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Abstract
In this paper, we establish a delayed semilinear plankton system with habitat
complexity effect and Neumann boundary condition. Firstly, by using the eigenvalue
method and geometric criterion, the stability of the equilibria and some conditions
for determining the existence of Hopf bifurcation are studied. Through analyzing the
stability of positive equilibrium, we found that at the positive equilibrium the system
may switch finitely many times from stable to unstable, then from unstable to stable,
finally becoming unstable, i.e., the time delay induces a “stability switch”
phenomenon. Secondly, the properties of Hopf bifurcation are derived by applying
the normal form method and center manifold theory, including the bifurcation
direction and the stability of bifurcating periodic solutions. Finally, some numerical
simulations are given to illustrate the theoretical results, and a biological explanation
is given.
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1 Introduction
The plankton model is an important subject in marine biological systems. Chattopadhy
et al. [1] showed that the delay of toxin release has a great impact on algal blooms. Wang
[2] studied the toxic phytoplankton–zooplankton model and analyzed the effects of time
delay and harvesting on the system. Sharma et al. [3] studied the plankton model with mul-
tiple delays. Roy et al. [4] established a nontoxic phytoplankton–zooplankton model and
toxin-releasing phytoplankton–zooplankton model, respectively, and proved that non-
toxic phytoplankton is beneficial to the growth of zooplankton, while toxin-producing
phytoplankton is harmful to the growth of zooplankton. Furthermore, many scholars [5–
7] have demonstrated that the toxins produced by phytoplankton can be used as a bio-
logical control quantity. Chattopadhayay et al. [8] pointed out that when the toxin rate
exceeds the critical value, Hopf bifurcation occurs at the positive equilibrium. However,
as long as the toxin rate is controlled close to the critical value, the system is stable at the
positive equilibrium, so the harmful algal blooms are effectively controlled.
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The theoretical study demonstrates [9–13] that the toxin released by phytoplankton may
be a very strong regulation factor for the feeding rate of zooplankton. Habitat refers to the
spatial scope of the environment where organisms appear, generally to the place where
organisms live or the eco-geographical environment in which organisms live. The habitat
complexity is the inhomogeneity of morphological characteristics within the structure it-
self and the heterogeneity of object arrangement in space. Research shows that the major-
ity of population habitats are complex due to heterogeneity [14–16], for example, marine
habitat become very complex in coral reefs, mangroves, sea grass beds, and salt marshes
[17]. In lakes, the heterogeneity of habitat usually represents the vegetation depth and gra-
dient diversity in coastal areas [18]. In addition, a large number of experimental studies
show that habitat complexity reduces the encounter rate between predator and prey, thus
reducing the predation rate [19–24]. Habitat complexity not only reduces the interaction
between phytoplankton and zooplankton, but also reduces the available space of interact-
ing species. Therefore, it is necessary to introduce habitat complexity into the plankton
system.

Based on experiments and mathematical modeling, many scholars have established dif-
ferent mathematical models to describe the population dynamics [25–28]. Yang et al. con-
sidered the Holling type II plankton model with diffusion term in [29], and proposed the
following model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂P(x,t)
∂t = d1�P + rP(1 – P

K ) – cfPZ
a+γ P , x ∈ (0,�), t > 0,

∂Z(x,t)
∂t = d2�Z + efP(t–τ )Z

a+γ P(t–τ ) – μZ – eρP2/3Z, x ∈ (0,�), t > 0,

Px(0, t) = Zx(0, t) = 0, Px(�, t) = Zx(�, t) = 0, t > 0,

P(x, 0) = P0(x) ≥ 0, Z(x, 0) = Z0(x) ≥ 0, x ∈ [0,�],

(1.1)

in which � = [0, lπ ] (l > 0); P(x, t) and Z(x, t) represent the phytoplankton and zooplank-
ton population densities at time t and distance x, respectively; d1 and d2 are diffusion
terms; r is the intrinsic growth rate of phytoplankton; K indicates the maximum capac-
ity of phytoplankton environment; c and e are the maximum capture rate and conversion
rate of zooplankton; μ is the natural mortality of zooplankton population; ρ indicates the
toxin intensity; f is the proportion of phytoplankton that can be caught by zooplankton,
therefore, the phytoplankton with ratio 1 – f can aggregate to form a rough sphere, its
surface area can be expressed as a function of ρP2/3.

In this paper, we introduce the habitat complexity effect into system (1.1). Comparing
with the processing time h, the habitat complexity is more likely to affect the attack coeffi-
cient β , therefore, we use β(1 – m) to replace β , where m (0 < m < 1) is a one-dimensional
parameter used to measure the intensity of β . Assume that habitat complexity is homo-
geneous throughout the habitat, then the total amount of phytoplankton which is caught,
V (P), can be expressed as

⎧
⎨

⎩

V (x) = β(1 – m)TsP,

Ts = T – hV (P),

where Ts is the available search time and T is the total time. By calculation, we have

V (P) =
Tβ(1 – m)P

1 + β(1 – m)hP
.
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Therefore, for system (1.1), the functional response function with habitat complexity effect
is modified as

V (P)
T

=
β(1 – m)P

1 + βh(1 – m)P
.

Based on model (1.1), we introduce production delay, habitat complexity effect, and dif-
fusion term to establish a toxic plankton model with Holling type II functional response
function:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂P(x,t)
∂t = d1�P + rP(1 – P(t–τ )

K ) – cβ(1–m)PZ
1+hβ(1–m)P , x ∈ �, t > 0,

∂Z(x,t)
∂t = d2�Z + eβ(1–m)PZ

1+hβ(1–m)P – μZ – eρP2/3Z, x ∈ �, t > 0,

Px(0, t) = Px(π , t) = Zx(0, t) = Zx(π , t) = 0, t ≥ 0,

P(x, 0) = P0(x) ≥ 0, Z(x, 0) = Z0(x) ≥ 0, x ∈ �,

(1.2)

where � = [0, lπ ] (l > 0).
The rest of this paper is organized into sections. In Sect. 2, by analyzing the roots of the

characteristic equation, we discuss the stability of diffusion system without delay at the
equilibria (including boundary equilibria and positive equilibrium). In Sect. 3, we study
the existence of Hopf bifurcation for the delayed diffusion system and the bifurcation di-
rection, and the stability of periodic solutions is discussed by employing the center mani-
fold and normal form theory. In Sects. 4 and 5, a biological explanation is given and some
numerical simulations are carried out.

2 Stability analysis of the system without delay
In order to ensure the biological significance of the system, we assume c > e. In the fol-
lowing, for system (1.2), we shall discuss the existence of its nonnegative equilibria. The
equilibrium satisfies

⎧
⎨

⎩

rP(1 – P
K ) – cβ(1–m)PZ

1+hβ(1–m)P = 0,
eβ(1–m)PZ

1+hβ(1–m)P – μZ – eρP2/3Z = 0.

By calculation, system (2.1) has three equilibria E0 = (0, 0), E1 = (K , 0), and E∗ = (P∗, Z∗),

where Z∗ = erP∗(1– P∗
K )

cμ+ceρP∗2/3 ; 0 < P∗ < K must hold to ensure that Z∗ > 0. Let P∗ be a root of
eβ(1–m)P

1+hβ(1–m)P – μ – eρP2/3 = 0, this implies P∗ satisfies the following equation:

f (P) = e3ρ3h3β3(1 – m)3P5 + 3e3ρ3h2β2(1 – m)2P4

+
[
3e3ρ3hβ(1 – m) – β3(1 – m)3(e – μh)3]P3

+
[
e3ρ3 + 3μβ2(1 – m)2(e – μh)2]P2 – 3μ2β(1 – m)(e – μh)P + μ3.

Obviously,

f ′(P) = 5e3ρ3h3β3(1 – m)3P4 + 12e3ρ3h2β2(1 – m)2P3

+ 3
[
3e3ρ3hβ(1 – m) – β3(1 – m)3(e – μh)3]P2

+ 2
[
e3ρ3 + 3μβ2(1 – m)2(e – μh)2]P – 3μ2β(1 – m)(e – μh).
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If e – μh < 0, then f ′(P) > 0, f (P) is monotone increasing on [0, K], so f (P) has no solution
on (0, K). If e – μh > 0, then f ′(P) has at least one zero on [0, K]. We might as well assume
P1 ∈ [0, K] such that f ′(P1) = 0. To make P1 ∈ [0, K] be the minimum point of f (P) = 0, we
need f ′′(P1) > 0. We know

f ′′(P) = 20e3ρ3h3β3(1 – m)3P1
3 + 12e3ρ3h2β2(1 – m)2P1

2

+ 6
[
3e3ρ3hβ(1 – m) – β3(1 – m)3(e – μh)3]P1

+ 2
[
e3ρ3 + 3μβ2(1 – m)2(e – μh)2],

when 0 < β < eρ
(1–m)(e–μh)

√
3eρh
e–μh , i.e., m > 1 – eρ

β(e–μh)

√
3eρh
e–μh , f ′′(P) > 0. Obviously, f (P) has a

positive root if f (P1) < 0. We make the following assumptions:
(H0) c > e, e – μh > 0,
(H1) f (P1) < 0, m > 1 – eρ

β(e–μh)

√
3eρh
e–μh .

Theorem 2.1 If (H0) and (H1) hold, then system (1.2) has at least one positive equilibrium
E∗ = (P∗, Z∗).

2.1 Stability of positive equilibrium point
We assume that system (1.2) has only one positive equilibrium, denoted as E∗ = (P∗, Z∗).
When τ = 0, we move E∗ = (P∗, Z∗) to (0, 0). Making a transformation P̄ = P – P∗, Z̄ =
Z – Z∗, and omitting the bar, (1.2) becomes

⎧
⎨

⎩

∂P(x,t)
∂t = d1�P + r(P + P∗)(1 – P+P∗

K ) – cβ(1–m)(P+P∗)(Z+Z∗)
1+hβ(1–m)(P+P∗) ,

∂Z(x,t)
∂t = d2�Z + eβ(1–m)(P+P∗)(Z+Z∗)

1+hβ(1–m)(P+P∗) – μ(Z + Z∗) – eρ(P + P∗)2/3(Z + Z∗).
(2.1)

Defining the real Sobolev space

X :=
{

(P, Z)T ∣
∣P, Z ∈ H2(0, lπ ), (Px, Zx)

∣
∣
x=0,lπ = (0, 0)

}
,

the complexification of X is

Xc := X ⊕ iX = {x1 + ix2|x1, x2 ∈ X}.

Let U = (P, Z) ∈ H2(0, lπ ), D = diag(d1, d2), then system (2.1) can be written as an abstract
functional differential equation

U̇(t) = D�U(t) + L(m)U(t) + F
(
U(t)

)
,

where

L(m) =

(
a1(m) a2(m)
a3(m) 0

)

,

F
(
U(t)

)
=

(
r(P + P∗)(1 – P+P∗

K ) – cβ(1–m)(P+P∗)(Z+Z∗)
1+hβ(1–m)(P+P∗) – a1(m)P – a2(m)Z

eβ(1–m)(P+P∗)(Z+Z∗)
1+hβ(1–m)(P+P∗) – μ(Z + Z∗) – eρ(P + P∗)2/3(Z + Z∗) – a3(m)P

)

.
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For system (2.1), the linearized equation at (m, 0, 0) is

U̇(t) = D�U(t) + L(m)U(t),

where

L(m) = D
∂2

∂x2 + J(F)
∣
∣
∣
∣
U≡0

=

(
a1(m) + d1

∂2

∂x2 a2(m)
a3(m) d2

∂2

∂x2

)

.

We use μn = n2

l2 (n = 0, 1, 2, . . . ) to represent the nth eigenvalue of –ϕxx = μϕ, ϕx|x=0,lπ = 0.
Define the linear operator

Ln(m) =

(
a1(m) – d1μn a2(m)

a3(m) –d2μn

)

,

in which

a1(m) = r –
2rP∗

K
–

r(1 – P∗
K )

1 + hβ(1 – m)P∗ ,

a2(m) = –
c
e
(
μ + eρP∗2/3) < 0,

a3(m) =
(

μ + eρP∗2/3

1 + hβ(1 – m)P∗ –
2
3

eρP∗–1/3
)

Z∗.

It is easy to obtain that the eigenvalue of L(m) can be given by the eigenvalue of Ln(m), and
the eigenequation of Ln(m) is

λ2 + Tn(m)λ + Dn(m) = 0, (2.2)

in which

Tn(m) = –tr
(
Ln(m)

)
= –a1(m) + (d1 + d2)μn

= –r +
2rP∗

K
+

r(1 – P∗
K )

1 + hβ(1 – m)P∗ + (d1 + d2)μn,

Dn(m) =
∣
∣Ln(m)

∣
∣ = d1d2μn

2 – a1(m)d2μn – a2(m)a3(m)

= d1d2μn
2 –

(

r –
2rP∗

K
–

r(1 – P∗
K )

1 + hβ(1 – m)P∗

)

d2μn

+
(

μ + eρP∗2/3

1 + hβ(1 – m)P∗ –
2
3

eρP∗–1/3
)

rP∗
(

1 –
P∗

K

)

.

The characteristic roots of (2.2) are

λ
(n)
1,2(m) =

–Tn(m) ±
√

Tn
2(m) – 4Dn(m)

2
, n ∈N0 � {0} ∪N.

Theorem 2.2 Assume (H0) and (H1) hold and K
2 < P∗ < K . Then the following conclusions

are true:
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(1) If m > 1 – 1
hβP∗ ( μ+eρP∗2/3

2/3eρP∗–1/3 – 1), then Tn(m) > 0, Dn(m) > 0, the roots of Eq. (2.1) have
negative real parts, and system (2.1) is locally asymptotically stable at E∗ = (P∗, Z∗);

(2) If m ≤ 1 – 1
hβP∗ ( μ+eρP∗2/3

2/3eρP∗–1/3 – 1), then D0(m) < 0, Eq. (2.1) has at least one root with
positive real part, and system (2.1) is unstable at E∗ = (P∗, Z∗).

Theorem 2.3 Assume (H0) and (H1) hold and 0 < P∗ < K
2 . Then the following conclusions

are true:
(1) If m > max{1 – 1

hβP∗ ( μ+eρP∗2/3

2/3eρP∗–1/3 – 1), 1 – 1
hβ(K–2P∗) }, then Tn(m) > 0, Dn(m) > 0, the

roots of Eq. (2.1) have negative real parts, and system (2.1) is locally asymptotically
stable at E∗ = (P∗, Z∗);

(2) If m ≤ 1 – 1
hβ(K–2P∗) or m ≤ 1 – 1

hβP∗ ( μ+eρP∗2/3

2/3eρP∗–1/3 – 1), then T0(m) < 0, Eq. (2.1) has at
least one root with positive real part, and system (2.1) is unstable at E∗ = (P∗, Z∗).

2.2 Stability of boundary equilibrium points
Linearizing system (2.1) at the equilibrium, the corresponding characteristic roots at E0 =
(0, 0) are

λn
01 = r – d1μn

2, λn
02 = –μ – d2μn

2 < 0, n ∈ N0,

the corresponding characteristic roots at E1 = (K , 0) are

λn
11 = –r – d1μn

2 < 0, λn
12 =

eβ(1 – m)K
1 + hβ(1 – m)K

– μ – eρK2/3 – d2μn
2, n ∈N0.

Theorem 2.4 For system (2.1), we have the following conclusions:
(1) The system is unstable at E0 = (0, 0);
(2) If m > 1 – μ+eρK2/3

βK [e–h(μ+eρK2/3)] , then E1 = (K , 0) is locally asymptotically stable; if

m < 1 – μ+eρK2/3

βK [e–h(μ+eρK2/3)] , then E1 = (K , 0) is unstable.

3 Stability and bifurcation analysis of the delayed system
In nature, the change of population size is not only related to the current state, but also
depends on the previous state. Considering the influence of the past state on the pop-
ulation size, we take the time delay as a bifurcation parameter to study the delay effect
on the dynamic properties of the system, including the stability of positive equilibrium,
the existence and direction of Hopf bifurcation, and the stability of bifurcating periodic
solutions.

3.1 Stability switch and existence of Hopf bifurcation
Assuming that system (2.1) has a unique positive equilibrium E∗ = (P∗, Z∗), we move it to
(0, 0) and make a transformation P̂ = P – P∗, Ẑ = Z – Z∗. In order to research conveniently,
we still use P, Z to denote P̂, Ẑ, respectively. Then system (2.1) becomes

⎧
⎨

⎩

∂P(x,t)
∂t = d1�P + r(P + P∗)(1 – P(t–τ )+P∗

K ) – cβ(1–m)(P+P∗)(Z+Z∗)
1+hβ(1–m)(P+P∗) ,

∂Z(x,t)
∂t = d2�Z + eβ(1–m)(P+P∗)(Z+Z∗)

1+hβ(1–m)(P+P∗) – μ(Z + Z∗) – eρ(P + P∗)2/3(Z + Z∗).
(3.1)

Letting

u1(t) = P(·, t), u2(t) = Z(·, t), U = (u1, u2)T , X = C
(
[0, lπ ], R2),
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system (3.1) can be written as an abstract differential equation in the phase space Cτ =
C([–τ , 0], X), namely

U̇(t) = D�U(t) + L(Ut) + F(Ut), (3.2)

in which D =
( d1

d2

)
, L : Cτ → X, F : Cτ → X are defined as follows: for φ = (φ1,φ2)T ,

L(φ) =

(
a1 a2

a3 0

)(
φ1(0)
φ2(0)

)

+

(
b1 0
0 0

)(
φ1(–τ )
φ2(–τ )

)

, F(φ) =

(
F1(φ)
F2(φ)

)

,

with

F1(φ) = r
(
φ1(0) + P∗)

(

1 –
φ1(–τ ) + P∗

K

)

–
cβ(1 – m)(φ1(0) + P∗)(φ2(0) + Z∗)

1 + hβ(1 – m)(φ1(0) + P∗)

– a1φ1(0) – a2φ2(0) – b1φ1(–τ ),

F2(φ) =
eβ(1 – m)(φ1(0) + P∗)(φ2(0) + Z∗)

1 + hβ(1 – m)(φ1(0) + P∗)
– μ

(
φ2(0) + Z∗)

– eρ
(
φ1(0) + P∗)2/3(

φ2(0) + Z∗) – a3φ1(0),

a1 = r
(

1 –
P∗

K

)

–
cβ(1 – m)Z∗

[1 + hβ(1 – m)P∗]2 , a2 = –
c
e
(
μ + eρP∗2/3) < 0,

a3 =
eβ(1 – m)Z∗

[1 + hβ(1 – m)P∗]2 –
2
3

eρP∗–1/3Z∗, b1 = –
r
K

P∗ < 0.

Then, the linearized equation of (3.2) at (0, 0) is

U̇(t) = D�U(t) + L(Ut), (3.3)

in which

L(Ut) = L1U + L2Ut , L1 =

(
a1 a2

a3 0

)

, L2 =

(
b1 0
0 0

)

.

For –ϕ′′ = μϕ, x ∈ (0, lπ ), ϕ′(0) = ϕ′(lπ ) = 0, denote {bn}∞n=0 as the eigenvectors of the eigen-
values μn = n2/l2, n ∈N0, where bn = cos nπ

l . Substitute y =
∑∞

n=0
( y1n

y2n

)
cos nπ

l into Eq. (3.3),
we can obtain

(
a1 + b1e–λτ – d1μn a2

a3 –d2μn

)(
y1n

y2n

)

= λ

(
y1n

y2n

)

, n ∈N0.

The corresponding characteristic equation is

det
(
λI + μnD – L1 – L2e–λτ

)
= 0, n ∈N0.

Thus the characteristic equation is equivalent to

fn(λ, τ ) = λ2 + Anλ + Bn + Cne–λτ = 0, (3.4)
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with

An = (d1 + d2)μn – a1, Bn = d1d2μn
2 – a1d2μn – a2a3, Cn = –b1(λ + d2μn).

We make the following hypotheses:
(H2) a1 < 0,
(H3) b1 < a1,
(H4) a1

2 + 2a2a3 – b1
2 > 0.

Lemma 3.1 If (H0)–(H2) hold, for n ∈ N0, then the following conclusions can be drawn:
(1) When τ = 0, all the characteristic roots of Eq. (3.4) have negative real parts and

system (3.1) is locally asymptotically stable at E∗ = (P∗, Z∗);
(2) λ = 0 is not the root of Eq. (3.4).

Lemma 3.2 Assuming (H0)–(H2) are true, when τ �= 0, we have the following conclusions:
(1) If (H3) holds, when N1 ≤ n ≤ min{N2, N3}, Eq. (3.4) has a pair of pure imaginary

roots ±iω+
n at τ = τ

j,+
n ;

(2) If (H3) holds, when max{N1, N3} < n < N2, Eq. (3.4) has a pair of pure imaginary
roots ±iω+

n at τ = τ
j,+
n ;

(3) If (H3) holds, when 0 ≤ n ≤ min{N1, N3} or N2 < n < N3, Eq. (3.4) has two pairs of
pure imaginary roots ±iω±

n at τ = τ
j,±
n ;

(4) If (H3) holds, when n > max{N2, N3} or N3 < n < N1, Eq. (3.4) has no pure imaginary
root;

(5) If (H4) holds, when n ≥ 0, Eq. (3.4) has no pure imaginary root, where

N1 =

⎧
⎨

⎩

[N̂ = l
√

1
2d1d2

[(a1 – b1)d2 –
√

((a1 – b1)d2)2 + 4d1d2a2a3]], N̂ /∈ N,

[N̂ = l
√

1
2d1d2

[(a1 – b1)d2 –
√

((a1 – b1)d2)2 + 4d1d2a2a3]] – 1, N̂ ∈ N,

N2 =

⎧
⎨

⎩

[N̂ = l
√

1
2d1d2

[(a1 – b1)d2 +
√

((a1 – b1)d2)2 + 4d1d2a2a3]], N̂ /∈N,

[N̂ = l
√

1
2d1d2

[(a1 – b1)d2 +
√

((a1 – b1)d2)2 + 4d1d2a2a3]] – 1, N̂ ∈N,

N3 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[Ñ = l
√

1
(d2

1+d2
2) [a1d1 +

√

d2
1a12 – (d2

1 + d2
2)(a12 + 2a2a3 – b1

2)]], Ñ /∈N,

[Ñ = l
√

1
(d2

1+d2
2) [a1d1 +

√

d2
1a12 – (d2

1 + d2
2)(a12 + 2a2a3 – b1

2)]]

– 1, Ñ ∈N,

τ j,±
n =

1
ω±

n
arccos

(Dn + c1An)(ω±
n )2 – DnBn

Dn
2 + c12(ω±

n )2 +
2jπ
ω±

n
, j ∈N0.

Proof We seek the critical value τ such that Eq. (3.4) has a pair of pure imaginary roots.
Let λ = iω (ω > 0) be the root of Eq. (3.4), for some n ∈N0, then ω satisfies

–ω2 + iωAn + Bn + b1(iω + d2μn)(cosωτ – i sinωτ ) = 0.
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Separating the real and imaginary parts, we have

⎧
⎨

⎩

b1ω sinωτ + b1d2μn cosωτ = ω2 – Bn,

b1d2μn sinωτ – b1ω cosωτ = Anω.
(3.5)

Denoting Dn = b1d2μn, we get

ω4 +
(
An

2 – 2Bn – b1
2)ω2 + Bn

2 – Dn
2 = 0. (3.6)

Let z = ω2, then (3.6) becomes

z2 +
(
An

2 – 2Bn – b1
2)z + Bn

2 – Dn
2 = 0. (3.7)

If (H3) holds, obviously, Bn – Dn = d1d2μn
2 – (b1 + a1)d2μn – a2a3 > 0. Next, we discuss

the symbol of Bn + Dn. We know Bn + Dn = d1d2μn
2 + (b1 – a1)d2μn – a2a3. If N1 ≤ n ≤ N2,

Bn + Cn < 0, then Bn
2 – Cn

2 < 0. If n > N2 or 0 < n ≤ N1, Bn + Cn > 0, then Bn
2 – Cn

2 > 0.
Similarly, An

2 – 2Bn – b1
2 = (d1

2 + d2
2)μn

2 – 2a1d1μn + a1
2 + 2a2a3 – b1

2; An
2 – 2Bn – b1

2 < 0
for 0 ≤ n ≤ N3 and An

2 – 2Bn – b1
2 ≥ 0 for n > N3.

Under (H4), An
2 – 2Bn – b1

2 = (d1
2 + d2

2)μn
2 – 2a1d1μn + a1

2 + 2a2a3 – b1
2 monotonically

increases with respect to n, therefore, for any n ≥ 0, An
2 – 2Bn – b1

2 > 0, and Bn + Dn =
d1d2μn

2 + (b1 – a1)d2μn – a2a3 > 0, so Bn
2 – Dn

2 > 0.
In summary, the conclusions are true, and the roots of Eq. (3.7) are

z±
n =

–(An
2 – 2Bn – b1

2) ±
√

(An
2 – 2Bn – b1

2)2 – 4(Bn
2 – Dn

2)
2

.

Equation (3.6) has at least one positive root z±
n , ω±

n =
√

z±
n . �

Lemma 3.3 Suppose (H3) is true, then the transversality conditions hold, α′(τ j,+
n ) =

dλ
dτ

|
τ=τ

j,+
n

> 0, α′(τ j,–
n ) = dλ

dτ
|
τ=τ

j,–
n

< 0.

Proof Differentiating λ2 + Anλ + Bn + ce–λτ (λ + Cn) = 0 with respect to τ , we have

(
dλ

dτ

)–1

=
(2λ + An)eλτ + c

cλ(λ + Cn)
–

τ

λ
.

As

sign

{

Re

(
dλ

dτ

)}

λ=iω±
n

= sign

{

Re

(
dλ

dτ

)–1}

λ=iω±
n

,
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we obtain

sign

{

Re

(
dλ

dτ

)}

λ=iω±
n

= sign

{

Re

(
(2λ + An)eλτ + c

cλ(λ + Cn)
–

τ

λ

)}

λ=iω±
n

= sign

{
2ω2 – 2Bn + An

2 – c2

c2(ω2 + C2
n)

}

= sign

{±
√

(An
2 – 2Bn – c2)2 – 4(Bn

2 – c2Cn
2)

c2(ω2 + C2
n)

}

.

So α′(τ j,+
n ) = dλ

dτ
|
τ=τ

j,+
n

> 0, α′(τ j,–
n ) = dλ

dτ
|
τ=τ

j,–
n

< 0. �

Theorem 3.1 Under (H0)–(H2), if also (H3) and (H4) are true, then for system (3.1), we
can derive the following conclusions:

(1) If τ
0,–
1 > τ

1,+
1 , then E∗ = (P∗, Z∗) is locally asymptotically stable for τ ∈ [0, τ 0,+

1 ), and
E∗ = (P∗, Z∗) is unstable for τ ∈ (τ 0,+

1 , +∞). A family of nonhomogeneous bifurcating
periodic solutions occur nearby τ = τ

j,±
1 , j ∈N0;

(2) If τ
0,–
1 < τ

1,+
1 , then there exists a positive integer k such that E∗ = (P∗, Z∗) switches k

times from stable to unstable, then from unstable to stable, finally becoming unstable,
i.e., when

τ ∈ [
0, τ 0,+

1
) ∪ (

τ
0,–
1 , τ 1,+

1
) ∪ · · · ∪ (

τ
k–1,–
1 , τ k,+

1
)
,

E∗ = (P∗, Z∗) is locally asymptotically stable; when

τ ∈ (
τ

0,+
1 , τ 0,–

1
) ∪ (

τ
1,+
1 , τ 1,–

1
) ∪ · · · ∪ (

τ
k–1,+
1 , τ k–1,–

1
) ∪ (

τ
k,+
1 , +∞)

,

E∗ = (P∗, Z∗) is unstable;
(3) When τ = τ

j,±
1 , j ∈N0, a Hopf bifurcation occurs at E∗ = (P∗, Z∗), and the bifurcating

periodic solutions are homogeneous; when τ ∈ {τ j,±
n : τ j,±

n �= τ i,±
m , m �= n, N2 < n < N3,

j, i ∈N0}/{τ j,±
1 |k ∈N0}, the system also undergoes a Hopf bifurcation at E∗ = (P∗, Z∗),

and the bifurcating periodic solutions are nonhomogeneous.

3.2 Property analysis of Hopf bifurcation
In this section, we use the theory of normal form and center manifold theorem to discuss
the direction of Hopf bifurcation and the stability of bifurcating periodic solutions. Let
P̄(x, t) = P(x, τ t) – P∗, Z̄(x, t) = Z(x, τ t) – Z∗; for convenience, we remove the horizontal
line and use τ̄ to represent the critical value τ

j,±
n . Then system (2.1) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

∂P(x,t)
∂t = d1�P + τ̄ [r(P + P∗)(1 – P(t–1)+P∗

K ) – cβ(1–m)(P+P∗)(Z+Z∗)
1+hβ(1–m)(P+P∗) ],

∂Z(x,t)
∂t = d2�Z

+ τ̄ [ eβ(1–m)(P+P∗)(Z+Z∗)
1+hβ(1–m)(P+P∗) – μ(Z + Z∗) – eρ(P + P∗)2/3(Z + Z∗)].

(3.8)

Let τ = τ̄ + σ , u1(t) = P(·, t), u2(t) = Z(·, t), U = (u1, u2)T , then in the phase space �1 :=
C([–1, 0], X), system (3.8) can be written in abstract form as

dU(t)
dt

= τ̄D�U(t) + Lτ̄ (Ut) + F(Ut ,σ ), (3.9)
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where Lσ (φ) and F(φ,σ ) are defined by

Lσ (φ) = σL1

(
φ1(0)
φ2(0)

)

+ σL2

(
φ1(–1)
φ2(–1)

)

= σ

(
a1φ1(0) + a2φ2(0) + b1φ1(–1)

a3φ1(0)

)

, (3.10)

F(φ,σ ) = σD�φ + Lσ (φ) + f (φ,σ ), f (φ,σ ) = (τ̄ + σ )
(
F1(φ,σ ), F2(φ,σ )

)T , (3.11)

with

φ = (φ1,φ1)T ∈ �1,

F1(φ) =
(
φ1(0) + P0

)(
1 –

(
φ1(0) + P0

))
–

(φ1(0) + P0)(φ2(–1) + Z0)
α + (φ1(0) + P0)

e–(φ1(0)+P0)

– a1φ1(0) – a2φ2(0) – b1φ1(–1),

F2(φ) =
eβ(1 – m)(φ1(0) + P∗)(φ2(0) + Z∗)

1 + hβ(1 – m)(φ1(0) + P∗)
– μ

(
φ2(0) + Z∗)

– eρ
(
φ1(0) + P∗)2/3(

φ2(0) + Z∗) – a3φ1(0),

as well as

Lσ (Ut) = L1U + L2Ut , L1 =

(
a1 a2

a3 0

)

, L2 =

(
b1 0
0 0

)

, U = (P, Z)T ,

Ut = (Pt , Zt)T , a1 = fp = r
(

1 –
P∗

K

)

–
cβ(1 – m)Z∗

[1 + hβ(1 – m)P∗]2 ,

a2 = fz = –
cβ(1 – m)P∗

1 + hβ(1 – m)P∗ < 0, b1 = fpt = –
r
K

P∗ < 0,

a3 = gp =
eβ(1 – m)Z∗

[1 + hβ(1 – m)P∗]2 –
2
3

eρP∗–1/3Z∗.

Obviously, (0, 0) is the equilibrium of Eq. (3.8), its linearized equation is

dU(t)
dt

= τ̄D�U(t) + Lσ (Ut), (3.12)

in which �n = {iωnτ̄ , –iωnτ̄ } are the characteristic roots of system (3.12) satisfying dz(t)
dt =

–τ̄d n2

l2 z(t) + Lτ̄ (zt). By Riesz representation, there exists a matrix whose components are
bounded variation functions ηn(σ , θ ), θ ∈ [–1, 0] such that

–(τ̄ + σn)Dφ(0) + Lσn (φ) =
∫ 0

–1
dηn(σ , θ )φ(θ ).

In fact, we can choose ηn(σ , θ ) = τ̄ [L1δ(θ ) + L2δ(θ + 1)], where δ(θ ) is the Dirac delta func-
tion. Let A be the infinitesimal generating function corresponding to (3.12), and A∗ be the
adjoint matrix of A under the bilinear paring

〈
ψ(s),φ(θ )

〉
= ψ̄(0)φ(0) –

∫ 0

–1

∫ θ

ς=0
ψ̄(ς – θ ) dζn(θ )φ(ς ) dς

= ψ̄(0)φ(0) + τ̄

∫ 0

–1
ψ̄(ς + 1)K2φ(ς ) dς ,

(3.13)



Li Boundary Value Problems         (2022) 2022:36 Page 12 of 19

with φ ∈ C1([–1, 0], R2), ψ ∈ C1([–1, 0], R2), ζn(θ ) = ζ (θ , 0). Denote p(θ ) = (1, ξ )T eiωn τ̄ θ ,
p∗(θ ) = �(η, 1)T eiωn τ̄ θ as the eigenvectors of operators A and A∗ corresponding to the
eigenvalues iωnτ̄ and –iωnτ̄ . Then

η =
–iωn + d2μn

a2
, ξ =

a3

d2μn + iωn
, � =

(
ξ̄ + η + ηb1e–iωn τ̄

)–1.

Decompose the space �1 into the direct sum of the generalized eigenspace P and its
supplementary space Q, where

P := {zpbn + z̄p̄bn | z ∈C}, Q :=
{
φ ∈ C | (p̄∗bn,φ

)
= 0,

(
p∗bn,φ

)
= 0

}
.

Therefore, the solution of abstract differential equation (3.2) can be decomposed as

(
pt

zt

)

= z(t)p(θ )bn + z̄(t)p̄(θ )bn + W (t, θ ). (3.14)

Denote z(t) = (p∗bn, pt)|bn|–2, W (t, θ ) = pt(θ )–2 Re{z(t)p(θ )bn}, there exists a central man-
ifold C0 on which there is

W (t, θ ) = W20
z2

2
+ W11zz̄ + W02

z̄2

2
+ · · ·

=

(
W (1)

20

W (2)
20

)
z2

2
+

(
W (1)

11

W (2)
11

)

zz̄ +

(
W (1)

02

W (2)
02

)
z̄2

2
+ · · · ,

(3.15)

in which z and z̄ are the local coordinates corresponding to pbn and p̄bn, respectively.
When pt ∈ C0, we represent the nonlinear term F(α0, ut) as F(α0, ut)|C0 = F̃(α0, z, z̄). Denote

g(z, z̄) = p̄∗T (0)
〈
F̃(α0, z, z̄),βn

〉
= g20

z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

+ · · · , (3.16)

on the central manifold C0,

z(t) = iωnz(t) + p̄T (0)

(
〈F1, bn〉
〈F2, bn〉

)

= iωnz(t) + g(z, z̄). (3.17)

By comparing coefficients, we derive

g20 = �̄
[
η̄
(
fpp + 2fpza + 2fppt e

–iωn τ̄
)

+ gpp + 2gpza
]
,

g11 = �̄
{
η̄
[
fpp + fpz(a + ā) + fppt

(
eiωn τ̄ + e–iωn τ̄

)]
+ gpp + gpz(a + ā)

}
,

g02 = ḡ20,

g21 =
3
8
�̄(η̄T1 + T2) + �̄

(

η̄

∫

�

T3b2
k dx +

∫

�

T4b2
k dx

)

,

where

T1 = fppp + fppz(2a + ā), T2 = gppp + fppz(2a + ā),
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T3 = fpp
(
W (1)

20 (0) + 2W (1)
11 (0)

)

+ 2fpz

(
1
2

W (2)
20 (0) +

ā
2

W (1)
20 (0) + aW (1)

11 (0) + W (2)
11 (0)

)

+ 2fppt

(
1
2

W (1)
20 (–1) +

1
2

W (1)
20 (0)eiωn τ̄ + W (1)

11 (–1) + W (1)
11 (0)e–iωn τ̄

)

,

T4 = gpp
(
W (1)

20 (0) + 2W (1)
11 (0)

)

+ 2gpz

(
1
2

W (2)
20 (0) +

ā
2

W (1)
20 (0) + aW (1)

11 (0) + W (2)
11 (0)

)

,

with

fpp = 2chβ2(1 – m)2[1 + hβ(1 – m)P∗]–3Z∗, fppt = –
r
K

,

fpz = –cβ(1 – m)
[
1 + hβ(1 – m)P∗]–2,

gpp =
{

–2ehβ2(1 – m)2[1 + hβ(1 – m)P∗]–3 +
2
9

eρP∗– 4
3

}

Z∗,

gpz = eβ(1 – m)
[
1 + hβ(1 – m)P∗]–2 +

2
3

eρP∗– 1
3 ,

fppp = –6ch2β3(1 – m)3[1 + hβ(1 – m)P∗]–4Z∗,

fppz = 2chβ2(1 – m)2[1 + hβ(1 – m)P∗]–3,

gppp =
{

6eh2β3(1 – m)3[1 + hβ(1 – m)P∗]–4 –
8

27
eρP∗– 7

3

}

Z∗,

gppz = –2ehβ2(1 – m)2[1 + hβ(1 – m)P∗]–3 +
2
9

eρP∗– 4
3 .

In the following, we calculate W20(θ ) and W11(θ ), θ ∈ [–1, 0] to obtain g21. According to
(3.15),

Ẇ (z, z̄) = W20(θ )zż + W11(θ )żz̄ + W11(θ )zz̄ + W02(θ )z̄ż + · · · , (3.18)

Aτ̄ W = Aτ̄ W20(θ )
z2

2
+ Aτ̄ W11(θ )zz̄ + Aτ̄ W02(θ )

z̄2

2
+ · · · . (3.19)

It is known that Ẇ (z, z̄) satisfies

Ẇ = Aτ̄ W + H(z, z̄), (3.20)

and one has

Ẇ = ṗt – żpbn – ¯̇zp̄bn =

⎧
⎨

⎩

W – 2 Re{g(z, z̄)p(θ )}bn, θ ∈ [–1, 0),

Aτ̄ W – 2 Re{g(z, z̄)p(θ )}bn + F̃ , θ = 0,
(3.21)

H(z, z̄, θ ) = H20(θ )
z2

2
+ H11(θ )zz̄ + H02(θ )

z̄2

2
+ · · · .
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Obviously,

H20(θ ) =

⎧
⎨

⎩

–g20p(θ )bn – ḡ02p̄(θ )bn, θ ∈ [–1, 0),

–g20p(0)bn – ḡ02p̄(0)bn + F̃ ′′
zz, θ = 0,

H11(θ ) =

⎧
⎨

⎩

–g11p(θ )bn – ḡ11p̄(θ )bn, θ ∈ [–1, 0),

–g11p(0)bn – ḡ11p̄(0)bn + F̃ ′′
zz̄, θ = 0.

According to Eqs. (3.18) and (3.21),

(Aτ̄ – 2iω0τ̄ )W20(θ ) = –H20(θ ), Aτ̄ W11(θ ) = –H11(θ ), . . . . (3.22)

Computing we have

W20(θ ) = –
g20

iωnτ̄
p(0)eiωn τ̄ θ bn –

ḡ02

3iωnτ̄
p̄(0)e–iωn τ̄ θ bn + E1e2iωn τ̄ θ ,

W11(θ ) =
g11

iωnτ̄
p(0)eiωn τ̄ θ bn –

ḡ11

iωnτ̄
p̄(0)e–iωn τ̄ θ bn + E2.

(3.23)

When θ = 0, by (3.22) and (3.23), we get

(2iωnτ̄ – Aτ̄ )E1e2iωn τ̄ θ
∣
∣
θ=0 = F20b2

n, Aτ̄ E2
∣
∣
θ=0 = –F11b2

n,

in which

F20 =
(
F (1)

20 , F (2)
20

)T
=

(
fpp + 2fpza + 2fppt e–iωn τ̄

gpp + 2gpza

)

,

F11 =
(
F (1)

11 , F (2)
11

)T
=

(
fpp + fpz(a + ā) + fppt (eiωn τ̄ + e–iωn τ̄ )

gpp + gpz(a + ā)

)

.

Suppose that b2
n =

∑∞
n=1 cnbn, in which cn are the coordinates. We have

E1 =
∞∑

n=1

(
2iωn + μnD – L1 – L2e–2iωn τ̄

)–1F20cnbn,

E2 =
∞∑

n=1

(μnD – L1 – L2)–1F11cnbn,

where

(
2iωn + μnD – L1 – L2e–2iωn τ̄

)–1

=
1
κn

1

(
2iωn + d2μn fz

gp 2iωn + d1μn – fp – fpt e–2iωn τ̄

)

,

(μnD – L1 – L2)–1 =
1
κn

2

(
d2μn fz

gp d1μn – fp – fpt

)

,
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κn
1 = –4ωn

2 – fzgp – 2iωn
(
fp + fpt e

–2iωn τ̄
)

– d2
(
fp + fpt e

–2iωn τ̄
)
μn + d1d2μ

2
n + 2iωn(d1 + d2)μn,

κk
2 = –fzgp – d2(fp + fpt )μn + d1d2μ

2
n.

Now, all the unknown terms in (3.17) are represented, therefore, we can compute the
following values:

c1(0) =
1

2ωnτ̄

(

g20g11 – 2|g11|2 –
|g02|2

3

)

+
g21

2
,

μ2 = –
Re(c1(0))
Re(λ′(τ̄ ))

,

β2 = 2 Re
(
c1(0)

)
,

P2 = –
1

ωnτ̄

[
Im

(
c1(0)

)
+ μ2 Im

(
λ′(τ̄ )

)]
.

Theorem 3.2 For τ > τ̄ = τ
j,±
n (τ < τ̄ = τ

j,±
n ), we obtain the following properties of Hopf

bifurcation:
(i) If μ2 > 0 (μ2 < 0), then the Hopf bifurcation is supercritical (subcritical), and

bifurcating periodic solutions exist;
(ii) If β2 < 0 (β2 > 0), the bifurcating periodic solutions are stable (unstable) on the

central manifold;
(iii) If P2 > 0 (P2 < 0), the period of the periodic solutions increases (decreases).

4 Conclusions and biological significance
In this paper, the formulae for determining the direction of Hopf bifurcation and the sta-
bility of periodic solutions are given by using the normal form method and central man-
ifold theory. The corresponding numerical simulations are carried out. For the case with
nonlocal production delay, by analyzing the distribution of characteristic roots, it can be
concluded that the trivial steady-state solution and the boundary equilibrium have the
same local stability as in the case with a discrete delay, the system has a stability switch,
and the constant equilibrium switches finitely many times from stable to unstable, then
from unstable to stable, finally becoming unstable.

The equilibrium E1 = (K , 0) means that when the phytoplankton reaches the environ-
mental carrying capacity, i.e., the zooplankton has sufficient food, the death rate of zoo-
plankton is greater than its individual growth rate, the zooplankton population will even-
tually become extinct, and the phytoplankton population will eventually stabilize at the
maximum carrying capacity of the environment. When the coexisting positive equilib-
rium E∗ = (P∗, Z∗) exists, the research shows that the delay will affect the stability of the
system, which can make a stable positive equilibrium become unstable, thus generate a
Hopf bifurcation. Biologically, the outbreak of plankton population can be controlled by
controlling the time of toxin attack. Due to the introduction of a diffusion term and pro-
duction delay, the system may have spatially homogeneous or nonhomogeneous periodic
solutions. That is to say, under the low intensity of marine habitat complexity effect, if the
predator’s predation ability is low and there is a low production delay, then the predator
and prey can coexist in time and space, and the size of the population will remain near the
stable value.
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Figure 1 Ifm = 0.6, the equilibrium E∗ = (0.866, 0.757) is locally asymptotically stable

Figure 2 Ifm = 0.5, the stable periodic solutions bifurcate from the equilibrium E∗ = (0.866, 0.757)

5 Numerical simulations
In this section, we give some numerical simulations to verify the correctness of conclu-
sions.

(1) Stability of the diffusion system without delay caused by habitat complexity

Example 1 In system (2.1), we choose parameters

r = 0.5, K = 5, c = 0.4, β = 4, m = 0.6,

e = 0.1, μ = 0.1, ρ = 0.2, h = 0.125.

Let d1 = 1, d2 = 0.5, and select m as the bifurcation parameter to verify the stability of
the reaction–diffusion equation. Taking m = 0.6, we get E∗ = (P∗, Z∗) = (0.866, 0.757). By
Theorem 2.3, when m > m0 = 0.5736, the system is locally asymptotically stable at E∗ =
(P∗, Z∗) (shown in Fig. 1). Taking m = 0.5, when m < m0 = 0.5736, the system is unstable at
E∗ = (P∗, Z∗) (shown in Fig. 2).

(2) Stability switch of the system induced by delay

Example 2 Let � = (0, 2π ), i.e., l = 2. Take parameters as

d1 = 1, d2 = 2, r = 0.5, K = 5, c = 0.4, β = 4,

m = 0.6, e = 0.1, μ = 0.1, ρ = 0.2, h = 0.125.
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Figure 3 If τ = 2, the equilibrium E∗ = (0.866, 0.757) is locally asymptotically stable

Figure 4 If τ = 4, the equilibrium E∗ = (0.866, 0.757) is locally asymptotically stable

Figure 5 If τ = 3.45, the stable periodic solutions bifurcate from the equilibrium E∗ = (0.866, 0.757)

Figure 6 If τ = 5.8, the stable periodic solutions bifurcate from the equilibrium E∗ = (0.866, 0.757)

Calculating we get E∗ = (P∗, Z∗) = (0.866, 0.757), τ
0,+
1

.= 2.873 < τ
0,–
1

.= 3.617 < τ
1,+
1

.= 5.126.
According to our theorem, when τ ∈ (0, τ 0,+

1 ) ∪ (τ 0,–
1 , τ 1,+

1 ), E∗ = (P∗, Z∗) is locally asymp-
totically stable (shown in Figs. 3 and 4), when τ ∈ (τ 0,+

1 , τ 0,–
1 ) ∪ (τ 1,+

1 , +∞), E∗ = (P∗, Z∗) is
unstable (shown in Figs. 5 and 6). When τ crosses τ

0,±
1 , the equilibrium E∗ = (P∗, Z∗) loses
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stability and a Hopf bifurcation occurs. By Theorem 3.3,

μ2 ≈ 2.5305 > 0, β2 ≈ –0.2637 < 0, P2 ≈ 0.4371 > 0.

Therefore, the bifurcating periodic solutions are asymptotically stable, and the period in-
creases.
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