Blow-up criteria for smooth solutions to the generalized 3D MHD equations

  • Liping Hu1Email author and

    Affiliated with

    • Yinxia Wang2

      Affiliated with

      Boundary Value Problems20132013:187

      DOI: 10.1186/1687-2770-2013-187

      Received: 22 April 2013

      Accepted: 5 August 2013

      Published: 21 August 2013

      Abstract

      In this paper, we focus on the generalized 3D magnetohydrodynamic equations. Two logarithmically blow-up criteria of smooth solutions are established.

      MSC:76D03, 76W05.

      Keywords

      generalized MHD equations blow-up criteria

      1 Introduction

      We study blow up criteria of smooth solutions to the incompressible generalized magnetohydrodynamics (GMHD) equations in R 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq1_HTML.gif
      { t u + u u B B + ( Δ ) α u + ( p + 1 2 | B | 2 ) = 0 , t B + u B B u + ( Δ ) β B = 0 , u = 0 , B = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ1_HTML.gif
      (1.1)
      with the initial condition
      t = 0 : u = u 0 ( x ) , B = B 0 ( x ) , x R 3 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ2_HTML.gif
      (1.2)

      Here u = ( u 1 , u 2 , u 3 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq2_HTML.gif, B = ( B 1 , B 2 , B 3 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq3_HTML.gif and P = p + 1 2 | B | 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq4_HTML.gif are non-dimensional quantities corresponding to the flow velocity, the magnetic field and the total kinetic pressure at the point ( x , t ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq5_HTML.gif, while u 0 ( x ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq6_HTML.gif and B 0 ( x ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq7_HTML.gif are the given initial velocity and initial magnetic field with u 0 = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq8_HTML.gif and B 0 = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq9_HTML.gif, respectively.

      The GMHD equations is a generalized model of MHD equations. It has important physical background. Therefore, the GMHD equations are also mathematically significant. For 3D Navier-Stokes equations, whether there exists a global smooth solution to 3D impressible GMHD equations is still an open problem. In the absence of global well-posedness, the development of blow-up/ non blow-up theory is of major importance for both theoretical and practical purposes. Fundamental mathematical issues such as the global regularity of their solutions have generated extensive research and many interesting results have been established (see [15]).

      When α = β = 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq10_HTML.gif, (1.1) reduces to MHD equations. There are numerous important progresses on the fundamental issue of the regularity for the weak solution to (1.1), (1.2) (see [618]). A criterion for the breakdown of classical solutions to (1.1) with zero viscosity and positive resistivity in R 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq1_HTML.gif was derived in [9]. Some sufficient integrability conditions on two components or the gradient of two components of u + B http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq11_HTML.gif and u B http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq12_HTML.gif in Morrey-Campanato spaces were obtained in [10]. A logarithmal improved blow-up criterion of smooth solutions in an appropriate homogeneous Besov space was obtained by Wang et al. [11]. Zhou and Fan [15] established various logarithmically improved regularity criteria for the 3D MHD equations in terms of the velocity field and pressure, respectively. These regularity criteria can be regarded as log in time improvements of the standard Serrin criteria established before. Two new regularity criteria for the 3D incompressible MHD equations involving partial components of the velocity and magnetic fields were obtained by Jia and Zhou [17].

      When α = 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq13_HTML.gif, B = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq14_HTML.gif, (1.1) reduces to Navier-Stokes equations. Leray [19] and Hopf [20] constructed weak solutions to the Navier-Stokes equations, respectively. The solution is called the Leray-Hopf weak solution. Later on, much effort has been devoted to establish the global existence and uniqueness of smooth solutions to the Navier-Stokes equations. Different criteria for regularity of the weak solutions have been proposed and many interesting results have been obtained [2125].

      In the paper, we obtain two logarithmically blow-up criteria of smooth solutions to (1.1), (1.2) in Morrey-Campanato spaces. We hope that the study of equations (1.1) can improve the understanding of the problem of Navier-Stokes equations and MHD equations.

      Now we state our results as follows.

      Theorem 1.1 Let u 0 , B 0 H m ( R 3 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq15_HTML.gif, m 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq16_HTML.gif, with u 0 = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq17_HTML.gif, B 0 = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq9_HTML.gif and 3 4 < α = β 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq18_HTML.gif. Assume that ( u , B ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq19_HTML.gif is a smooth solution to (1.1), (1.2) on [ 0 , T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq20_HTML.gif. If u satisfies
      0 T u ( t ) M ˙ p , q r 1 + ln ( e + u ( t ) L ) d t < , 2 α r + 3 p + 1 = 2 α , 3 2 α 1 < p , 1 < p q , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ3_HTML.gif
      (1.3)

      then the solution ( u , B ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq21_HTML.gif can be extended beyond t = T http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq22_HTML.gif.

      We have the following corollary immediately.

      Corollary 1.1 Let u 0 , B 0 H m ( R 3 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq15_HTML.gif, m 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq16_HTML.gif, with u 0 = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq17_HTML.gif, B 0 = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq9_HTML.gif and 3 4 < α = β 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq23_HTML.gif. Assume that ( u , B ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq19_HTML.gif is a smooth solution to (1.1), (1.2) on [ 0 , T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq20_HTML.gif. Suppose that T is the maximal existence time, then
      0 T u ( t ) M ˙ p , q r 1 + ln ( e + u ( t ) L ) d t = , 2 α r + 3 p + 1 = 2 α , 3 2 α 1 < p , 1 < p q . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ4_HTML.gif
      (1.4)
      Theorem 1.2 Let u 0 , B 0 H m ( R 3 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq15_HTML.gif, m 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq16_HTML.gif, with u 0 = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq17_HTML.gif, B 0 = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq9_HTML.gif and 3 4 < α = β 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq23_HTML.gif. Assume that ( u , B ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq19_HTML.gif is a smooth solution to (1.1), (1.2) on [ 0 , T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq20_HTML.gif. If
      0 T u ( t ) M ˙ p , q r 1 + ln ( e + u ( t ) L ) d t < , 2 α r + 3 p = 2 α , 3 2 α < p , 1 < p q , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ5_HTML.gif
      (1.5)

      then the solution ( u , B ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq21_HTML.gif can be extended beyond t = T http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq22_HTML.gif.

      We have the following corollary immediately.

      Corollary 1.2 Let u 0 , B 0 H m ( R 3 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq15_HTML.gif, m 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq16_HTML.gif, with u 0 = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq17_HTML.gif, B 0 = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq9_HTML.gif and 3 4 < α = β 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq23_HTML.gif. Assume that ( u , B ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq19_HTML.gif is a smooth solution to (1.1), (1.2) on [ 0 , T ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq20_HTML.gif. Suppose that T is the maximal existence time, then
      0 T u ( t ) M ˙ p , q r 1 + ln ( e + u ( t ) L ) d t = , 2 α r + 3 p = 2 α , 3 2 α < p , 1 < p q . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ6_HTML.gif
      (1.6)

      The paper is organized as follows. We first state some preliminaries on function spaces and some important inequalities in Section 2. Then we prove main results in Section 3 and Section 4, respectively.

      2 Preliminaries

      Before stating our main results, we recall the definition and some properties of the homogeneous Morrey-Campanato space.

      Definition 2.1 For 1 < p q + http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq24_HTML.gif, the Morrey-Campanato space M ˙ p , q ( R 3 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq25_HTML.gif is defined by
      M ˙ p , q = { f L loc p ( R 3 ) : f M ˙ p , q = sup R > 0 sup x R 3 R 3 q 3 p f L p ( B ( x , R ) ) < } , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equa_HTML.gif

      where B ( x , R ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq26_HTML.gif denotes the ball of center x with radius R.

      Let 1 q p < http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq27_HTML.gif, we define the homogeneous space N ˙ p , q ( R 3 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq28_HTML.gif by
      N ˙ p , q ( R 3 ) = { f L p ( R 3 ) | f = k N g k , where  ( g k ) L comp p ( R 3 )  and k R 3 d k 3 ( 1 q 1 p ) g k L p < , where for any  k , d k = diam ( Supp g k ) < , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equb_HTML.gif
      where L comp p ( R 3 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq29_HTML.gif is the space of all L p http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq30_HTML.gif functions in R 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq31_HTML.gif with compact support. N ˙ p , q ( R 3 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq32_HTML.gif is a Banach space when it is equipped with the norm
      f N ˙ p , q = inf { k N d k 3 ( 1 q 1 p ) g k L p } , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equc_HTML.gif

      where the infimum is taken over all possible decompositions.

      Lemma 2.1 Let 1 < q p < http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq33_HTML.gif and p, q satisfy 1 p + 1 p = 1 q + 1 q = 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq34_HTML.gif. Then M ˙ p , q ( R 3 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq35_HTML.gif is the dual space of N ˙ p , q ( R 3 ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq32_HTML.gif.

      Lemma 2.2 Let 1 < q p < 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq36_HTML.gif, m 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq37_HTML.gif and 1 q + 1 q = 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq38_HTML.gif. Set
      γ = 3 2 + 3 q + 3 m ( 0 , 1 ] . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equd_HTML.gif
      Then there exists a constant C > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq39_HTML.gif such that for any f H ˙ γ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq40_HTML.gif and g L m http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq41_HTML.gif,
      f g N ˙ p , q C f H ˙ γ g L m . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Eque_HTML.gif

      The following lemma comes from [21].

      Lemma 2.3 Assume that 1 < p < http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq42_HTML.gif. For f , g W m , p http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq43_HTML.gif, and 1 < q http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq44_HTML.gif, 1 < r < http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq45_HTML.gif, we have
      α ( f g ) f α g L p C ( f L q 1 α 1 g L r 1 + g L q 2 α f L r 2 ) , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ7_HTML.gif
      (2.1)

      where 1 α m http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq46_HTML.gif and 1 p = 1 q 1 + 1 r 1 = 1 q 2 + 1 r 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq47_HTML.gif.

      The following inequality is the well-known Gagliardo-Nirenberg inequality.

      Lemma 2.4 Let j, m be any integers satisfying 0 j < m http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq48_HTML.gif, and let 1 q , r http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq49_HTML.gif, and p R http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq50_HTML.gif, j m θ 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq51_HTML.gif be such that
      1 p j n = θ ( 1 r m n ) + ( 1 θ ) 1 q . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equf_HTML.gif
      Then, for all f L q ( R n ) W m , r ( R n ) http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq52_HTML.gif, there is a positive constant C depending only on n, m, j, q, r, θ such that the following inequality holds:
      j f L p C f L q 1 θ m f L r θ http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ8_HTML.gif
      (2.2)

      with the following exception: if 1 < r < http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq45_HTML.gif and m j n r http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq53_HTML.gif is a nonnegative integer, then (2.2) holds only for a satisfying j m θ < 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq54_HTML.gif.

      3 Proof of Theorem 1.1

      Proof Let = ( Δ ) 1 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq55_HTML.gif. We multiply the first equation of (1.1) by Δ u http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq56_HTML.gif and use integration by parts. This yields
      1 2 d d t u ( t ) L 2 2 + 1 + α u ( t ) L 2 2 = R 3 u u Δ u d x R 3 B B Δ u d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ9_HTML.gif
      (3.1)
      Similarly, we obtain
      1 2 d d t B ( t ) L 2 2 + 1 + α B ( t ) L 2 2 = R 3 u B Δ B d x R 3 B u Δ B d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ10_HTML.gif
      (3.2)
      Summing up (3.1) and (3.2), we deduce that
      d d t ( u ( t ) L 2 2 + B ( t ) L 2 2 ) + ( 1 + α u ( t ) L 2 2 + 1 + α B ( t ) L 2 2 ) = R 3 u u Δ u d x R 3 B B Δ u d x + R 3 u B Δ B d x R 3 B u Δ B d x I 1 + I 2 + I 3 + I 4 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ11_HTML.gif
      (3.3)
      By using Lemmas 2.1, 2.2 and (2.2), we have
      I 1 C u M ˙ p , q u Δ u N ˙ p , q C u M ˙ p , q u H ˙ α Δ u L m C u M ˙ p , q 1 + α u L 2 u L 2 1 5 2 α + 3 m α 1 + α u L 2 5 2 α 3 m α C u M ˙ p , q u L 2 1 5 2 α + 3 m α 1 + α u L 2 1 + 5 2 α 3 m α 1 8 1 + α u L 2 2 + C u M ˙ p , q r u L 2 2 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ12_HTML.gif
      (3.4)

      where r = 2 1 5 2 α + 3 m α http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq57_HTML.gif.

      We apply integration by parts, B = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq58_HTML.gif, Lemmas 2.1, 2.2 and (2.2). This gives
      I 2 + I 4 = R 3 k 2 B i i B j u j d x 2 R 3 k B i i k B j u j d x = C u M ˙ p , q B Δ B N ˙ p , q C u M ˙ p , q B H ˙ α Δ B L m C u M ˙ p , q 1 + α B L 2 B L 2 1 5 2 α + 3 m α 1 + α B L 2 5 2 α 3 m α C u M ˙ p , q B L 2 1 5 2 α + 3 m α 1 + α B L 2 1 + 5 2 α 3 m α 1 8 1 + α B L 2 2 + C u M ˙ p , q r B L 2 2 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ13_HTML.gif
      (3.5)

      where r = 2 1 5 2 α + 3 m α http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq57_HTML.gif.

      Similarly, we obtain
      I 3 1 8 1 + α B L 2 2 + C u M ˙ p , q r B L 2 2 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ14_HTML.gif
      (3.6)

      where r = 2 1 5 2 α + 3 m α http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq57_HTML.gif.

      Substituting (3.4)-(3.6) into (3.3) yields
      d d t ( u ( t ) L 2 2 + B ( t ) L 2 2 ) + ( 1 + α u ( t ) L 2 2 + 1 + α B ( t ) L 2 2 ) C u M ˙ p , q r ( u L 2 2 + B L 2 2 ) C u M ˙ p , q r 1 + ln ( e + u L ) ( u L 2 2 + B L 2 2 ) C u M ˙ p , q r 1 + ln ( e + u L ) ( u L 2 2 + B L 2 2 ) [ 1 + ln ( e + u L ) ] C u M ˙ p , q r 1 + ln ( e + u L ) ( u L 2 2 + B L 2 2 ) [ 1 + ln ( e + u H 3 ) ] C u M ˙ p , q r 1 + ln ( e + u L ) ( u L 2 2 + B L 2 2 ) [ 1 + ln ( e + u H 3 2 ) ] C u M ˙ p , q r 1 + ln ( e + u L ) ( u L 2 2 + B L 2 2 ) [ 1 + ln ( e + 3 u L 2 2 + 3 B L 2 2 ) ] . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ15_HTML.gif
      (3.7)
      Owing to (1.3), we know that for any small constant ε > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq59_HTML.gif, there exists T 0 < T http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq60_HTML.gif such that
      T 0 t u ( τ ) M ˙ p , q r 1 + ln ( e + u L ) d τ < ε 1 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equg_HTML.gif
      For any T 0 t < T http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq61_HTML.gif, let
      Θ ( t ) = sup T 0 τ t ( 3 u ( τ ) L 2 2 + 3 B ( τ ) L 2 2 ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equh_HTML.gif
      By (3.7), we obtain
      d d t ( u ( t ) L 2 2 + B ( t ) L 2 2 ) + ( 1 + α u ( t ) L 2 2 + 1 + α B ( t ) L 2 2 ) C u M ˙ p , q r 1 + ln ( e + u L ) ( u L 2 2 + B L 2 2 ) [ 1 + ln ( e + Θ ( t ) ) ] . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ16_HTML.gif
      (3.8)
      It follows from (3.8) and Gronwall’s inequality that
      u ( t ) L 2 2 + B ( t ) L 2 2 + T 0 t ( 1 + α u ( τ ) L 2 2 + 1 + α B ( τ ) L 2 2 ) d τ ( u ( T 0 ) L 2 2 + B ( T 0 ) L 2 2 ) exp { C ( 1 + ln ( e + Θ ( t ) ) ) T 0 t u ( τ ) M ˙ p , q r 1 + ln ( e + u L ) d τ } C 0 exp { C ε [ 1 + ln ( e + Θ ( t ) ) ] } C 0 exp { 2 C ε [ ln ( e + Θ ( t ) ) ] } C 0 ( e + Θ ( t ) ) 2 C ε , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ17_HTML.gif
      (3.9)

      where C 0 = u ( T 0 ) L 2 2 + B ( T 0 ) L 2 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq62_HTML.gif.

      Applying m http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq63_HTML.gif to the first equation of (1.1), then taking L 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq64_HTML.gif inner product of the resulting equation with m u http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq65_HTML.gif and using integration by parts, we get
      1 2 d d t m u ( t ) L 2 2 + m + α u ( t ) L 2 2 = R 3 m ( u u ) m u d x + R 3 m ( B B ) m u d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ18_HTML.gif
      (3.10)
      Similarly, we have
      1 2 d d t m B ( t ) L 2 2 + m + α B ( t ) L 2 2 = R 3 m ( u B ) m B d x + R 3 m ( B u ) m B d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ19_HTML.gif
      (3.11)
      Combining (3.10)-(3.11), using u = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq66_HTML.gif, B = 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq58_HTML.gif and integration by parts yields
      1 2 d d t ( m u ( t ) L 2 2 + m B ( t ) L 2 2 ) + m + α u ( t ) L 2 2 + m + α B ( t ) L 2 2 = R 3 [ m ( u u ) u m u ] m u d x + R 3 [ m ( B B ) B m B ] m u d x = R 3 [ m ( u B ) u m B ] m B d x + R 3 [ m ( B u ) B m u ] m B d x J 1 + J 2 + J 3 + J 4 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ20_HTML.gif
      (3.12)

      In what follows, for simplicity, we set m = 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq67_HTML.gif.

      Using Hölder’s inequality and (2.1), (2.2), we have
      J 1 3 ( u u ) u 3 u L 3 2 3 u L 3 C u L 3 3 u L 3 2 C u L 2 6 α + 1 2 ( 2 + α ) 3 + α u L 2 11 2 ( 2 + α ) 1 8 3 + α u L 2 2 + C u L 2 2 ( 6 α + 1 ) 4 α 3 1 8 3 + α u L 2 2 + C ( e + Θ ( t ) ) 2 ( 6 α + 1 ) 4 α 3 C ε . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ21_HTML.gif
      (3.13)
      Similarly, we have
      J 2 3 ( B B ) B 3 B L 3 2 3 u L 3 C B L 3 3 B L 3 3 u L 3 C B L 2 4 α + 2 2 ( 2 + α ) 3 + α B L 2 6 2 ( 2 + α ) u L 2 2 α 1 2 ( 2 + α ) 3 + α u L 2 5 2 ( 2 + α ) 1 8 3 + α u L 2 2 + C B L 2 ( 8 α + 4 ) 4 α + 3 3 + α B L 2 12 4 α + 3 u L 2 2 ( 2 α 1 ) 4 α + 3 1 8 3 + α u L 2 2 + 1 6 3 + α B L 2 2 + C B L 2 8 α + 4 4 α 3 u L 2 2 ( 2 α 1 ) 4 α 3 1 8 3 + α u L 2 2 + 1 6 3 + α B L 2 2 + C ( e + Θ ( t ) ) 2 ( 6 α + 1 ) 4 α 3 C ε , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ22_HTML.gif
      (3.14)
      J 3 3 ( u B ) u 3 B L 3 2 3 B L 3 C u L 3 3 B L 3 2 + C B L 3 3 B L 3 3 u L 3 1 8 3 + α u L 2 2 + 1 6 3 + α B L 2 2 + C ( e + Θ ( t ) ) 2 ( 6 α + 1 ) 4 α 3 C ε , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ23_HTML.gif
      (3.15)
      and
      J 4 3 ( B u ) B 3 u L 3 2 3 B L 3 C u L 3 3 B L 3 2 + C B L 3 3 B L 3 3 u L 3 1 8 3 + α u L 2 2 + 1 6 3 + α B L 2 2 + C ( e + Θ ( t ) ) 2 ( 6 α + 1 ) 4 α 3 C ε . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ24_HTML.gif
      (3.16)
      Inserting (3.13)-(3.16) into (3.12) yields
      d d t ( 3 u ( t ) L 2 2 + 3 B ( t ) L 2 2 ) + 3 + α u ( t ) L 2 2 + 3 + α B ( t ) L 2 2 C ( e + Θ ( t ) ) 2 ( 6 α + 1 ) 4 α 3 C ε . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equi_HTML.gif

      Gronwall’s inequality implies the boundedness of H 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq68_HTML.gif-norm of u and B provided that 2 ( 6 α + 1 ) 4 α 3 C ε 1 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq69_HTML.gif, which can be achieved by the absolute continuous property of integral (1.3). We have completed the proof of Theorem 1.1. □

      4 Proof of Theorem 1.2

      Proof Let = ( Δ ) 1 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq55_HTML.gif. Multiplying the first equation of (1.1) by Δ u http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq56_HTML.gif and using integration by parts, we obtain
      1 2 d d t u ( t ) L 2 2 + 1 + α u ( t ) L 2 2 = R 3 u u Δ u d x R 3 B B Δ u d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ25_HTML.gif
      (4.1)
      Similarly, we get
      1 2 d d t B ( t ) L 2 2 + 1 + α B ( t ) L 2 2 = R 3 u B Δ B d x R 3 B u Δ B d x . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ26_HTML.gif
      (4.2)
      Summing up (4.1) and (4.2), we deduce that
      d d t ( u ( t ) L 2 2 + B ( t ) L 2 2 ) + ( 1 + α u ( t ) L 2 2 + 1 + α B ( t ) L 2 2 ) = R 3 u u Δ u d x R 3 B B Δ u d x + R 3 u B Δ B d x R 3 B u Δ B d x = R 3 u u u d x R 3 B B u d x + R 3 u B B d x R 3 B u B d x I 1 + I 2 + I 3 + I 4 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ27_HTML.gif
      (4.3)
      Using Lemmas 2.1, 2.2 and (2.2), we obtain
      I 1 C u M ˙ p , q u u N ˙ p , q C u M ˙ p , q u H ˙ α u L m C u M ˙ p , q 1 + α u L 2 u L 2 1 3 2 α + 3 m α 1 + α u L 2 3 2 α 3 m α C u M ˙ p , q u L 2 1 3 2 α + 3 m α 1 + α u L 2 1 + 3 2 α 3 m α 1 8 1 + α u L 2 2 + C u M ˙ p , q r u L 2 2 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ28_HTML.gif
      (4.4)

      where r = 2 1 5 2 α + 3 m α http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq57_HTML.gif.

      Similarly, we obtain
      I 2 C u M ˙ p , q B B N ˙ p , q C u M ˙ p , q B H ˙ α B L m C u M ˙ p , q 1 + α B L 2 B L 2 1 3 2 α + 3 m α 1 + α B L 2 3 2 α 3 m α C u M ˙ p , q B L 2 1 3 2 α + 3 m α 1 + α B L 2 1 + 3 2 α 3 m α 1 8 1 + α B L 2 2 + C u M ˙ p , q r B L 2 2 , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ29_HTML.gif
      (4.5)
      where r = 2 1 5 2 α + 3 m α http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq57_HTML.gif.
      I 3 1 8 1 + α B L 2 2 + C u M ˙ p , q r B L 2 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ30_HTML.gif
      (4.6)
      and
      I 4 1 8 1 + α B L 2 2 + C u M ˙ p , q r B L 2 2 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ31_HTML.gif
      (4.7)
      Combining (4.3)-(4.7) yields
      d d t ( u ( t ) L 2 2 + B ( t ) L 2 2 ) + ( 1 + α u ( t ) L 2 2 + 1 + α B ( t ) L 2 2 ) C u M ˙ p , q r ( u L 2 2 + B L 2 2 ) C u M ˙ p , q r 1 + ln ( e + u L ) ( u L 2 2 + B L 2 2 ) C u M ˙ p , q r 1 + ln ( e + u L ) ( u L 2 2 + B L 2 2 ) [ 1 + ln ( e + u L ) ] C u M ˙ p , q r 1 + ln ( e + u L ) ( u L 2 2 + B L 2 2 ) [ 1 + ln ( e + u H 3 ) ] C u M ˙ p , q r 1 + ln ( e + u L ) ( u L 2 2 + B L 2 2 ) [ 1 + ln ( e + u H 3 2 ) ] C u M ˙ p , q r 1 + ln ( e + u L ) ( u L 2 2 + B L 2 2 ) × [ 1 + ln ( e + 3 u L 2 2 + 3 B L 2 2 ) ] . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ32_HTML.gif
      (4.8)
      Thanks to (1.5), we know that for any small constant ε > 0 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq59_HTML.gif, there exists T 0 < T http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq60_HTML.gif such that
      T 0 t u ( τ ) M ˙ p , q r 1 + ln ( e + u L ) d τ < ε 1 . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equj_HTML.gif
      For any T 0 t < T http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq61_HTML.gif, set
      Θ ( t ) = sup T 0 τ t ( 3 u ( τ ) L 2 2 + 3 B ( τ ) L 2 2 ) . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ33_HTML.gif
      (4.9)
      By (4.8) and (4.9), we obtain
      d d t ( u ( t ) L 2 2 + B ( t ) L 2 2 ) + ( 1 + α u ( t ) L 2 2 + 1 + α B ( t ) L 2 2 ) C u M ˙ p , q r 1 + ln ( e + u L ) ( u L 2 2 + B L 2 2 ) [ 1 + ln ( e + Θ ( t ) ) ] . http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ34_HTML.gif
      (4.10)
      Equation (4.10) and Gronwall’s inequality give the estimate
      u ( t ) L 2 2 + B ( t ) L 2 2 + T 0 t ( 1 + α u ( τ ) L 2 2 + 1 + α B ( τ ) L 2 2 ) d τ ( u ( T 0 ) L 2 2 + B ( T 0 ) L 2 2 ) × exp { C ( 1 + ln ( e + Θ ( t ) ) ) T 0 t u ( τ ) M ˙ p , q r 1 + ln ( e + u L ) d τ } C 0 exp { C ε [ 1 + ln ( e + Θ ( t ) ) ] } C 0 exp { 2 C ε [ ln ( e + Θ ( t ) ) ] } C 0 ( e + Θ ( t ) ) 2 C ε , http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_Equ35_HTML.gif
      (4.11)

      where C 0 = u ( T 0 ) L 2 2 + B ( T 0 ) L 2 2 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq62_HTML.gif.

      From (4.11), H 3 http://static-content.springer.com/image/art%3A10.1186%2F1687-2770-2013-187/MediaObjects/13661_2013_Article_600_IEq68_HTML.gif estimate for this case is the same as that for Theorem 1.1. Thus, Theorem 1.2 is proved. □

      Declarations

      Authors’ Affiliations

      (1)
      College of Information and Management Sciences, Henan Agricultural University
      (2)
      School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power

      References

      1. Luo Y: On the regularity of the generalized MHD equations. J. Math. Anal. Appl. 2010, 365: 806-808. 10.1016/j.jmaa.2009.10.052MATHMathSciNetView Article
      2. Wu G: Regularity criteria for the 3D generalized MHD equations in terms of vorticity. Nonlinear Anal. 2009, 71: 4251-4258. 10.1016/j.na.2009.02.115MATHMathSciNetView Article
      3. Yuan J: Existence theorem and regularity criteria for the generalized MHD equations. Nonlinear Anal., Real World Appl. 2010, 11: 1640-1649. 10.1016/j.nonrwa.2009.03.017MATHMathSciNetView Article
      4. Zhang Z: Remarks on the regularity criteria for generalized MHD equations. J. Math. Anal. Appl. 2011, 375: 799-802. 10.1016/j.jmaa.2010.10.017MATHMathSciNetView Article
      5. Zhou Y: Regularity criteria for the generalized viscous MHD equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 2007, 24: 491-505. 10.1016/j.anihpc.2006.03.014MATHView Article
      6. Gala S: Extension criterion on regularity for weak solutions to the 3D MHD equations. Math. Methods Appl. Sci. 2010, 33: 1496-1503.MATHMathSciNet
      7. He C, Xin Z: On the regularity of solutions to the magnetohydrodynamic equations. J. Differ. Equ. 2005, 213: 235-254. 10.1016/j.jde.2004.07.002MATHMathSciNetView Article
      8. He C, Wang Y: On the regularity for weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 2007, 238: 1-17. 10.1016/j.jde.2007.03.023MATHView Article
      9. Lei Z, Zhou Y: BKM’s criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete Contin. Dyn. Syst. 2009, 25: 575-583.MATHMathSciNetView Article
      10. Wang Y, Wang S, Wang Y: Regularity criteria for weak solution to the 3D magnetohydrodynamic equations. Acta Math. Sci. 2012, 32: 1063-1072.View Article
      11. Wang Y, Zhao H, Wang Y: A logarithmically improved blow up criterion of smooth solutions for the three-dimensional MHD equations. Int. J. Math. 2012., 23: Article ID 1250027
      12. Zhou Y: Remarks on regularities for the 3D MHD equations. Discrete Contin. Dyn. Syst. 2005, 12: 881-886.MATHMathSciNetView Article
      13. Zhou Y, Gala S: Regularity criteria for the solutions to the 3D MHD equations in the multiplier space. Z. Angew. Math. Phys. 2010, 61: 193-199. 10.1007/s00033-009-0023-1MATHMathSciNetView Article
      14. Zhou Y, Gala S: A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field. Nonlinear Anal. 2010, 72: 3643-3648. 10.1016/j.na.2009.12.045MATHMathSciNetView Article
      15. Zhou Y, Fan J: Logarithmically improved regularity criteria for the 3D viscous MHD equations. Forum Math. 2012, 24: 691-708.MATHMathSciNetView Article
      16. Jia X, Zhou Y: Regularity criteria for the 3D MHD equations via partial derivatives. Kinet. Relat. Models 2012, 5: 505-516.MATHMathSciNetView Article
      17. Jia X, Zhou Y: Regularity criteria for the 3D MHD equations involving partial components. Nonlinear Anal., Real World Appl. 2012, 13: 410-418. 10.1016/j.nonrwa.2011.07.055MATHMathSciNetView Article
      18. Ni L, Guo Z, Zhou Y: Some new regularity criteria for the 3D MHD equations. J. Math. Anal. Appl. 2012, 396: 108-118. 10.1016/j.jmaa.2012.05.076MATHMathSciNetView Article
      19. Leray J: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 1934, 63: 183-248.MathSciNetView Article
      20. Hopf E: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 1951, 4: 213-231.MATHMathSciNetView Article
      21. Kato T, Ponce G: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 1988, 41: 891-907. 10.1002/cpa.3160410704MATHMathSciNetView Article
      22. Lemarié-Rieusset PG: Recent Developments in the Navier-Stokes Problem. CRC Press, Boca Raton; 2004.
      23. Mazya VG: On the theory of the n -dimensional Schrödinger operator. Izv. Akad. Nauk SSSR, Ser. Mat. 1964, 28: 1145-1172.MathSciNet
      24. Zhou Y, Gala S: Logarithmically improved regularity criteria for the Navier-Stokes equations in multiplier spaces. J. Math. Anal. Appl. 2009, 356: 498-501. 10.1016/j.jmaa.2009.03.038MATHMathSciNetView Article
      25. Fan J, Jiang S, Nakamura G, Zhou Y: Logarithmically improved regularity criteria for the Navier-Stokes and MHD equations. J. Math. Fluid Mech. 2011, 13: 557-571. 10.1007/s00021-010-0039-5MATHMathSciNetView Article

      Copyright

      © Hu and Wang; licensee Springer 2013

      This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.