v̇mv̇m + Imnφ̇mφ̇n + cmnτ,mτ,n) dV +
∫ t

0

∫
�

κmnθ,mθ,n dV ds

≤ 3
2
√

t0M
[∫ t0

0

∫
�

�
(
FmFm + GmGm + R2)dV ds

]1/2

, (22)

which takes place for any t ∈ [0, t0/2].
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The positive constant M is chosen so that

sup
t∈[0,t0]

∫
�

(
�v̇mv̇m + Imnφ̇mφ̇n + cθ2)dV ≤ M2. (23)

Proof In order to estimate the integrals from the identity (19), we will use a simple in-
equality of the form:

√
a
√

p +
√

b
√

q +
√

c
√

r

≤ √
a + b

√
p + q +

√
a + c

√
p + r +

√
b + c

√
q + r,

which is true for the real numbers a, b, c, p, q, r ≥ 0.
Based on this elementary inequality and considering the first integral of (19), we imme-

diately obtain the estimation:

∫ t

0

∫
�

�[Fmv̇m + Gmφ̇m + Rθ ] dV dτ

≤
[∫ t

0

∫
�

�FmFm dV ds
] 1

2
[∫ t

0

∫
�

�v̇mv̇m dV ds
] 1

2

+
[∫ t

0

∫
�

�GmGm dV ds
] 1

2
[∫ t

0

∫
�

�φ̇mφ̇m dV ds
] 1

2

+
[∫ t

0

∫
�

�R2 dV ds
] 1

2
[∫ t

0

∫
�

�θ2 dV ds
] 1

2

≤
[∫ t

0

∫
�

�
(
FmFm + GmGm + R2)dV ds

] 1
2

×
[∫ t

0

∫
�

�
(
v̇mv̇m + φ̇mφ̇m + θ2)dV ds

] 1
2

. (24)

Similarly, the second integral in (19) leads to the following estimate:

∫ t

0

∫
�

�
[
Fm(s)v̇m(2t – s) – Fm(2t – s)v̇m(s)

]
dV ds

≤
[∫ t

0

∫
�

�FmFm dV ds
] 1

2
[∫ 2t

t

∫
�

�v̇mv̇m dV ds
] 1

2

+
[∫ 2t

t

∫
�

�FmFm dV ds
] 1

2
[∫ t

0

∫
�

�v̇mv̇m dV ds
] 1

2

≤
[∫ 2t

0

∫
�

�FmFm dV ds
] 1

2
[∫ 2t

0

∫
�

�v̇mv̇m dV ds
] 1

2
. (25)

With an analogous procedure, using the third integral from (19), we deduce:

∫ t

0

∫
�

�
[
Gm(s)φ̇m(2t – s) – Gm(2t – s)φ̇m(s)

]
dV ds

≤
[∫ 2t

0

∫
�

�GmGm dV ds
] 1

2
[∫ 2t

0

∫
�

�φ̇φ̇m dV ds
] 1

2
. (26)
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Ultimately, the fourth integral in (19) leads to the following estimate:

∫ t

0

∫
�

�
[
R(2t – s)θ (s) – R(s)θ (2t – s)

]
dV ds

≤
[∫ 2t

0

∫
�

�R2 dV ds
] 1

2
[∫ 2t

0

∫
�

�θ2 dV ds
] 1

2
. (27)

Now, we take into account all estimations from (24), (25), (26), and (27), so that considering
the identity (19), we obtain the inequality:

∫
�

(�v̇mv̇m + Imnφ̇mφ̇n + cmnτ,mτ,n) dV +
∫ t

0

∫
�

κmnθ,mθ,n dV dτ

≤ 3
2

[∫ 2t

0

∫
�

�
(
FmFm + GmGm + R2)dV ds

] 1
2

×
[∫ 2t

0

∫
�

(
�v̇mv̇m + Imnφ̇mφ̇n + �θ2)dV ds

] 1
2

. (28)

Finally, we consider the estimate (23) so that from (28), we observe that the estimate (22)
takes place for any t ∈ [0, t0], which concludes the demonstration of this theorem. �

Remark It is easy to see that the estimation (22) with M from (23) assures the stability of
the solution in the sense of the Hölder regarding the supply terms.

Finally, we want to study the stability of solutions, in the sense of the Hölder regarding
the initial values. In this regard, we will take the partial differential Eqs. (8) without the
charges, that is, Fm = 0, Gm = 0, r = 0, i.e., in its homogeneous form. Let us consider two
solutions (v(1)

m ,φ(1)
m , τ (1)), (v(2)

m ,φ(2)
m , τ (2)) of (8), corresponding to equal boundary relations

but to different initial values. Then, the difference of these two solutions (vm,φm, τ ) satisfies
the system (16) with null loads, that is, Fm = 0, Gm = 0, R = 0, also, with null to the limit
values (17), but the initial values of the following form:

vm(x, 0) = v(2)
m (x, 0) – v(1)

m (x, 0) = v0
m(x),

v̇m(x, 0) = v̇(2)
m (x, 0) – v̇(1)

m (x, 0) = w0
m(x),

φm(x, 0) = φ(2)
m (x, 0) – φ(1)

m (x, 0) = φ0
m(x),

φ̇m(x, 0) = φ̇(2)
m (x, 0) – φ̇(1)

m (x, 0) = ψ0
m(x),

τ (x, 0) = τ (2)(x, 0) – τ (1)(x, 0) = τ 0(x),

τ̇ (x, 0) = τ̇ (2)(x, 0) – τ̇ (1)(x, 0) = θ0(x).

(29)

Theorem 4 We suppose that the assumptions i)-iii) are satisfied and consider the difference
of the two solutions (vm,φm, τ ) to the mixed problem P , but consisting of the homogeneous
Eqs. (15), null boundary conditions, and the initial conditions in the form (30). Then the
stability of the solution is ensured, in the sense of the Hölder regarding the initial values.
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Proof Recalling the form of the internal energy:

W (t) =
∫

�

(
�v̇mv̇m + Imnφ̇mφ̇n + cθ2 + cmnτ,mτ,n

+ Amnklemnekl + 2Bmnklemnεkl + Cmnklεmnεkl
)

dV

+ 2
∫ t

0

∫
�

κmnθ,mθ,n dV ds, (30)

we can deduce the following law of conservation:

W (t) = W (0), (31)

where

W (0) =
∫

�

(
�w0

mw0
m + Imnψ

0
mψ0

n + c
(
θ0)2 + cmnτ

0
,mτ 0

,n

+ Amnkle0
mne0

kl + 2Bmnkle0
mnε

0
kl + Cmnklε

0
mnε

0
kl
)

dV . (32)

However, we consider only the solutions to the homogeneous system of partial differential
Eqs. (15), so that, with help of the Lagrange identity, we obtain the following identity:

∫
�

(
�v̇mv̇m + Imnφ̇mφ̇n + cmnτ,mτ,n – cθ2

– Amnklemnekl – 2Bmnklemnεkl – Cmnklεmnεkl
)

dV

=
∫

�

[
�w0

mv̇m(2t) + Imnψ
0
mφ̇n(2t) + cmnτ

0
,mτ,n(2t) – cθ0θ (2t)

– Amnkle0
mnekl(2t) – 2Bmnkle0

mnεkl(2t) – Cmnklε
0
mnεkl(2t)

]
dV . (33)

Now, we take into account the expression (30) for the energy W (t) and (32) for W (0). As
such, taking into account (31) and (33), we obtain the identity:

∫
�

(�v̇mv̇m + Imnφ̇mφ̇n + cmnτ,mτ,n) dV +
∫ t

0

∫
�

κmnθ,mθ,n dV ds

=
E(0)

2
+

1
2

∫
�

[
�w0

mv̇m(2t) + Imnψ
0
mφ̇n(2t) + cmnτ

0
,mτ,n(2t)

– Amnkle0
mnekl(2t) – 2Bmnkle0

mnεkl(2t) – Cmnklε
0
mnεkl(2t) – cθ0θ (2t)

]
dV . (34)

It is not difficult to obtain the next inequalities:

∣∣∣∣
∫

�

�w0
mv̇m(2t) dV

∣∣∣∣ ≤
(∫

�

�w0
mw0

m dV
) 1

2
(∫

�

�v̇m(2t)v̇m(2t) dV
) 1

2
,

∣∣∣∣
∫

�

Imnψ
0
mφ̇n(2t) dV

∣∣∣∣ ≤
(∫

�

Imnψ
0
mψ0

n dV
) 1

2
(∫

�

Imnφ̇m(2t)φ̇n(2t) dV
) 1

2
,

∣∣∣∣
∫

�

cθ0θ (2t) dV
∣∣∣∣ ≤

(∫
�

c
(
θ0)2 dV

) 1
2
(∫

�

cθ2(2t) dV
) 1

2
,
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∣∣∣∣
∫

�

cmnτ
0
,mτ,n(2t) dV

∣∣∣∣ ≤ k3

(∫
�

τ 0
,mτ 0

,m dV
) 1

2
(∫

�

τ,n(2t)τ,n(2t) dV
) 1

2
, (35)

∣∣∣∣
∫

�

Amnkle0
mnekl(2t) dV

∣∣∣∣ ≤ k4

(∫
�

e0
mne0

mn dV
) 1

2
(∫

�

emn(2t)emn(2t) dV
) 1

2
,

∣∣∣∣
∫

�

Bmnkle0
mnεkl(2t) dV

∣∣∣∣ ≤ k5

(∫
�

e0
mne0

mn dV
) 1

2
(∫

�

εkl(2t)εkl(2t) dV
) 1

2
,

∣∣∣∣
∫

�

Cmnklε
0
mnεkl(2t) dV

∣∣∣∣ ≤ k6

(∫
�

ε0
mnε

0
mn dV

) 1
2
(∫

�

εkl(2t)εkl(2t) dV
) 1

2
,

in which km takes the values 3, 4, 5, 6.
These constants are expressed only with the help of the thermoelastic tensor situated

in the same line. As an example, the constant k5 depends only on the themoelastic tensor
Bmnkl .

Now, we take an arbitrary t ∈ [0, t0/2] and suppose that

sup
t∈[0,t0]

∫
�

(
�v̇mv̇m + Imnφ̇mφ̇n + k3τ,mτ,m

+ N1emnemn + N2εmnεmn + cθ2)dV ≤ M2
1, (36)

in which the constants N1 > 0, N2 > 0 and N3 > 0 can be expressed as functions of
k3, k4, . . . , k6.

Then, with the help of (34), we deduce the estimate:

∫
�

(�v̇mv̇m + Imnφ̇mφ̇n + cmnτ,mτ,n) dV

+
∫ t

0

∫
�

κmnθ,mθ,n dV ds ≤ 1
2

E(0) +
t0

2
M1

√
M2, (37)

in which the constant M2 has the expression:

M2 =
∫

�

(
�w0

mw0
m + Imnψ

0
mψ0

n + k3τ
0
,mτ 0

,m

+ N1e0
mne0

mn + N2ε
0
mnε

0
mn + c

(
θ0)2)dV . (38)

With this, we end the proof of Theorem. �

Remark It is not difficult to notice that the estimation (37) with M2 from (38) guarantees
the stability of the solution, in the sense of the Hölder with regard to the initial values.

4 Conclusions
Using the same technique, which was used in the case of simple thermoelastic media, we
obtain the stability, in the sense of the Hölder, for the solutions to the mixed problem P
defined in the context of thermoelasticity of type III for the Cosserat bodies. As we have
already shown, this is actually the case of the solutions that are continuously depending on
the external loads. Taking into account that the known concept of continuous dependence
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is louder than the stability in the sense of the Hölder, we also obtain this type of stability
with respect to the initial values.

We need to outline that the imposed conditions are not very restrictive. Thus, we im-
posed the positivity of the thermal capacity and density, which are commonly used in
Continuum Mechanics. It also is usual to impose a positive definition of thermoelastic
tensors. Clearly, in theory of thermoelasticity of type III for Cosserat bodies, we have a
larger number of equations, and these are more complicated. The same goes for the ini-
tial values and boundary relations. Nevertheless, these complications do not disturb the
stability, in the sense of the Hölder, for the solutions to the mixed problem constructed in
our context.
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